
����������
�������

Citation: Brahmia, Z.; Brahmia, S.;

Grandi, F.; Bouaziz, R. JUpdate: A

JSON Update Language. Electronics

2022, 11, 508. https://doi.org/

10.3390/electronics11040508

Academic Editors: Amin Karami,

Fahimeh Jafari and

Manel Guerrero-Zapata

Received: 1 January 2022

Accepted: 4 February 2022

Published: 9 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

JUpdate: A JSON Update Language
Zouhaier Brahmia 1 , Safa Brahmia 1, Fabio Grandi 2,* and Rafik Bouaziz 1

1 Department of Computer Science of the Faculty of Economics & Management, University of Sfax,
Sfax 3018, Tunisia; zouhaier.brahmia@fsegs.usf.tn (Z.B.); safa.brahmia@gmail.com (S.B.);
rafik.bouaziz@usf.tn (R.B.)

2 Department of Computer Science and Engineering (DISI), University of Bologna, 40136 Bologna, Italy
* Correspondence: fabio.grandi@unibo.it (F.G.); Tel.: +39-051-20-9-3555

Abstract: Although JSON documents are being used in several emerging applications (e.g., Big
Data applications, IoT, mobile computing, smart cities, and online social networks), there is no
consensual or standard language for updating JSON documents (i.e., creating, deleting or changing
such documents, where changing means inserting, deleting, replacing, copying, moving, etc., portions
of data in such documents). To fill this gap, we propose in this paper an SQL-like language, named
JUpdate, for updating JSON documents. JUpdate is based on a set of six primitive update operations,
which is proven complete and minimal, and it provides a set of fourteen user-friendly high-level
operations with a well-founded semantics defined on the basis of the primitive update operations.

Keywords: JSON; JSON document; JSON update; primitive update operation; high-level update operation;
completeness

1. Introduction

Nowadays, the JavaScript Object Notation (JSON) data format [1], which is endorsed
by the Internet Engineering Task Force (IETF), is widely used in the context of several
emerging applications, such as Big Data applications, Internet of Things (IoT), mobile
computing, streaming applications, smart cities, and online social networks, since it is a
lightweight serialization data format that makes storage, interchange, and querying of data
easy. Such application environments are highly dynamic by nature and, thus, require a
continuous update of the managed data repositories. To fulfill this requirement, application
developers need to rely on a suitable low-level proprietary Application Programming
Interface (API) exposed by the data management system or on the existence and support
of a high-level data update language. The latter only would also bring about desirable
properties of reusability, portability, and interoperability and, thus, is the option of choice
from a software engineering standpoint.

However, by studying the state-of-the-art of JSON data management (e.g., [2–12]),
we have not found a recommended, consensual, and/or standard language for updating
(native) JSON data (such as SQL for relational data, XQuery Update Facility for XML data,
or SPARQL 1.1 Update for RDF data). Several JSON query languages have been proposed,
such as Jaql [13], JSONiq [14], JPQ [15], SQL++ [16,17], JNL [18], JSON-λ [19], JSONata,
GROQ, and JMESPath, which all lack modification statements making up a JSON update
language. Notice that with the locution “JSON update language”, we mean a language that
allows users to insert, delete, and modify valid data portions in a JSON document; hence,
the term “update” is used in this work in such a broader sense.

After having surveyed the state-of-the-practice of JSON data management, we have
concluded that JSON-based NoSQL DBMSs [20] can be divided into two categories: (i) those
that provide their own (proprietary) query languages, such as the MongoDB language and
several languages that are SQL-like, e.g., N1QL of Couchbase, CQL of Cassandra, and AQL
of AsterixDB, and (ii) those that only provide low-level programmatic APIs for accessing,

Electronics 2022, 11, 508. https://doi.org/10.3390/electronics11040508 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11040508
https://doi.org/10.3390/electronics11040508
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0577-1763
https://orcid.org/0000-0002-5780-8794
https://orcid.org/0000-0001-5398-462X
https://doi.org/10.3390/electronics11040508
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11040508?type=check_update&version=2

Electronics 2022, 11, 508 2 of 28

querying, and updating JSON data, such as Redis and Amazon Dynamo. Moreover, an
extension of SQL, named SQL/JSON [21–23], has been standardized by ANSI to allow the
SQL language to also support queries on JSON data. However, according to the discussion
of the SQL/JSON standard presented in [24], this new language does not support the
modification of portions of a JSON document through the SQL UPDATE statement.

In this context, it is our conviction that a JSON data update requires more attention
and that the definition of a JSON update language is necessary. Moreover, such a language
should be powerful and user-friendly but also defined with a well-founded and DBMS-
independent semantics in order to facilitate its use and implementation. For these reasons,
we propose in this paper a language, named JUpdate, for updating JSON data. JUpdate is
composed of a set of fourteen user-friendly high-level operations with a SQL-like syntax
for the insertion, deletion, and various modifications of valid portions of JSON documents.
Its operational semantics is based on the implementation of a set of low-level, primitive
update operations, which will be also introduced in the paper. The completeness and
the minimality of the proposed set of primitives, on which also the completeness and
consistency of JUpdate is founded, will be proven. In sum, our contributions could be
summarized as follows:

• We propose JUpdate, an SQL-like update language for JSON. The objective of defining
JUpdate similarly to the SQL language is to facilitate the use/acceptance of this new
language to users who are familiar with SQL and developers who have been used to
write SQL code for decades.

• JUpdate provides fourteen user-friendly high-level operations to satisfy the different
update requirements, either simple or complex, of JSON data users and JSON-based
application developers.

• The semantics of JUpdate is founded on a minimal and complete set of six primitives
(i.e., low-level operations) for updating JSON documents.

• The JUpdate definition has been based on the IETF standard JSON data model. There-
fore, it is DBMS-independent, on one hand, and it can be used for the maintenance of
generic JSON documents, on the other hand.

The rest of this paper is structured as follows. Section 2 presents the JUpdate lan-
guage by introducing the fourteen update high-level operations (HLOs) it is composed of.
Section 3 presents a short example that illustrates the use of JUpdate. Section 4 introduces
the set of primitive update operations underlying the definition of JUpdate. Section 5
provides a completeness and minimality proof for this proposed set and proves the com-
pleteness of the JUpdate language. Section 6 deals with the definability of the JUpdate
HLOs. Section 7 discusses related work. Section 8 summarizes our contributions and gives
some remarks on our future research directions.

2. High-Level Update Operations on JSON Documents: The JUpdate Language

In this section, we present the set of powerful HLOs for updating JSON documents,
which make up the JUpdate language. JUpdate is composed of fourteen HLOs with an SQL-
like syntax, so that it could be considered, for instance, as a complement of SQL++ to make
up a complete JSON data manipulation language (DML). An equivalent alternative specifi-
cation of JUpdate is also provided as an API composed of fourteen procedure interfaces,
where the names of the procedures correspond to the names of the JUpdate HLOs.

The proposed set of HLOs making up JUpdate includes fourteen operations: JUpdate
= { CreateDocument, DropDocument, InsertValue, DeleteValue, UpdateValue, CopyValue,
MoveValue, InsertMember, DeleteMember, RenameMember, ReplaceMember, CopyMember,
MoveMember, UpdateObject }. We have organized them into four subsets of HLOs, each one
of which is inspired by a subset of the SQL statements, as shown in Table 1.

Electronics 2022, 11, 508 3 of 28

Table 1. The four subsets of HLOs of JUpdate and their inspiration by the SQL statements.

HLOs Subset Objective

CreateDocument,
DropDocument

They are used to manage JSON documents as a whole, with
a syntax based on the SQLCREATE/DROPTABLE statements.

InsertValue,
DeleteValue,
UpdateValue,
CopyValue,
MoveValue

They are used to manage (possibly complex) values in JSON
documents, with a syntax based on the
SQLINSERT/DELETE/UPDATE statements.

InsertMember,
DeleteMember,
RenameMember,
ReplaceMember,
CopyMember,
MoveMember

They are used to manage the structure of JSON objects, with
a syntax based on the SQL ALTER TABLE statement. Notice
that JSON objects have to be used to represent (nested)
relational tables.

UpdateObject
It is used to change at once the value of more than one
members of a JSON object, with a syntax based on the SQL
UPDATE statement using the SET clause.

Path expressions based on JSONPath [25] are used in JUpdate statements to locate the
target position for updates in JSON documents. Moreover, filters embedded in JSONPath
expressions are used as selection conditions for document portions to be modified, without
the need of a WHERE clause in JUpdate statements. The JUpdate operations will be individ-
ually presented in the following, whereas a full syntax listing of the JUpdate language is
provided in Appendix A. Then, we will show in Section 6 how each one of these operations
can be defined (and, thus, also implemented) on the basis of a complete and minimal set of
primitive update operations.

2.1. CreateDocument

The CreateDocument HLO is defined by the statement:
CREATE DOCUMENT doc
VALUE value

and can be used to create a new JSON instance document named “doc”, using “value”
as its initial contents. The corresponding API procedure is CreateDocument(doc, value).

An error exception is raised if the JSON instance document “doc” already exists or if
“value” is not a correct JSON value.

2.2. DropDocument

The DropDocument HLO is defined by the statement:
DROP DOCUMENT doc

and can be used to delete a JSON instance document named “doc”, regardless of its
contents. The corresponding API procedure is DropDocument(doc).

An error exception is raised if the doc.json JSON instance document does not exist.

2.3. InsertValue

The InsertValue HLO is defined by the statement:
INSERT INTO doc
PATH path VALUE value

and is used to insert a possibly complex value “value” as an object member value
or new array element to the JSON document “doc”, where “path” denotes the point of
insertion. The corresponding API procedure is InsertValue(doc, path, value).

Since “path” (i.e., the point of insertion) is a JSONPath path, it can denote zero, one,
or many JSON components, where a JSON component is an object, an object member, an
array, or an array element.

Electronics 2022, 11, 508 4 of 28

If “path” has the form “p[index]”, then the path prefix “p” must denote an array, and
a “value” is inserted before the index-th element of the array (so that it becomes itself the
index-th element after the update). If the literal “last” is used instead of the index (i.e., path
has the form “p[last]”), then “value” is inserted as the last element of the array.

An error exception is raised if “value” is not a correct JSON value or if “path” does
not denote a null object member or a valid array location (i.e., when path has the form
“p[index]”, where “p” does not denote an array or it denotes an array but the index is either
a number greater than the array length or index is not the literal last).

2.4. DeleteValue

The DeleteValue HLO is defined by the statement:
DELETE FROM doc
PATH path

and is used to delete a possibly complex value designated by “path”, which either can
denote an object member or an array element location in the “doc” document.

If “path” denotes an object member, its value is set to “null” after the execution of
the deletion operation. Notice that this operation preserves the structure of the object
(i.e., although with a null value, the member denoted by “path” is still present in the object
after its execution). The corresponding API procedure is DeleteValue(doc, path).

An error exception is raised if “path” does not denote an object member or a valid
array element location (i.e., when “path” has the form “p[index]”, where “p” does not
denote an array or it denotes an array but the index is greater than the array length).

2.5. UpdateValue

The UpdateValue HLO is defined by the statement:
UPDATE doc
PATH path VALUE value

and is used to replace the value denoted by “path” with a new (possibly com-
plex) value “value” in the JSON document “doc”. The corresponding API procedure
is UpdateValue(doc, path, value).

An error exception is raised if “value” is not a correct JSON value or if “path” does
not denote an object member or a valid array element location (i.e., when “path” has the
form “p[index]”, where “p” does not denote an array or it denotes an array but the index is
neither a number less than the array length nor is the literal last).

2.6. CopyValue

The CopyValue HLO is defined by the statement:
UPDATE doc
COPY FROM path TO newpath

and is used to copy the value designated by “path” to a new location denoted by “new-
path” in the JSON document “doc”. The corresponding API procedure is CopyValue(doc,
path, newpath).

An error exception is raised if “path” or “newpath” do not denote an object member
or a valid array element location.

2.7. MoveValue

The MoveValue HLO is defined by the statement:
UPDATE doc
MOVE FROM path TO newpath

and is used to move the value designated by “path” to a new location denoted by “newpath”
in the JSON document “doc”. In fact, it is equivalent to the execution of the two statements:

UPDATE doc
COPY FROM path TO newpath;
DELETE FROM doc

Electronics 2022, 11, 508 5 of 28

PATH path.
The corresponding API procedure is MoveValue(doc, path, newpath).
An error exception is raised if “path” or “newpath” do not denote an object mem-

ber or a valid array element location or if “path” is a prefix of the “newpath” location
(i.e., a value cannot be moved into itself).

Whereas the statements dealing with (possibly complex) values are modeled on the
SQL DML INSERT/DELETE/UPDATE statements (as shown in the five HLOs above), the
JUpdate statements acting on JSON objects are modeled on the SQL ALTER DDL statement
(as shown in the six HLOs below), where members of an object in a JSON document are
assimilated to columns in a relational table. In fact, modifications that involve members
deal with the structure of objects and, thus, can be considered for all intents (implicit)
schema changes [26,27].

Notice that the enforcement at the language level of the distinction between the man-
agement of JSON values and JSON objects is also a precise design choice that prevents from
the “interchangeability” of arrays and objects to store data collections. JSON allows indeed
for a sort of equivalence between an array [“foo”, “bar”] and an object {“0”:”foo”,
“1”:”bar”} (deriving from the equivalence of dot and bracket notations in JSONPath),
which we consider rather a severe flaw in its design and which should be fixed by disal-
lowing numbers to be used as object member names. In fact, from a conceptual modeling
perspective, arrays and objects are clearly different constructs with a different semantics
and serving different data design purposes (e.g., such as Lists and Dictionaries used as data
collections in Python [28]). In this respect, JSON is considered somewhat superior to XML
as data modeling language precisely because of its native support of arrays. Moreover,
admitting the above equivalence would make one of the two constructs actually redundant
and the commonly used JSON syntax (see Section 5) in some sense ambiguous, as two
different syntactic trees would correspond to equivalent data expressions.

2.8. InsertMember

The InsertMember HLO is defined by the statement:
ALTER DOCUMENT doc OBJECT path
ADD MEMBER name VALUE value

and is used to insert an object member with name “name” and a possibly complex
value “value” into the JSON document “doc”, where “path” denotes the point of insertion.
The VALUE clause is optional; if omitted, a null value is assigned to the new member. The
corresponding API procedure is InsertMember(doc, path, name, value).

An error exception is raised if “path” does not denote an object.
Notice that there is no need to have in JUpdate also an InsertArray or DeleteArray

HLO, since the InsertValue and DeleteValue HLO, respectively, can be used with an
array-type value. For instance, the whole array [0,5] can be deleted from the JSON instance
(1), as shown below:

doc.json =
{“X”:[{“A”:null,”B”:10},{},{“A”:true,”Z”:[0,5]},{“C”:”xy”}]}(1)
via the statement:

DELETE FROM doc.json
PATH $.X[2].Z

producing the JSON instance (2) which follows:
doc.json =
{“X”:[{“A”:null,”B”:10},{},{“A”:true,”Z”:null},{“C”:”xy”}]}.(2)

2.9. DeleteMember

The DeleteMember HLO is defined by the statement:
ALTER DOCUMENT doc OBJECT path
DROP MEMBER name

Electronics 2022, 11, 508 6 of 28

and is used to delete the member “name” from an object denoted by “path” (with a
possibly complex value) from the JSON document “doc”. The corresponding API procedure
is DeleteMember(doc, path.name), where “path.name” is the path denoting the member
to be deleted.

An error exception is raised if “path.name” does not denote an object member.

2.10. RenameMember

The RenameMember HLO is defined by the statement:
ALTER DOCUMENT doc OBJECT path
RENAME MEMBER name TO newname

and is used to rename the member “name” of an object denoted by “path” to “new-
name” in the JSON document “doc”. The corresponding API procedure is RenameMember
(doc, path.name, newname).

An error exception is raised if “path.name” does not denote an object member.

2.11. ReplaceMember

The ReplaceMember HLO is defined by the statement:
ALTER DOCUMENT doc OBJECT path
REPLACE MEMBER name WITH newname VALUE value

and is used to replace the name and the value of the object member denoted by
“path.name” in the JSON document “doc” with “newname” and “value”, respectively. The
VALUE clause is optional; if omitted, a null value is assigned to the replacing member. The
corresponding API procedure is ReplaceMember(doc, path.name, newname, value).

An error exception is raised if “path.name” does not denote an object member.

2.12. CopyMember

The CopyMember HLO is defined by the statement:
ALTER DOCUMENT doc OBJECT path
COPY MEMBER name TO newpath

and is used to copy the member “name” of an object denoted by “path” to a new
location denoted by “newpath” in the JSON document “doc”. The corresponding API
procedure is CopyMember(doc, path.name, newpath).

An error exception is raised if “path.name” does not denote an object member or if
“newpath” does not denote an object.

2.13. MoveMember

The MoveMember HLO is defined by the statement:
ALTER DOCUMENT doc OBJECT path
MOVE MEMBER name TO newpath

and is used to move the member “name” of an object denoted by “path” to a new
location denoted by “newpath” in the JSON document “doc”. In fact, it is equivalent to the
execution of the two statements:

ALTER DOCUMENT doc OBJECT path
COPY MEMBER name TO newpath;
ALTER DOCUMENT doc OBJECT path
DROP MEMBER name.

The corresponding API procedure is MoveMember(doc, path.name, newpath).
An error exception is raised if “path.name” does not denote an object member or if

“newpath” does not denote an object or if “path” is a prefix of the “newpath” location
(i.e., an object member cannot be moved to a location inside its value).

Electronics 2022, 11, 508 7 of 28

2.14. UpdateObject

Finally, we add an UpdateObject HLO defined by the statement:
UPDATE doc OBJECT path
SET name1=value1, name2=value2, . . . , nameN=valueN

as an SQL-like operation for updating several members of an object at the same time. In
fact, it can be used to replace with “value1”, “value2”, . . . , “valueN” the values of the mem-
bers “name1”, “name2”, . . . , “nameN”, respectively, of the JSON object denoted by “path”
in the JSON document “doc”. The corresponding API procedure is UpdateObject(doc,
path, name1, value1, name2, value2, . . . , nameN, valueN).

An error exception is raised if “value1”, “value2”, . . . , “valueN”, are not correct JSON
values or if “path” does not denote a JSON object.

Notice that the UpdateObject operation above is just syntactic sugar for the JUpdate
statement sequence:

UPDATE doc
PATH path.name1 VALUE value1;
UPDATE doc
PATH path.name2 VALUE value2;
. . .
UPDATE doc
PATH path.nameN VALUE valueN.

Similarly, the UpdateObject API procedure can be considered as a macro defined as
an equivalent sequence of UpdateValue procedure calls.

In all the statements listed above are equipped with a VALUE clause supporting a
constant value, we assume it can also be replaced, as it happens with INSERT in SQL,
by a subquery dynamically returning a computed JSON value. Such a subquery can be
expressed via a JSONPath expression (possibly defined on a JSON document different
from that under modification) or via a SELECT statement expressed in an SQL-like JSON
query language such as SQL++. An error exception is raised if this subquery, specified as
a JSONPath expression or as a SQL-like SELECT statement, returns a collection of values
and not a single value. On the other hand, if the subquery result is empty, a “null” value
is assumed.

3. Illustrative Example

To illustrate the use of our JUpdate language, we assume to have a JSON NoSQL
database in use in a research laboratory, including a JSON instance document, named
“scientificProduction.json”, which stores information about the publications of the members
of the laboratory. The initial state of such a document is displayed in Figure 1.

Electronics 2022, 10, x FOR PEER REVIEW 8 of 32

Figure 1. Initial state of the “scientificProduction.json” JSON instance file.

Suppose an end user of this database wants to add the information about a new
journal paper (with its details: ID, title, journal name, volume, issue, year of publication,
and pages). To this purpose, as papers are stored as objects in the array “papers” (as
shown in Figure 1), he/she could use the InsertValue JUpdate operation as follows:

INSERT INTO scientificProduction.json
PATH $.papers[last]
VALUE { "paperID":"J-2019-001",
 "authors":["Layla Ahmad","Mario Rossi"],
 "title":"JSON Query Languages",
 "journalName":"Emerging Databases",
 "volume":5,
 "issue":1,
 "year":2019,
 "pages":null }.

The result of the execution of this operation is shown in Figure 2, where added parts
are evidenced in red bold type.

Figure 1. Initial state of the “scientificProduction.json” JSON instance file.

Electronics 2022, 11, 508 8 of 28

Suppose an end user of this database wants to add the information about a new
journal paper (with its details: ID, title, journal name, volume, issue, year of publication,
and pages). To this purpose, as papers are stored as objects in the array “papers” (as shown
in Figure 1), he/she could use the InsertValue JUpdate operation as follows:

INSERT INTO scientificProduction.json
PATH $.papers[last]
VALUE { "paperID":"J-2019-001",

"authors":["Layla Ahmad","Mario Rossi"],
"title":"JSON Query Languages",
"journalName":"Emerging Databases",
"volume":5,
"issue":1,
"year":2019,
"pages":null }.

The result of the execution of this operation is shown in Figure 2, where added parts
are evidenced in red bold type.

Electronics 2022, 10, x FOR PEER REVIEW 9 of 32

Figure 2. State of the “scientificProduction.json” JSON file after the execution of the In-
sertObject HLO that adds the new (journal) paper.

After that, suppose that the end user wants to perform the following tasks:
• To change the name of the array from “papers” to “publications”;
• To fix an error concerning the authors of the paper with ID “C-2019-001”. In fact, the

user acknowledged that this paper has not been written by “Adnan Burhan”, but
actually by “Anna Lorenzi” and “Ihsan Fakhri”. In order to apply the correction, the
user wants to have the current wrong value of the “authors” array replaced by a new
value including the two proper authors;

• To replace the “confChair” property of the conference having the acronym
“NoSQL-DB-2019”, with the publisher “Zprinter” of the conference proceedings;

• To update from “C” to “B” the rank of the conference with acronym
“NoSQL-DB-2019”;

• To add the missing page numbers “23–43” to the paper with ID “J-2019-001”;
• To add journal quartile information, with value “Q2”, to the paper with ID

“J-2019-001”;
• To copy the publisher information from the paper with ID “C-2019-001” to the paper

with ID “J-2019-001”, as the publisher is the same;
• To delete the issue property of the journal with name “Emerging Databases”, since it

has no longer had issue numbers since its fifth volume;
• To move the paper with ID “J-2019-001” at the beginning of the list of papers.

Hence, to this aim, he/she can use the following sequence of JUpdate statements:

ALTER DOCUMENT scientificProduction.json OBJECT $
RENAME MEMBER papers TO publications ;
UPDATE scientificProduction.json
PATH $.publications[?(@.paperID=='C-2019-001')].authors
VALUE ["Anna Lorenzi","Ihsan Fakhri"] ;

Figure 2. State of the “scientificProduction.json” JSON file after the execution of the
InsertObject HLO that adds the new (journal) paper.

After that, suppose that the end user wants to perform the following tasks:

• To change the name of the array from “papers” to “publications”;
• To fix an error concerning the authors of the paper with ID “C-2019-001”. In fact, the

user acknowledged that this paper has not been written by “Adnan Burhan”, but
actually by “Anna Lorenzi” and “Ihsan Fakhri”. In order to apply the correction, the
user wants to have the current wrong value of the “authors” array replaced by a new
value including the two proper authors;

• To replace the “confChair” property of the conference having the acronym “NoSQL-
DB-2019”, with the publisher “Zprinter” of the conference proceedings;

• To update from “C” to “B” the rank of the conference with acronym “NoSQL-DB-2019”;
• To add the missing page numbers “23–43” to the paper with ID “J-2019-001”;
• To add journal quartile information, with value “Q2”, to the paper with ID “J-2019-001”;
• To copy the publisher information from the paper with ID “C-2019-001” to the paper

with ID “J-2019-001”, as the publisher is the same;
• To delete the issue property of the journal with name “Emerging Databases”, since it

has no longer had issue numbers since its fifth volume;
• To move the paper with ID “J-2019-001” at the beginning of the list of papers.

Electronics 2022, 11, 508 9 of 28

Hence, to this aim, he/she can use the following sequence of JUpdate statements:
ALTER DOCUMENT scientificProduction.json OBJECT $
RENAME MEMBER papers TO publications ;
UPDATE scientificProduction.json
PATH $.publications[?(@.paperID==’C-2019-001’)].authors
VALUE ["Anna Lorenzi","Ihsan Fakhri"] ;
ALTER DOCUMENT scientificProduction.json
OBJECT $.publications[?(@.confAcronym==’NoSQL-DB-2019’)]
REPLACE MEMBER confChair WITH publisher VALUE "Zprinter" ;
UPDATE scientificProduction.json
OBJECT $.publications[?(@.confAcronym==’NoSQL-DB-2019’)]
SET confRank="B" ;
INSERT scientificProduction.json
PATH $.publications[?(@.paperID==’J-2019-001’)].pages
VALUE "23-43" ;
ALTER DOCUMENT scientificProduction.json
OBJECT $.publications[?(@.paperID==’C-2019-001’)]
COPY MEMBER publisher

TO $.publications[?(@.paperID==’J-2019-001’)] ;
ALTER DOCUMENT scientificProduction.json
OBJECT $.publications[?(@.paperID==’J-2019-001’)]
ADD MEMBER journalQuartile VALUE "Q2" ;
ALTER DOCUMENT scientificProduction.json
OBJECT $.publications[?(@.journalName==’Emerging Databases’),

?(@.volume>=5)]
DROP MEMBER issue ;
UPDATE scientificProduction.json
MOVE FROM $.publications[?(@.paperID==’J-2019-001’)]

TO $.publications[0].
Notice that for the update of an object member value, in order to exemplify both

options, we used either the UPDATE . . . VALUE . . . form (i.e., the UpdateValue HLO) and
the UPDATE . . . SET . . . syntactic variant (i.e., the UpdateObject HLO). The result of the
execution of this sequence of operations is shown in Figure 3, where changes are evidenced
in red bold type.

Electronics 2022, 10, x FOR PEER REVIEW 11 of 32

Figure 3. Final state of the “scientificProduction.json” JSON instance document after the
execution of the sequence of JUpdate operations described in the text.

4. Primitive Update Operations
In this section, we propose a set of six primitive update operations PO = { CreaDoc,

DropDoc, InsMemb, InsVal, DelMemb, DelVal }, on which the definition and imple-
mentation of the JUpdate language can be based. As it will be shown in the next section
(and precisely in Section 5.1), the proposed primitive operation set PO is complete and
minimal, and it is given two arbitrary (and possibly empty) JSON instance documents
doc1.json and doc2.json; doc1.json can always be transformed into doc2.json via the ap-
plication of a suitable sequence of primitive operations taken from PO. The chosen names
of the proposed operations are derived from corresponding JUpdate HLOs: whereas
high-level operations have been assigned full names (e.g., InsertValue), the strictly
related PO operations have shortened names (e.g., InsVal). The semantics of the PO
operations is defined as described in the following.

4.1. CreaDoc
The CreaDoc(doc)primitive creates a JSON instance document, named “doc”, ini-

tialized with a null content. An error exception is raised if an instance file named “doc”
already exists.

4.2. DropDoc
The DropDoc(doc)primitive removes the JSON file named “doc” from the data-

base with the constraint that the argument represents a JSON file with a null content. Any
other contents must have been removed before. An error exception is raised if the in-
stance file named “doc” does not exist or it does not have a null content.

Figure 3. Final state of the “scientificProduction.json” JSON instance document after the execu-
tion of the sequence of JUpdate operations described in the text.

Electronics 2022, 11, 508 10 of 28

4. Primitive Update Operations

In this section, we propose a set of six primitive update operations PO = { CreaDoc,
DropDoc, InsMemb, InsVal, DelMemb, DelVal }, on which the definition and implementation
of the JUpdate language can be based. As it will be shown in the next section (and
precisely in Section 5.1), the proposed primitive operation set PO is complete and minimal,
and it is given two arbitrary (and possibly empty) JSON instance documents doc1.json
and doc2.json; doc1.json can always be transformed into doc2.json via the application of a
suitable sequence of primitive operations taken from PO. The chosen names of the proposed
operations are derived from corresponding JUpdate HLOs: whereas high-level operations
have been assigned full names (e.g., InsertValue), the strictly related PO operations have
shortened names (e.g., InsVal). The semantics of the PO operations is defined as described
in the following.

4.1. CreaDoc

The CreaDoc(doc)primitive creates a JSON instance document, named “doc”, ini-
tialized with a null content. An error exception is raised if an instance file named “doc”
already exists.

4.2. DropDoc

The DropDoc(doc)primitive removes the JSON file named “doc” from the database
with the constraint that the argument represents a JSON file with a null content. Any other
contents must have been removed before. An error exception is raised if the instance file
named “doc” does not exist or it does not have a null content.

4.3. InsMemb

The InsMemb(doc, path, name) primitive adds an initially empty (i.e., with a “null”
value) member named “name” to an object (possibly empty) denoted by the path “path” of
the JSON instance document “doc”. An error exception is raised if “path” does not denote
an object.

4.4. InsVal

The InsVal(doc, path, name) primitive assigns a value to an empty object member
(i.e., whose value is “null”) located at path “path” in the JSON instance document “doc”.
The supplied value “value” can be either a valid number, string, or Boolean (i.e., a true or
false literal) value, or the literal “object” or “array”. If “value” is “object” or “array”, the
corresponding structure is created initially empty (i.e., “{}” or “[]”, resp.). If path has the
form “p[index]”, then the path prefix “p” must denote an array and “value” is inserted
before the index-th element of the array (so that it becomes itself the index-th element after
the update). If the literal “last” is used instead of index (i.e., the path has the form “p[last]”),
then a value is inserted as the last element of the array. An error exception is raised if the
path does not denote an empty object member or if the path has been specified as p[index]
but p does not denote an array or denotes an array with fewer index components.

The InsVal primitive is also used to initialize an empty document (i.e., with a “null”
content) with a non-null value (e.g., “object” or “array”).

After having been created empty with the CreaDoc operation, any complex JSON file
can be built with a suitable sequence of InsMemb and InsVal operations.

4.5. DelVal

The DelVal(doc, path) primitive removes from the JSON instance document “doc”
the value denoted by “path”, which must be a simple-type (i.e., string, number, or Boolean)
value or an empty object or array. An error exception is raised if “path” does not denote
either a simple-type value or an empty object or array.

Electronics 2022, 11, 508 11 of 28

4.6. DelMemb

The DelMemb(doc, path) primitive removes from the JSON instance document “doc”
the empty (i.e., with a null value) object member located at the path “path”. An error
exception is raised if “path” does not denote an empty object member.

5. Completeness and Minimality

In this section, we first show that the proposed set of primitive updates PO is complete
and minimal. Then, we use this result to prove the completeness of the JUpdate language.

5.1. Completeness and Minimality of the Proposed Primitive Update Operations Set PO

Let us consider the complete JSON grammar as composed of the six production rules
in BNF format listed in Figure 4.

Electronics 2022, 10, x FOR PEER REVIEW 13 of 32

Figure 4. The BNF syntax of the JSON language.

For the sake of brevity, in the grammar, we do not expand further the <string>,
<number>, and <boolean> non-terminals, but we assume instead they can produce the
desired terminal data value through a call to a function eval() (e.g., when the <number>
non-terminal has to produce the value 123, we assume the function eval(<number>) re-
turns 123). The non-terminal <boolean> produces the true or false literal names.
However, other than that (and non-explicitation of “insignificant whitespace” specifica-
tions), the grammar in Figure 4 is perfectly equivalent to the standard JSON grammar
presented in EBNF format in [1].

Furthermore, if PR is a variable denoting a production rule, we employ a dotted
notation such that PR.type, PR.H, and PR.B refer to the type, head, and body of the rule,
respectively. For example, if PR is the P5-type production rule <ele-
ments>::=<elements>,<value> then PR.type is P5, PR.H is <elements>, and PR.B
is <elements>,<value>.

Then, we consider a consistent set of production rule applications, giving rise to the
syntax tree corresponding to a valid JSON instance. For example, Figure 5 shows the
syntax tree corresponding to the JSON instance (3) shown below.

doc.json =

{“X”:[{“A”:null,”B”:10},{},{“C”:”xy”}]} (3)

In particular, intermediate nodes of the syntax tree contain the head of a production
rule, and their (one or two) children node(s) contain the non-terminal(s) in the body of
such a rule. The root node always contains the start non-terminal <json>, which is the
head of the only P0-type production rule used in the tree. The leaves of the tree are ter-
minal values: strings, numbers, Boolean, or null values. Obviously, for any given valid
JSON instance, there is such a set of production rule applications. We further consider a
linear order of the production rule applications corresponding to the depth-first traversal
of the syntax tree, which represents the order in which the production rules are applied.
We will use a function next(PR) that returns the production rule that follows PR in such
an order (the superscripts preceding the non-terminal in each node of the tree in Figure 5
correspond to the position in such an order). For example, if PR is
6<value>::=<array>and is the 6th production rule applied in the syntax tree of Figure
5, next(PR) is the 7th production rule applied, that is 7<array>::=[<elements>].

Hence, we can prove that the set of primitive change operations introduced in Sec-
tion 4 is minimal and complete. In particular, any given JSON instance can be constructed
(or destroyed) via the execution of a sequence of such operations.

Figure 4. The BNF syntax of the JSON language.

For the sake of brevity, in the grammar, we do not expand further the <string>,
<number>, and <boolean> non-terminals, but we assume instead they can produce the
desired terminal data value through a call to a function eval() (e.g., when the <number>
non-terminal has to produce the value 123, we assume the function eval(<number>) returns
123). The non-terminal <boolean> produces the true or false literal names. However,
other than that (and non-explicitation of “insignificant whitespace” specifications), the
grammar in Figure 4 is perfectly equivalent to the standard JSON grammar presented in
EBNF format in [1].

Furthermore, if PR is a variable denoting a production rule, we employ a dotted no-
tation such that PR.type, PR.H, and PR.B refer to the type, head, and body of the rule, respec-
tively. For example, if PR is the P5-type production rule <elements>::=<elements>,<value>
then PR.type is P5, PR.H is <elements>, and PR.B is <elements>,<value>.

Then, we consider a consistent set of production rule applications, giving rise to the
syntax tree corresponding to a valid JSON instance. For example, Figure 5 shows the syntax
tree corresponding to the JSON instance (3) shown below.

doc.json =
{“X”:[{“A”:null,”B”:10},{},{“C”:”xy”}]} (3)
In particular, intermediate nodes of the syntax tree contain the head of a production

rule, and their (one or two) children node(s) contain the non-terminal(s) in the body of such
a rule. The root node always contains the start non-terminal <json>, which is the head of
the only P0-type production rule used in the tree. The leaves of the tree are terminal values:
strings, numbers, Boolean, or null values. Obviously, for any given valid JSON instance,
there is such a set of production rule applications. We further consider a linear order of
the production rule applications corresponding to the depth-first traversal of the syntax
tree, which represents the order in which the production rules are applied. We will use a

Electronics 2022, 11, 508 12 of 28

function next(PR) that returns the production rule that follows PR in such an order (the
superscripts preceding the non-terminal in each node of the tree in Figure 5 correspond
to the position in such an order). For example, if PR is 6<value>::=<array>and is the 6th
production rule applied in the syntax tree of Figure 5, next(PR) is the 7th production rule
applied, that is 7<array>::=[<elements>].

Hence, we can prove that the set of primitive change operations introduced in Section 4
is minimal and complete. In particular, any given JSON instance can be constructed (or
destroyed) via the execution of a sequence of such operations.

Electronics 2022, 10, x FOR PEER REVIEW 14 of 32

Figure 5. The syntax tree corresponding to the JSON instance (3).

We start by proving the completeness of the construction primitive operation set {
CreaDoc, InsVal, InsMemb } by showing how any set of production rule applica-
tions corresponding to the syntax tree of a valid JSON instance can be translated into a
sequence of primitive operations, whose execution produces the same JSON instance
from scratch. To this end, we introduce a recursive procedure applyPR(PR, doc, path),
which applies the production rule PR to the document “doc” starting at path “path”. The
applyPR procedure is defined as follows:

procedure applyPR(PR, doc, path)
 case PR.type of
 P0: // PR.H = <json>
 output CreaDoc(doc);
 applyPR(next(PR), doc, $); // next(PR) must be P6-type

2 <value>

3 <object>

{ 4 <members> }

5 <pair>

6 <string> : 7 <value>

8 <array>"X"

[9 <elements>]

10 <elements> , 25 <value>

11 <elements> , 23 <value>

12 <value>

13 <object>

{ 14 <members> }

15 <members> , 19 <pair>

16 <pair>

17 <string> : 18 <value>

20 <string> : 21 <value>

"A" null

"B"

10

24 <object>

{}

26 <object>

{ 27 <members> }

28 <pair>

29 <string> : 30 <value>

"C"

"xy"

22 <number>

31 <string>

1 <json>

Figure 5. The syntax tree corresponding to the JSON instance (3).

Electronics 2022, 11, 508 13 of 28

We start by proving the completeness of the construction primitive operation set
{ CreaDoc, InsVal, InsMemb } by showing how any set of production rule applications
corresponding to the syntax tree of a valid JSON instance can be translated into a sequence
of primitive operations, whose execution produces the same JSON instance from scratch.
To this end, we introduce a recursive procedure applyPR(PR, doc, path), which applies the
production rule PR to the document “doc” starting at path “path”. The applyPR procedure
is defined as follows:

procedure applyPR(PR, doc, path)
case PR.type of
P0: // PR.H = <json>

output CreaDoc(doc);
applyPR(next(PR), doc, $); // next(PR) must be P6-type

P1: // PR.H = <object>
output InsVal(doc, path, object);
if (PR.B 6= {}) then applyPR(next(PR), doc, path) endif;

// next(PR) must be P2-type
P2: // PR.H = <members>

if (PR.B 6= <pair>) then applyPR(next(PR), doc, path) endif;
// next(PR) must be P2-type

applyPR(next(PR), doc, path); // next(PR) must be P3-type
P3: // PR.H = <pair>

Name := eval(next(PR)); // next(PR) must be <string>
output InsMemb(doc, path, Name);
applyPR(next(PR), doc, path.Name); // next(PR) must be P6-type

P4: // PR.H=<array>
output InsVal(doc, path, array);
if (PR.B 6= []) then applyPR(next(PR), doc, path) endif;

// next(PR) must be P5-type
P5: // PR.H = <elements>

if (PR.B 6=<value>) then applyPR(next(PR), doc, path) endif;
// next(PR) must be P5-type

applyPR(next(PR), doc, path[last]); // next(PR) must be P6-type
P6: // PR.H = <value>

if (PR.B = <object>) then applyPR(next(PR), doc, path)
// next(PR) must be P1-type

else if (PR.B = <array>) then applyPR(next(PR), doc, path)
// next(PR) must be P4-type

else if (PR.B 6= null) then Value := eval(next(PR)) ;
// next(PR) must be <string>, <number> or <boolean>

output InsVal(doc, path, Value)
end if;

end case;
end procedure.
The full translation involving the construction of the doc.json JSON instance can

be done by invoking applyPR(PR, doc.json, null), where PR is the first production rule
to be applied (i.e., 1<json>::=<value>), that is the P0-type production rule whose head
is the root of the syntax tree of the JSON instance. It easy to see that each case in the
body of the procedure translates the semantics of a production rule of the grammar into
the corresponding action(s) performed via change primitives. For example, the applyPR
procedure translates the set of production rule applications depicted in Figure 5 and
corresponding to the JSON instance (3) into the sequence of operations that follows:

Electronics 2022, 11, 508 14 of 28

CreaDoc(doc.json);
→ doc.json = null

InsVal(doc.json, $, object);
→ doc.json = {}

InsMemb(doc.json, $, X);
→ doc.json = {"X":null}

InsVal(doc.json, $.X, array);
→ doc.json = {"X":[]}

InsVal(doc.json, $.X[last], object);
→ doc.json = {"X":[{}]}

InsMemb(doc.json, $.X[last], A);
→ doc.json = {"X":[{"A":null}]}

InsMemb(doc.json, $.X[last], B);
→ doc.json = {"X":[{"A":null,"B":null}]}

InsVal(doc.json, $.X[last].B, 10);
→ doc.json = {"X":[{"A":null,"B":10}]}

InsVal(doc.json, $.X[last], object);
→ doc.json = {"X":[{"A":null,"B":10},{}]}

InsVal(doc.json, $.X[last], object);
→ doc.json = {"X":[{"A":null,"B":10},{},{}]}

InsMemb(doc.json, $.X[last], C);
→ doc.json = {"X":[{"A":null,"B":10},{},{"C":null}]}

InsVal(doc.json, $.X[last].C, xy);
→ doc.json = {"X":[{"A":null,"B":10},{},{"C":"xy"}]}

which clearly produce the same JSON instance (3) from scratch (the step-by-step
construction of the contents of the doc.json instance is also shown above). A full trace of
the execution of the applyPR procedure applied to this example can be found in Figure A1
of Appendix B.

In addition, to be complete, the proposed set of construction primitive changes
{ CreaDoc, InsVal, InsMemb } is also minimal, as all of them are needed in the defi-
nition of the translation procedure applyPR.

As far as the destruction primitives are concerned, we observe that DropDoc(doc)
is the inverse operation of CreaDoc(doc), DelVal(doc, path) is the inverse operation of
InsVal(doc, path, val), and DelMemb(doc, path) is the inverse operation of InsMemb
(doc, path, name), as each of the former undoes the effects of the latter. For example, it
can be easily seen that the JSON instance (3) can be completely destroyed via the application
of the sequence of primitive changes that follows:

DelVal(doc.json, $.X[last].C);
DelMemb(doc.json, $.X[last], C);
DelVal(doc.json, $.X[last]);
DelVal(doc.json, $.X[last]);
DelVal(doc.json, $.X[last].B);
DelMemb(doc.json, $.X[last], B);
DelMemb(doc.json, $.X[last], A);
DelVal(doc.json, $.X[last]);
DelVal(doc.json, $.X);
DelMemb(doc.json, $,X);
DelVal(doc.json, $);
DropDoc(doc.json).
In general, given any JSON instance doc.json defined by a production rule application

set corresponding to its syntax tree, in order to find the sequence of primitive changes that
completely destroys it, we can:

Electronics 2022, 11, 508 15 of 28

1. Use the applyPR procedure in order to derive from the production rule application
set the sequence of creation primitives that could have been used to construct the
doc.json instance;

2. Scan the sequence of creation primitives in reverse order and replace each of them by
its inverse destruction primitive.

Hence, also the set of destruction primitives { DropDoc, DelVal, DelMemb } comes
out as complete and minimal, as all of them and only them are needed to destroy any
arbitrary JSON instance.

Therefore, the full set PO = { CreaDoc, DropDoc, InsVal, DelVal, InsMemb, DelMemb }
of change primitives presented in Section 4 is complete and minimal.

5.2. Completeness of JUpdate

In this section, we prove that the JUpdate language is complete by showing that a
suitable use of a subset of its operations is equivalent to the set of primitive operations PO
presented in Section 4, which is complete. In fact, starting from the JUpdate API procedures,
the primitive operations can be defined as follows:

procedure CreaDoc(doc)
CreateDocument(doc, null);

end procedure;
procedure DropDoc(doc)

DeleteDocument(doc);
end procedure;
procedure InsVal(doc, path, value)

if value=object then InsertValue(doc, path, {});
else if value=array then InsertValue(doc, path, []);
else InsertValue(doc, path, value);
end if;

end procedure;
procedure InsMemb(doc, path, name)

InsertMember(doc, path, name, null);
end procedure;
procedure DelVal(doc, path)

DeleteValue(doc, path);
end procedure;
procedure DelMemb(doc, path)

DeleteMember(doc, path);
end procedure.
Owing to the equivalence with the primitives in PO, the subset of JUpdate operations

used in this proof constitutes a complete and minimal subset of HLOs necessary for
applying any given transformation to a JSON instance document. The other proposed
HLOs, together with the other possible uses of the HLOs in this subset, provide syntactic
sugar for putting powerful and friendly operations at the user’s disposal.

6. Definability of the HLOs Making up JUpdate

In this section, we show how the HLOs presented in Section 2 and making up the
proposed JUpdate language can be defined starting from the primitive operations presented
in Section 4. In particular, the operational semantics of JUpdate API procedures is given in
terms of operations in PO.

To this purpose, we distinguish between two basic HLOs, InsertValue and Delete-
Value, which we will show how can be defined from primitive operations only, and the
rest of the HLOs, which can be more conveniently defined from primitive operations and
previously defined HLOs.

Electronics 2022, 11, 508 16 of 28

We assume that the applicability errors that have been described in the definitions of
Section 2 are dealt with separately and, thus, the procedures presented in the following are
executed when errors are absent and, thus, exceptions have not been raised.

6.1. Basic HLOs: InsertValue and DeleteValue

The operational semantics of the InsertValue HLO can be defined in terms of primi-
tive operations as follows:

procedure InsertValue(doc, path, value)
ST := syntaxCheck(value, jsonSyntax);
PR := ST.root;
if PR.type = P6 then

call applyPR(PR, doc, path);
execute the resulting sequence of primitive operations;

else alert(“Syntax error in value”);
end if;

end procedure;
where jsonSyntax corresponds to the encoding of the JSON grammar in Figure 4 and

the syntaxCheck() procedure, which can be implemented via a simply adapted standard
JSON parser, returns the syntactic tree of the “value” expression. Hence, the syntactic check
on the correctness of “value” is successful if the root PR of ST is a P6-type production rule.

For instance, consider the JSON instance (3) introduced in Section 5.1 and an object-
type value {“A”:true,”Z”:[0,5]}, which we want to insert between the last two elements
of the array in doc.json. This can be done by executing the HLO InsertValue(doc.json,
$.X[2], {“A”:true,”Z”:[0,5]}). Then, the syntactic check on “value” is successful
and produces the syntactic tree ST depicted in Figure 6. Then, the effect of the applyPR
procedure is the generation of the primitive operation sequence:

InsVal(doc.json, $.X[2], object);
InsMemb(doc.json, $.X[2], A);
InsVal(doc.json, $.X[2].A, true);
InsMemb(doc.json, $.X[2], Z);
InsVal(doc.json, $.X[2].Z, array);
InsVal(doc.json, $.X[2].Z[last], 0);
InsVal(doc.json, $.X[2].Z[last], 5);
whose execution eventually updates the JSON instance (3) as follows:
doc.json =
{“X”:[{“A”:null,”B”:10},{},{“A”:true,”Z”:[0,5]},{“C”:”xy”}]}.(4)
A full trace of the execution of the applyPR procedure applied to this example can be

found in Figure A2 of Appendix B.
In practice, there is no need for applying the above definition in order to execute an InsertValue

HLO, as it is sufficient (after the syntactic checks on “value” and “path”) to directly insert the
JSON text “value” as a whole at the desired point “path” in the document.

The operational semantics of the DeleteValue HLO can be defined in terms of primi-
tive operations as follows:

procedure DeleteValue(doc, path)
ST := syntax Check(doc.path, jsonSyntax);
PR := ST.root;
if PR.type=P6 then

call applyPR(PR, doc, path);
scan the resulting sequence of primitive operations in reverse order

and replace each one by its inverse one;
execute the resulting sequence of primitive operations;

else alert(“Syntax error in path”);
end if;

end procedure;

Electronics 2022, 11, 508 17 of 28

where jsonSyntax corresponds to the encoding of the JSON grammar in Figure 4 and
the syntaxCheck() procedure, which can be implemented via a simply adapted standard
JSON parser, returns the syntactic tree of value. The syntactic check on the correctness of
“path” is successful if the root PR of ST is a P6-type production rule.

Electronics 2022, 10, x FOR PEER REVIEW 19 of 32

doc.json =

{“X”:[{“A”:null,”B”:10},{},{“A”:true,”Z”:[0,5]},{“C”:”xy”}]}.(4)

A full trace of the execution of the applyPR procedure applied to this example can be
found in Figure A2 of Appendix B.

In practice, there is no need for applying the above definition in order to execute an In-
sertValue HLO, as it is sufficient (after the syntactic checks on “value” and “path”) to directly
insert the JSON text “value” as a whole at the desired point “path” in the document.

Figure 6. The syntax tree of the JSON object-type value {“A”:true, ”Z”:[0,5]}.

The operational semantics of the DeleteValue HLO can be defined in terms of
primitive operations as follows:

procedure DeleteValue(doc, path)
ST := syntax Check(doc.path, jsonSyntax);
PR := ST.root;
if PR.type=P6 then

call applyPR(PR, doc, path);
scan the resulting sequence of primitive operations in reverse order
 and replace each one by its inverse one;
execute the resulting sequence of primitive operations;

else alert(“Syntax error in path”);
end if;

end procedure;

where jsonSyntax corresponds to the encoding of the JSON grammar in Figure 4 and the
syntaxCheck() procedure, which can be implemented via a simply adapted standard

1 <value>

2 <object>

{ 3 <members> }

[13 <elements>]

4 <members> , 9 <pair>

14 <elements> , 17 <value>

15 <value>

5

0

5 <pair>

6 <string> : 7 <value>

"A"

true

10 <string> : 11 <value>

"Z"
12 <array>

8 <boolean>

16 <number>

18 <number>

Figure 6. The syntax tree of the JSON object-type value {“A”:true, ”Z”:[0,5]}.

For instance, consider the JSON instance (4) presented above and the deletion of the
array-type value of the object member with label Z. This can be done by executing the HLO
DeleteValue(doc.json, $.X[2].Z). Then, the syntactic check on “value” is successful
(the path $.X[2].Z denotes an array-type value), and the effect of the applyPR procedure
is the generation of the primitive operation sequence:

InsVal(doc.json, $.X[2].Z, array);
InsVal(doc.json, $.X[2].Z[last], 0);
InsVal(doc.json, $.X[2].Z[last], 5).
Then, the scan in reverse order and substitution with inverse primitive operations

produces the sequence:
DelVal(doc.json, $.X[2].Z[last]);
DelVal(doc.json, $.X[2].Z[last]);
DelVal(doc.json, $.X[2].Z, array);
whose execution eventually updates the JSON instance (4) as follows:
doc.json =
{“X”:[{“A”:null,”B”:10},{},{“A”:true,”Z”:null},{“C”:”xy”}]}.(5)
In practice, also in this case, there is no need for applying the above definition in order to

execute a DeleteValue HLO, as it is sufficient (after the syntactic checks on “value” and “path”)
to directly delete the JSON text “value” as a whole from the desired point “path” in the document.

Electronics 2022, 11, 508 18 of 28

6.2. Derived HLOs

In this subsection, we show how all the other HLOs making up JUpdate can be
defined starting from primitive operations presented in Section 4 and the two basic HLOs
InsertValue and DeleteValue described above.

The CreateDocument HLO can be simply defined from the CreaDoc primitive opera-
tion and the InsertValue basic HLO as follows:

procedure CreateDocument(doc, value)
CreaDoc(doc);
InsertValue(doc, $, value);

end procedure.
The DropDocument HLO can be simply defined from the DropDoc primitive operation

and the DeleteValue basic HLO as follows:
procedure DropDocument(doc)

DeleteValue(doc, $)
DropDoc(doc);

end procedure.
The UpdateValueHLO can be simply defined from the basic InsertValue and Delete-

Value HLOs as follows:
procedure UpdateValue(doc, path, value)

DeleteValue(doc, path);
InsertValue(doc, path, value);

end procedure.
The CopyValueHLO can be simply defined using the basic InsertValueHLO as follows:
procedure CopyValue(doc, path, newpath)

InsertValue(doc, newpath, doc:path); /* inserts at location newpath in doc
the value of doc:path
which is the value of path in doc */

end procedure.
The MoveValue HLO can be simply defined from the CopyValue and DeleteValue

HLOs as follows:
procedure MoveValue(doc, path, newpath)

CopyValue(doc, path, newpath);
DeleteValue(doc, path);

end procedure.
The InsertMember HLO can be simply defined from the InsMemb primitive operation

and the basic InsertValue HLO as follows:
procedure InsertMember(doc, path, name, value)

InsMemb(doc, path, name);
InsertValue(doc, path.name, value);

end procedure.
The DeleteMember HLO can be simply defined from the DelMemb primitive operation

and the basic DeleteValue HLO as follows:
procedure DeleteMember(doc, path)

DeleteValue(doc, path);
Let name be such that path=p.name;
DelMemb(doc, p, name);

end procedure.
The RenameMemberHLO can be simply defined from the InsertMember and the Delete-

Member HLOs as follows:
procedure RenameMember(doc, path, name)

Let oldname be such that path=p.oldname;
InsertMember(doc, p, name, doc:path); /* creates a new member p.name

with the value doc:path which is
the value of p.oldname in doc */

Electronics 2022, 11, 508 19 of 28

DeleteMember(doc, path);
end procedure.
In practice, the RenameMember HLO can be more efficiently implemented by directly replacing

with “name” the string representing the name of the member denoted by “path”.
The ReplaceMember HLO can be simply defined using the RenameMember and Update-

Value HLOs as follows:
procedure ReplaceMember(doc, path, name, value)

RenameMember(doc, path, name);
UpdateValue(doc, path, value);

end procedure.
The CopyMember HLO can be simply defined using the InsertMember HLO as follows:
procedure CopyMember(doc, path, newpath)

Let path be such that path=p.name;
InsertMember(doc, newpath, name, doc:path);

/* creates a new member newpath.name
with the value doc:path
which is the value of p.name in doc */

end procedure.
The MoveMember HLO can be simply defined from the CopyMember and DeleteMember

HLOs as follows:
procedure MoveMember(doc, path, newpath)

CopyMember(doc, path, newpath);
DeleteMember(doc, path);

end procedure.
As already observed in Section 2, the UpdateObject HLO is equivalent to a sequence

of UpdateValue operations.

7. Related Work Discussion

The problem of updating JSON data/documents has not been previously studied in
the literature, whereas many works have dealt with JSON data querying. Indeed, several
JSON query languages have been proposed such as JSONiq [14], which is an XQuery-like
language, SQL++ [16,17], which is a SQL-like language, and JSONPath [25], which is
an XPath-like language. Notice that since our JUpdate language is SQL-like, it could be
combined with SQL++ to produce a full JSON DML.

As far as mainstream NoSQL data stores are concerned, each one of them provides,
for managing JSON data, either a proprietary query language, such as Couchbase whose
language is N1QL, Cassandra whose language is CQL, and AsterixDB whose language is
AQL, or some low-level programmatic APIs, such as Amazon Dynamo and Redis. In the
following, we try to compare our JUpdate language to the three languages N1QL, CQL,
and AQL, which also provide for update operations.

• N1QL, CQL, and AQL, similarly to JUpdate, are SQL-like. However, contrary to them,
JUpdate is DBMS-independent. Moreover, such languages are based on predefined
precise data models based on collections of homogeneous JSON objects (e.g., key-
value/keyspaces for N1QL, tables for CQL, and ADM/dataspaces for AQL), to be
used as relational tables (with objects playing the role of table rows). CQL also supports
collections (i.e., lists/sets/maps) to store structured multiple values in a table. JUpdate
is not based on any predefined data model and, thus, it best suits the JSON philosophy
and can be used for the maintenance of generic JSON documents.

• N1QL and AQL support an UPSERT operation that behaves as an UPDATE if correspond-
ing data (which are JSON object members) are found or as an INSERT if corresponding
data are not found, such as the RECORD operation proposed in [29]. Such operations
are based on the precise data models based on collections of JSON objects recalled
above and cannot be used on generic JSON documents. On object members, the
JUpdate UPDATE operation works as an UPSERT, since it behaves as INSERT if the value

Electronics 2022, 11, 508 20 of 28

to be updated has a null value. On a JSON array, the JUpdate UPDATE operation still
works as an UPSERT if used on the “[last]” component of the array (such component
is replaced if present or a new component is inserted if the array is empty). Hence,
JUpdate does not need an UPSERT, as the UPDATE operation can be used in a more
general and powerful way (i.e., to make “upsertions” in both objects and arrays placed
at any nesting level of the structure of a generic JSON document).

• Contrary to CQL, which supports a BATCH operation (i.e., a sequence of multiple
INSERT, UPDATE, and DELETE operations that are grouped together in a single operation
so that they can be executed together), JUpdate does not support it. In fact, JUpdate
allows its users to specify any valid sequence of operations among the set of fourteen
operations of JUpdate and not only among a set of three operations.

As for the well-known NoSQL DBMS, MongoDB, it provides also a proprietary data
manipulation language for performing CRUD (https://docs.mongodb.com/manual/crud/
(accessed on 31 December 2021)) (create, read, update, and delete) operations on JSON
documents. However, its syntax is neither SQL- nor XQuery-like.

Furthermore, several authors have dealt with the integration of JSON data in relational
DBMSs, such as [11,30–33], focusing only on JSON data querying in such a context. In
the present work, we consider JSON data stored in a native JSON (NoSQL) environment
and focus on JSON data updating in such a framework. Moreover, an ANSI SQL/JSON
standard [21–23] has been created to extend the specifications of SQL to support the
management of JSON documents. However, in [24], the author shows that this standard
does not allow users to change single parts of JSON documents and proposes to improve it
in this direction via an extension of the SQL UPDATE statement syntax and semantics.

Thus, the investigation of the state-of-the-art and the state-of-the-practice shows that
there is no consensual or standard language for updating native JSON data.

Considering formal aspects, logical foundations of JSON structures and JSON querying
have been studied in [3,5], respectively. Our paper deals with an operational formalization
of JSON updates.

JSON Patch [34] is a standard for specifying a sequence of changes to a JSON document
through the definition of another JSON document, which is suitable to be used with the
HTTP PATCH method, called a JSON Patch document,. This latter consists of an array
of objects where each object describes a change operation on the corresponding JSON
document through three members: (i) “op”, which represents the desired operation; notice
that JSON Patch provides six operations: “add”, “remove”, “replace”, “move”, “copy”,
and “test”; (ii) “path”, which represents the path of the target node; (iii) “value”, which
represents a new value if needed, or “from”, which represents a source path if needed. The
specified operations have to be executed in their defined order. Similarly to the concept of
“transaction” in relational DBMSs, the sequence of these operations is either completely
executed or not executed at all if one of its operations fails. In Appendix C, we show how a
JSON Patch processor can be set up using JUpdate operations. It is also shown how JSON
Patch can be considered less powerful and less user-friendly than JUpdate, owing to the
overload of its supplied operators.

As far as high-level update languages are concerned, no other proposals can be found
in the literature on JSON data management. Even existing JSON NoSQL DBMSs do not
provide any support for this type of operations. Notice that in a previous work [35], we
have dealt with high-level operations but for changing XML schemas in a temporal XML
environment that supports schema versioning [36–38].

Furthermore, it is worth mentioning that the well-known W3C XML language [39]
has many similarities with JSON. Indeed, they are both based on tree/hierarchical data
models to be used for the storage and exchange of structured, semi-structured, and un-
structured data, including all emerging and NoSQL data. However, although there are
two languages that are recommended by the W3C to query and to update XML data
(i.e., XQuery [40] and XQuery Update Facility (XUF) 1.0 [41], respectively), there are no sim-
ilar recommendations by the IETF to query and to update JSON data. Notice that several

https://docs.mongodb.com/manual/crud/

Electronics 2022, 11, 508 21 of 28

XML update languages have been proposed before the recommendation of XUF 1.0, such
as XUpdate [42], SiXDML [43], UpdateX [44], XML-RL update language [45], GLASSU [46],
and FLUX [47]. XUF 1.0 (its 3.0 release is yet under development [48]) provides a set of
update operations, which includes update primitives that are the components of pending
update lists, and update routines that are used in defining XQuery semantics but do not ap-
pear on pending update lists. The update primitives whose number is twelve are as follows:
insertBefore, insertAfter, insertInto, insertIntoAsFirst, insertIntoAsLast, insertAttributes,
delete, replaceNode, replaceValue, replaceElementContent, rename, and put. The update
routines whose number is six are as follows: mergeUpdates, applyUpdates, revalidate,
removeType, setToUntyped, and propagateNamespace. As for the pending update list, it
is defined in [41] as an unordered collection of update primitives, which represent node
state changes that have not yet been applied. Notice also that recently, Brahmia et al. [49]
have provided a survey of the proposals (approaches, languages, tools, etc.) that have dealt
with XML data update, in a conventional (i.e., non-temporal) or a temporal environments.
Furthermore, the authors of [50] have extended the XUF 1.0 language, with a VALID clause
that allows the specification of an applicability period of an update (i.e., insert, replace,
delete, or rename) operation, to support the manipulation of temporal XML data.

In [51], we have used the high-level JSON update operations of JUpdate to define the
operational semantics and to provide a basis for the implementation of the high-level JSON
Schema change operations of our JSON Schema change language previously proposed
in [52], based on the fact that a JSON Schema [3,53] file is also a plain JSON [1] file.

8. Conclusions

In this paper, we have proposed JUpdate, a JSON Update language, which includes a
complete set of fourteen user-friendly high-level operations. The definition of the seman-
tics of the proposed JUpdate operations has been based on a set of six primitive update
operations, which has been proved complete and minimal. This theoretical underpinning,
which was not provided before for other JSON update (sub)languages, shows that JUpdate
is actually all that is needed for the maintenance of generic JSON documents.

To the best of our knowledge, we are the first to propose (i) a user-friendly SQL-like
JUpdate language composed of high-level operations for manipulating valid portions
of JSON instance documents and (ii) a set of primitive operations for updating native
JSON data, on which the semantics of JUpdate is based and for which completeness
and minimality properties have been proved. Moreover, our primitives and high-level
operations are so general, well-founded, and DBMS-independent that on one hand, they
can easily be implemented to set up a stand-alone JUpdate processor, and on the other
hand, they could also be exploited to support high-level declarative (and not low-level
programmatic) JSON update APIs.

Since several JSON-based emerging advanced applications (e.g., e-government and
e-health applications) require bookkeeping of the history of data changes and, therefore,
need to manage the evolution over time of JSON data, it will be interesting to extend
JUpdate to also support updating of temporal JSON data. For this purpose, we intend in
our future work to propose a temporal extension of JUpdate, named τJUpdate (Temporal
JUpdate), to equip our temporal JSON-based NoSQL framework τJSchema (Temporal JSON
Schema) [7,54].

Author Contributions: Conceptualization, Z.B., S.B., F.G. and R.B.; methodology, Z.B., S.B., F.G. and
R.B.; software, Z.B., S.B. and F.G; validation, Z.B., S.B., F.G. and R.B.; formal analysis, Z.B., S.B. and
F.G.; investigation, Z.B., S.B. and F.G.; resources, S.B.; data curation, S.B.; writing—original draft
preparation, Z.B., S.B. and F.G.; writing—review and editing, Z.B. and F.G.; visualization, Z.B., S.B.
and F.G.; supervision, F.G. and R.B.; project administration, Z.B.; funding acquisition, F.G. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2022, 11, 508 22 of 28

Appendix A. JUpdate Syntax

In this Appendix, we provide a full syntax of the JUpdate language, which was
specified in BNF format.

<jUpdate> ::= <docUpdateStmt> | <valUpdateStmt> |
<objUpdateStmt>

<docUpdateStmt> ::= <creaDocStmt> | <dropDocStmt>
<valUpdateStmt> ::= <insertStmt> | <deleteStmt> | <updValStmt> |

<updCopyStmt> | <updMoveStmt>
<objUpdateStmt> ::= <addMembStmt> | <dropMembStmt> |

<renameMembStmt> | <replaceMembStmt> |
<copyMembStmt> | <moveMembStmt> | <updObjStmt>

<creaDocStmt> ::= CREATE <docName> <jsonValue>
<dropDocStmt> ::= DROP <docName>
<insertStmt> ::= INSERT INTO <name> <jsonPath> <jsonValue>
<deleteStmt> ::= DELETE FROM <name> <jsonPath>
<updValStmt> ::= <updateDoc> <jsonPath> <jsonValue>
<updCopyStmt> ::= <updateDoc> COPY <fromToPath>
<updMoveStmt> ::= <updateDoc> MOVE <fromToPath>
<addMembStmt> ::= <alterObj> ADD <membName> <jsonValue>
<dropMembStmt> ::= <alterObj> DROP <membName>
<renameMembStmt> ::= <alterObj> RENAME <membName> TO <string>
<replaceMembStmt> ::= <alterObj> REPLACE <membName>

WITH <string> <jsonValue>
<copyMembStmt> ::= <alterObj> COPY <membName> <toPath>
<moveMembStmt> ::= <alterObj> MOVE <membName> <toPath>
<updObjStmt> ::= <updateDoc> <objPath> SET <assignments>
<assignments> ::= <assignment> | <assignment>,<assignments>
<assignment> ::= <string> = <json>
<docName> ::= DOCUMENT <name>
<jsonValue> ::= VALUE <json> | <jPath> | <selectStmt>
<jsonPath> ::= PATH <jPath>
<updateDoc> ::= UPDATE <name>
<fromToPath> ::= FROM <jPath> <toPath>
<toPath> ::= TO <jPath>
<alterObj> ::= ALTER <docName> <objPath>
<objPath> ::= OBJECT <jPath>
<membName> ::= MEMBER <string>

For the sake of simplicity, as for the JSON grammar in Figure 4, also in this case,
we did not explicit “insignificant whitespace” specifications. The non-terminal <json>,
producing a valid JSON value, actually corresponds to the one in Figure 4 (also <string> is
the same as appearing in Figure 4). The non-terminals <name> and <jPath> are assumed
to produce a valid JSON document name and a valid JSON Path expression (It can be
expanded as shown, for instance, in “https://docs.oracle.com/en/database/oracle/oracle-
database/19/adjsn/diagrams-basic-sql-json-path-expression-syntax.html” (accessed on
31 December 2021)), respectively. In the production rule for <jsonValue>, the <jPath>
and <selectStmt> non-terminals represent the possibility to use a subquery formulated as
a JSONPath expression or as a SELECT statement in some SQL-like JSON query language
(e.g., SQL++), respectively, to compute the required JSON value rather than providing it as
a literal constant.

https://docs.oracle.com/en/database/oracle/oracle-database/19/adjsn/diagrams-basic-sql-json-path-expression-syntax.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/adjsn/diagrams-basic-sql-json-path-expression-syntax.html

Electronics 2022, 11, 508 23 of 28

Appendix B. Execution Traces of the applyPR Procedure

In this Appendix, we show in Figures A1 and A2 the execution trace of the applyPR
procedure for the cases presented in Sections 5.1 and 6.1, respectively. The order in which
primitive operation calls are output corresponds to the depth-first traversal of the syntax
trees displayed in Figures 5 and 6, respectively, which represents the order in which the
production rules are applied (and is visualized in Figures A1 and A2 via the superscripts
preceding the first argument in each applyPR call).

Electronics 2022, 10, x FOR PEER REVIEW 27 of 32

Figure A1. The execution trace of applyPR for the JSON instance (3) with syntax tree in Figure 5.

applyPR(30<value>:==<string>, doc.json, $.X[last].C)
Value := eval(31<string>); // Value=xy
output InsVal(doc.json, $.X[last].C, xy);

applyPR(28<pair>:==<string>:<value>, doc.json, $.X[last])
Name := eval(29<string>); // Name=C
output InsMemb(doc.json, $.X[last], C);

applyPR(27<members>:==<pair>, doc.json, $.X[last]);

applyPR(26<members>:==<pair>, doc.json, $.X[last]);

applyPR(25<value>:==<object>, doc.json, $.X[last])
output InsVal(doc.json, $.X[last], object);

applyPR(24<object>:=={}, doc.json, $.X[last])
output InsVal(doc.json, $.X[last], object);

applyPR(8<array>::=[<elements>], doc.json, $.X)
output InsVal(doc.json, $.X, array);

applyPR(23<value>:==<object>,doc.json,$.X[last]);

applyPR(10<elements>:==<elements>,<value>, doc.json,
$.X);

applyPR(9<elements>::=<elements>,<value>, doc.json, $.X);

applyPR(11<elements>:==<value>, doc.json, $.X);

applyPR(12<value>:==<object>, doc.json, $.X[last]);

applyPR(13<object>:=={<members>}, doc.json, $.X[last])
output InsVal(doc.json, $.X[last], object);

applyPR(14<members>:==<members>,<pair>, doc.json, $.X[last]);

applyPR(15<members>:==<pair>, doc.json, $.X[last]);

applyPR(16<pair>:==<string>:<value>, doc.json, $.X[last])
Name := eval(17<string>); // Name=A
output InsMemb(doc.json, $.X[last], A);

applyPR(18<value>:==null, doc.json, $.X[last].A)

applyPR(19<pair>:==<string>:<value>, doc.json, $.X[last])
Name := eval(20<string>); // Name=B
output InsMemb(doc.json, $.X[last], B);

applyPR(21<value>:==<number>, doc.json,$. X[last].B)
Value := eval(22<number>); // Value=10
output InsVal(doc.json, $.X[last].B, 10);

applyPR(7<value>::=<array>, doc.json, $.X)

applyPR(5<pair>::=<string>:<value>, doc.json, $)
Name := eval(6<string>); // Name=X
output InsMemb(doc.json, $, X);

applyPR(4<members>::=<pair>, doc.json,$)

applyPR(3<object>::={<members>}, doc.json, $)
output InsVal(doc.json, $, object);

applyPR(2<value>::=<object>, doc.json, $)

applyPR(1<json>::=<value>, doc.json, null)
output CreaDoc(doc.json);

Figure A1. The execution trace of applyPR for the JSON instance (3) with syntax tree in Figure 5.

Electronics 2022, 11, 508 24 of 28Electronics 2022, 10, x FOR PEER REVIEW 28 of 32

Figure A2. The execution trace of applyPR for the execution of the HLO Insert-
Value(doc.json, $.X[2], {“A”:true,”Z”:[0,5]}) on the JSON instance (3).

Appendix C. Implementation of a JSON Patch Processor
In this appendix, we show how a JSON Patch [33] processor can be easily imple-

mented using our proposed JUpdate HLOs.
JSON Patch is an Internet Engineering Task Force (IETF) standard that allows the

specification of a sequence of update operations to be executed on a JSON document. A
JSON Patch document is itself a JSON document, which is defined as an array of objects
such that each object has two mandatory members, “op” and “path”, and one optional
member, “value” or “from”.
• “op” denotes the operation to be applied; JSON Patch supports six operations:

“add”, “remove”, “replace”, “move”, “copy” and “test”;
• “path” denotes the target path of the operation, that is the path of the JSON com-

ponent affected by the operation;
• “value” denotes the (new) value provided by the user, to be used by the “add” and

“replace” operation;
• “from” denotes the source path to be used by the “move” and “copy” operations.

For example, if we have a JSON document whose initial contents are as follows:
{ "researchLab":"DataLab", "URL":"http://www.mhesr.uni-sfax.datalab.tn/",

 "fax":"(+216)11111111" }

applyPR(13<elements>::=<elements>,<value>, doc.json, $.X[2].Z);

applyPR(14<elements>:==<value>, doc.json, $.X[2].Z[last]);

applyPR(5<pair>::=<string>:<value>, doc.json, $.X[2])
Name := eval(6<string>); // Name=A
output InsMemb(doc.json, $.X[2], A);

applyPR(3<members>::=<members>,<pair>, doc.json,$.X[2])

applyPR(2<object>::={<members>}, doc.json, $.X[2])
output InsVal(doc.json, $.X[2], object);

applyPR(1<value>::=<object>, doc.json, $.X[2]

applyPR(7<value>:==<boolean>, doc.json,$. X[2].A)
Value := eval(8<boolean>); // Value=true
output InsVal(doc.json, $.X[2].A, true);

applyPR(12<array>::=[<elements>], doc.json, $.X[2].Z)
output InsVal(doc.json, $.X[2].Z, array);

applyPR(11<value>:==<array>, doc.json, $.X[2].Z)

applyPR(4<members>:==<pair>, doc.json, $.X[2]); applyPR(9<pair>::=<string>:<value>, doc.json, $.X[2])
Name := eval(10<string>); // Name=Z
output InsMemb(doc.json, $.X[2], Z);

applyPR(17<value>:==<number>, doc.json, $. X[2].Z[last])
Value := eval(18<number>); // Value=5
output InsVal(doc.json, $.X[2].Z[last], 5);

applyPR(15<value>:==<number>, doc.json, $. X[2].Z[last])
Value := eval(16<number>); // Value=0
output InsVal(doc.json, $.X[2].Z[last], 0);

Figure A2. The execution trace of applyPR for the execution of the HLO InsertValue(doc.json,
$.X[2], {“A”:true,”Z”:[0,5]}) on the JSON instance (3).

Appendix C. Implementation of a JSON Patch Processor

In this appendix, we show how a JSON Patch [33] processor can be easily implemented
using our proposed JUpdate HLOs.

JSON Patch is an Internet Engineering Task Force (IETF) standard that allows the
specification of a sequence of update operations to be executed on a JSON document. A
JSON Patch document is itself a JSON document, which is defined as an array of objects
such that each object has two mandatory members, “op” and “path”, and one optional
member, “value” or “from”.

• “op” denotes the operation to be applied; JSON Patch supports six operations: “add”,
“remove”, “replace”, “move”, “copy” and “test”;

• “path” denotes the target path of the operation, that is the path of the JSON component
affected by the operation;

• “value” denotes the (new) value provided by the user, to be used by the “add” and
“replace” operation;

• “from” denotes the source path to be used by the “move” and “copy” operations.

For example, if we have a JSON document whose initial contents are as follows:
{ "researchLab":"DataLab", "URL":"http://www.mhesr.uni-sfax.datalab.tn/",
"fax":"(+216)11111111" }

and the user specifies the following JSON Patch document:

Electronics 2022, 11, 508 25 of 28

[{ "op":"add", "path":"/country", "value":"Tunisia" },
{ "op":"replace", "path":"/URL", "value":"http://www.datalab.tn/" },
{ "op":"remove", "path":"/fax" }],

after the application of this Patch, the contents of the JSON document become as follows:
{ "researchLab":"DataLab", "country":"Tunisia",

"URL":"http://www.datalab.tn/"}.
Notice that operations contained in a JSON Patch document are sequentially executed

in the order they are specified. Moreover, a JSON Patch document behaves as a transaction,
as the sequence of operations it contains is atomic: either it completely succeeds, if all
specified operations are successfully executed, or it must not leave traces of its partial
execution, if one of the specified operations fails to complete.

The algorithm for processing a JSON Patch file PF using JUpdate operations is as
follows (we do not consider the JSON Patch “test” operation as it is not a specification
of updates):

procedure applyJPatch(PF, doc)
for (index := 0; index <PF.length; index++)
PO := PF[index];
Operation := PO.op; Path := PO.path; Value := PO.value; From := PO.from;
case Operation of
add: if Path = p.name
then if p.name exists in doc
then UpdateValue(doc, Path, Value);
else InsertMember(doc, p, name, Value);
end if;
else if Path = $
then UpdateValue(doc, Path, Value);
else InsertValue(doc, Path, Value);
end if;
remove: if Path = p.name

then DeleteMember(doc, Path);
else DeleteValue(doc, Path);

end if:
replace: UpdateValue(doc, Path, Value);
move: if From = p.name

then MoveMember(doc, From, Path);
else MoveValue(doc, From, Path);

end if;
copy: if From = p.name

then CopyMember(doc, From, Path);
else CopyValue(doc, From, Path);

end if;
end case;

end for;
end procedure.
Although this is not a great difference in practical terms, notice that a reverse trans-

lation from JUpdate to JSON Patch is not always possible, as the JSON Patch update
language is, strictly speaking, formally less expressive than JUpdate. In particular, JSON
Patch is not complete in the sense of Section 5.1, as it lacks operations equivalent to the
CreateDocument/DropDocument (or CreaDoc/DropDoc) pair.

Moreover, the semantics and usage of JSON Patch is somewhat less clear than JUp-
date due to the overload of its operations, which are allowed to work either on values
(e.g., array elements) and on members of objects. For instance, the “add” operation comes
out particularly overloaded: if “path” denotes an existing object member, the value of such
a member is replaced by the supplied “value” (being equivalent to a JUpdate UpdateValue

Electronics 2022, 11, 508 26 of 28

operation); if “path” denotes a non-existing member of an existing object, such a member
is added to the object with a value equal to the supplied “value” (being equivalent to a
JUpdate InsertMember operation); if “path” denotes a location within an existing array, the
supplied “value” is added as a new element of the array at the specified location (being
equivalent to a JUpdate InsertValue operation); if “path” denotes the root of a document,
the whole contents of the document are replaced by the supplied “value” (still being equiv-
alent to a JUpdate UpdateValue operation). Although the resulting overloaded operation
can be considered “very high level”, since with a single tool we can actually produce a
variety of effects, its correct usage may be quite unclear and error-prone to unskilled users.

References
1. Internet Engineering Task Force. The JavaScript Object Notation (JSON) Data Interchange Format, Internet Standards Track

document, December 2017. Available online: https://tools.ietf.org/html/rfc8259 (accessed on 31 December 2021).
2. Jackson, W. JSON Quick Syntax Reference; Apress: Berkeley, CA, USA, 2016.
3. Pezoa, F.; Reutter, J.L.; Suarez, F.; Ugarte, M.; Vrgoč, D. Foundations of JSON Schema. In Proceedings of the 25th International

Conference on World Wide Web (WWW 2016), Montreal, QC, Canada, 11–15 April 2016; pp. 263–273.
4. Bourhis, P.; Reutter, J.L.; Suárez, F.; Vrgoč, D. JSON: Data model, query languages and schema specification. In Proceedings

of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS 2017), Chicago, IL, USA,
14–19 May 2017; pp. 123–135.

5. Hidders, J.; Paredaens, J.; van den Bussche, J. J-Logic: Logical foundations for JSON querying. In Proceedings of the 36th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS 2017), Chicago, IL, USA, 14–19 May 2017;
pp. 137–149.

6. Baazizi, M.-A.; Colazzo, D.; Ghelli, G.; Sartiani, C. Schemas and Types for JSON Data: From Theory to Practice. In Proceedings of
the 2019 International Conference on Management of Data (SIGMOD’2019), Amsterdam, The Netherlands, 30 June–5 July 2019;
pp. 2060–2063.

7. Brahmia, S.; Brahmia, Z.; Grandi, F.; Bouaziz, R. A Disciplined Approach to Temporal Evolution and Versioning Support in JSON
NoSQL Data Stores. In Emerging Technologies and Applications in Data Modeling and Processing; Ma, Z., Yan, L., Eds.; IGI Global:
Hershey, PA, USA, 2019; pp. 114–133.

8. Friesen, J. Extracting JSON Values with JsonPath. In Java XML and JSON—Document Processing for Java SE, 2nd ed.; Apress:
Berkeley, CA, USA, 2019; pp. 299–322.

9. Hu, Z.; Yan, L. Modeling Temporal Information With JSON. In Emerging Technologies and Applications in Data Modeling and
Processing; Ma, Z., Yan, L., Eds.; IGI Global: Hershey, PA, USA, 2019; pp. 134–153.

10. Irshad, L.; Ma, Z.; Yan, L. A Survey on JSON Data Stores. In Emerging Technologies and Applications in Data Modeling and Processing;
Ma, Z., Yan, L., Eds.; IGI Global: Hershey, PA, USA, 2019; pp. 45–69.

11. Liu, Z.H. JSON Data Management in RDBMS. In Emerging Technologies and Applications in Data Modeling and Processing; Ma, Z.,
Yan, L., Eds.; IGI Global: Hershey, PA, USA, 2019; pp. 20–44.

12. Möller, M.L.; Berton, N.; Klettke, M.; Scherzinger, S.; Störl, U. jHound: Large-Scale Profiling of Open JSON Data. In Proceedings
of the 18th Conference on Database systems for Business, Technology and Web (BTW’2019), Rostock, Germany, 4–8 March 2019;
pp. 555–558.

13. Beyer, K.S.; Ercegovac, V.; Gemulla, R.; Balmin, A.; Eltabakh, M.Y.; Kanne, C.-C.; Özcan, F.; Shekita, E.J. Jaql: A scripting language
for large scale semistructured data analysi. PVLDB 2011, 4, 1272–1283. [CrossRef]

14. Florescu, D.; Fourny, G. JSONiq: The History of a Query Language. IEEE Internet Computing 2013, 17, 86–90. [CrossRef]
15. Li, X.; Liu, Z.; Liu, M.; Wu, X.; Zhu, S. Towards a Pattern-Based Query Language for Document Databases. In Proceedings

of the 20th International Conference on Database Systems for Advanced Applications (DASFAA’2015), Hanoi, Vietnam,
20–23 April 2015; pp. 320–325.

16. Ong, K.W.; Papakonstantinou, Y.; Vernoux, R. The SQL++ Query Language: Configurable, Unifying and Semi-structured. CoRR
abs/1405.3631. 2015. Available online: https://arxiv.org/pdf/1405.3631.pdf (accessed on 31 December 2021).

17. Chamberlin, D. SQL++ for SQL Users: A Tutorial; Couchbase Inc.: Santa Clara, CA, USA, 2018.
18. Bourhis, P.; Reutter, J.L.; Vrgoč, D. JSON: Data model and query languages. Inf. Syst. 2020, 89, 101478. [CrossRef]
19. Pokorný, J. JSON Functionally. In Proceedings of the 24th European Conference on Advances in Databases and Information

Systems (ADBIS 2020), Lyon, France, 25–27 September 2020; LNCS 12245. pp. 139–153.
20. Davoudian, A.; Chen, L.; Liu, M. A Survey on NoSQL Stores. ACM Computing Surv. 2018, 51, 40. [CrossRef]
21. Melton, J.; Zemke, F.; Hammerschmidt, B.; Kulkarni, K.; Liu, Z.H.; Michels, J.-E.; McMahon, D.; Özcan, F.; Pirahesh, H. SQL/JSON

Part 1, DM32.2-2014-00024R1, 6 March 2014. Available online: https://www.wiscorp.com/pub/DM32.2-2014-00024R1_JSON-
SQL-Proposal-1.pdf (accessed on 31 December 2021).

22. Zemke, F.; Hammerschmidt, B.; Kulkarni, K.; Liu, Z.H.; McMahon, D.; Melton, J.; Michels, J.-E.; Özcan, F.; Pirahesh, H. SQL/JSON
Part 2—Querying JSON, ANSI INCITS DM32.2-2014-00025r1, 4 March 2014. Available online: https://www.wiscorp.com/pub/
DM32.2-2014-00025r1-sql-json-part-2.pdf (accessed on 31 December 2021).

https://tools.ietf.org/html/rfc8259
http://doi.org/10.14778/3402755.3402761
http://doi.org/10.1109/MIC.2013.97
https://arxiv.org/pdf/1405.3631.pdf
http://doi.org/10.1016/j.is.2019.101478
http://doi.org/10.1145/3158661
https://www.wiscorp.com/pub/DM32.2-2014-00024R1_JSON-SQL-Proposal-1.pdf
https://www.wiscorp.com/pub/DM32.2-2014-00024R1_JSON-SQL-Proposal-1.pdf
https://www.wiscorp.com/pub/DM32.2-2014-00025r1-sql-json-part-2.pdf
https://www.wiscorp.com/pub/DM32.2-2014-00025r1-sql-json-part-2.pdf

Electronics 2022, 11, 508 27 of 28

23. ISO/IEC. Information Technology—Database Languages—SQL Technical Reports—Part 6: SQL Support for JavaScript Object
Notation (JSON), 1st Edition, Technical Report ISO/IEC TR 19075-6:2017(E), March 2017. Available online: http://standards.iso.
org/ittf/PubliclyAvailableStandards/c067367_ISO_IEC_TR_19075-6_2017.zip (accessed on 31 December 2021).

24. Petković, D. SQL/JSON Standard: Properties and Deficiencies. Datenbank Spektrum 2017, 17, 277–287. [CrossRef]
25. Gössner, S. JSONPath—Xpath for JSON, 21 February 2007. Available online: http://goessner.net/articles/JsonPath/ (accessed on

31 December 2021).
26. Brahmia, S.; Brahmia, Z.; Grandi, F.; Bouaziz, R. Temporal JSON Schema Versioning in the τJSchema Framework. J. Digit. Inf.

Manag. 2017, 15, 179–202.
27. Brahmia, Z.; Brahmia, S.; Grandi, F.; Bouaziz, R. Implicit JSON Schema Versioning Driven by Big Data Evolution in the τJSchema

Framework. In Big Data and Networks Technologies—BDNT 2019; Farhaoui, Y., Ed.; LNNS; Springer: Berlin/Heidelberg, Germany, 2020;
Volume 81, pp. 22–35.

28. Van Rossum, G.; Drake, F.L., Jr. Python Reference Manual; Centrum voor Wiskunde en Informatica: Amsterdam, The Netherlands, 1995.
29. Grandi, F.; Scalas, M.R.; Tiberio, P. A History-oriented Temporal SQL Extension. In Proceedings of the 2nd International Workshop

on Next Generation Information Technologies and Systems (NGITS’95), Naharia, Israel, 27–29 June 1995; pp. 42–48.
30. Chasseur, C.; Li, Y.; Patel, J.M. Enabling JSON Document Stores in Relational Systems. In Proceedings of the 16th International

Workshop on the Web and Databases (WebDB 2013), New York, NY, USA, 23 June 2013; pp. 1–6.
31. Liu, Z.H.; Hammerschmidt, B.; McMahon, D. JSON data management: Supporting schema-less development in RDBMS.

In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data (SIGMOD 2014), Snowbird,
UT, USA, 22–27 June 2014; pp. 1247–1258.

32. Liu, Z.H.; Hammerschmidt, B.; McMahon, D.; Liu, Y.; Chang, H.J. Closing the functional and Performance Gap between SQL and
NoSQL. In Proceedings of the 2016 International Conference on Management of Data (SIGMOD 2016), San Francisco, CA, USA,
26 June–1 July 2016; pp. 227–238.

33. Liu, Z.H.; Gawlick, D. Management of Flexible Schema Data in RDBMSs—Opportunities and Limitations for NoSQL.
In Proceedings of the 7th Biennial Conference on Innovative Data Systems Research (CIDR’2015), Asilomar, CA, USA,
4–7 January 2015. Paper 5.

34. Internet Engineering Task Force. JavaScript Object Notation (JSON) Patch, Internet Standards Track Document, April 2013.
Available online: https://tools.ietf.org/html/rfc6902 (accessed on 31 December 2021).

35. Brahmia, Z.; Grandi, F.; Oliboni, B.; Bouaziz, R. High-level Operations for Creation and Maintenance of Temporal and Conven-
tional Schema in the τXSchema Framework. In Proceedings of the 21st International Symposium on Temporal Representation
and Reasoning (TIME’2014), Verona, Italy, 8–10 September 2014; pp. 101–110.

36. Snodgrass, R.T.; Dyreson, C.E.; Currim, F.; Currim, S.; Joshi, S. Validating Quicksand: Schema Versioning in τXSchema. Data
Knowl. Eng. 2008, 65, 223–242. [CrossRef]

37. Brahmia, Z.; Grandi, F.; Oliboni, B.; Bouaziz, R. Schema Change Operations for Full Support of Schema Versioning in the
τXSchema Framework. Int. J. Inf. Technol. Web Eng. 2014, 9, 20–46. [CrossRef]

38. Brahmia, Z.; Grandi, F.; Oliboni, B.; Bouaziz, R. Supporting Structural Evolution of Data in Web-Based Systems via Schema
Versioning in the τXSchema Framework. In Handbook of Research on Contemporary Perspectives on Web-Based Systems; Elçi, A., Ed.;
IGI Global: Hershey, PA, USA, 2018; pp. 271–307.

39. W3C, Extensible Markup Language (XML) 1.0 (5th Edition), W3C Recommendation, 26 November 2008. Available online:
http://www.w3.org/TR/2008/REC-xml-20081126/ (accessed on 31 December 2021).

40. W3C, XQuery 1.0: An XML Query Language (2nd Edition), W3C Recommendation, 14 December 2010. Available online:
http://www.w3.org/TR/2010/REC-xquery-20101214/ (accessed on 31 December 2021).

41. W3C, XQuery Update Facility 1.0, W3C Recommendation, 17 March 2011. Available online: http://www.w3.org/TR/2011/REC-
xquery-update-10-20110317/ (accessed on 31 December 2021).

42. Laux, A.; Martin, L. XUpdate—XML Update Language, XML:DB Working Draft, 14 September 2000. Available online:
http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html (accessed on 31 December 2021).

43. Obasanjo, D.; Navathe, S.B. A Proposal for an XML Data Definition and Manipulation Language. In Proceedings of the 1st VLDB
Workshop on Efficiency and Effectiveness of XML Tools, and Techniques (EEXTT’2002), Hong Kong, China, 19 August 2002;
pp. 1–21.

44. Sur, G.M.; Hammer, J.; Siméon, J. An XQuery-Based Language for Processing Updates in XML. In Proceedings of the 2nd Workshop
on Programming Language Technologies for XML (PLAN-X’2004), Venice, Italy, 13 January 2004; pp. 40–53. Available online:
http://www.brics.dk/NS/03/4/BRICS-NS-03-4.pdf (accessed on 31 December 2021).

45. Wang, G.-R.; Zhang, X.-L. Declarative XML Update Language Based on a Higher Data Model. J. Comput. Sci. Technol. 2005, 20,
373–377. [CrossRef]

46. Ni, W.; Ling, T.W. Update XML data by using graphical languages. In Proceedings of the Tutorials, Posters, Panels and
Industrial Contributions at the 26th International Conference on Concep-tual Modeling (ER’2007), Auckland, New Zealand,
5–9 November 2007; pp. 209–214.

47. Cheney, J. FLUX: Functional Updates for XML. In Proceedings of the 13th ACM SIGPLAN International Conference on Functional
Programming (ICFP’08), Victoria, BC, Canada, 22–24 September 2008; pp. 3–14.

http://standards.iso.org/ittf/PubliclyAvailableStandards/c067367_ISO_IEC_TR_19075-6_2017.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c067367_ISO_IEC_TR_19075-6_2017.zip
http://doi.org/10.1007/s13222-017-0267-4
http://goessner.net/articles/JsonPath/
https://tools.ietf.org/html/rfc6902
http://doi.org/10.1016/j.datak.2007.09.003
http://doi.org/10.4018/ijitwe.2014040102
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2010/REC-xquery-20101214/
http://www.w3.org/TR/2011/REC-xquery-update-10-20110317/
http://www.w3.org/TR/2011/REC-xquery-update-10-20110317/
http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html
http://www.brics.dk/NS/03/4/BRICS-NS-03-4.pdf
http://doi.org/10.1007/s11390-005-0373-x

Electronics 2022, 11, 508 28 of 28

48. W3C. XQuery Update Facility 3.0, W3C Working Group Note, 24 January 2017. Available online: https://www.w3.org/TR/2017
/NOTE-xquery-update-30-20170124/ (accessed on 31 December 2021).

49. Brahmia, Z.; Hamrouni, H.; Bouaziz, R. XML Data Manipulation in Conventional and Temporal XML Databases: A Survey.
Comput. Sci. Rev. 2020, 36, 100231. [CrossRef]

50. Brahmia, Z.; Grandi, F.; Bouaziz, R. τXUF: A Temporal Extension of the XQuery Update Facility Language for the τXSchema
Framework. In Proceedings of the 23rd International Symposium on Temporal Representation and Reasoning (TIME’2016),
Technical University of Denmark, Copenhagen, Denmark, 17–19 October 2016; pp. 140–148.

51. Brahmia, Z.; Brahmia, S.; Grandi, F.; Bouaziz, R. Implementation of High-Level JSON Schema Change Operations Using JUpdate.
In Marketing and Smart Technologies: Proceedings of ICMarkTech’2020 (SIST vol. 205); Rocha, Á., Reis, J.L., Peter, M.K., Cayolla, R.,
Loureiro, S., Bogdanović, Z., Eds.; Springer Nature: Singapore, 2021; pp. 255–265.

52. Brahmia, Z.; Brahmia, S.; Grandi, F.; Bouaziz, R. Versioning schemas of JSON-based conventional and temporal big data through
high-level operations in the τJSchema framework. Int. J. Cloud Comput. 2021, 10, 442–479. [CrossRef]

53. Internet Engineering Task Force (IETF). JSON Schema: A Media Type for Describing JSON Documents. Internet-Draft, 8 December 2020.
Available online: https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-00 (accessed on 31 December 2021).

54. Brahmia, S.; Brahmia, Z.; Grandi, F.; Bouaziz, R. τJSchema: A Framework for Managing Temporal JSON-Based NoSQL Databases.
In Proceedings of the 27th International Conference on Database and Expert Systems Applications (DEXA’2016), Porto, Portugal,
5–8 September 2016; Part 2. pp. 167–181.

https://www.w3.org/TR/2017/NOTE-xquery-update-30-20170124/
https://www.w3.org/TR/2017/NOTE-xquery-update-30-20170124/
http://doi.org/10.1016/j.cosrev.2020.100231
http://doi.org/10.1504/IJCC.2021.120386
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-00

	Introduction
	High-Level Update Operations on JSON Documents: The JUpdate Language
	CreateDocument
	DropDocument
	InsertValue
	DeleteValue
	UpdateValue
	CopyValue
	MoveValue
	InsertMember
	DeleteMember
	RenameMember
	ReplaceMember
	CopyMember
	MoveMember
	UpdateObject

	Illustrative Example
	Primitive Update Operations
	CreaDoc
	DropDoc
	InsMemb
	InsVal
	DelVal
	DelMemb

	Completeness and Minimality
	Completeness and Minimality of the Proposed Primitive Update Operations Set PO
	Completeness of JUpdate

	Definability of the HLOs Making up JUpdate
	Basic HLOs: InsertValue and DeleteValue
	Derived HLOs

	Related Work Discussion
	Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

