
����������
�������

Citation: Yang, D.; Li, X.; Qi, L.;

Zhang, W.; Jiang, Z. Nebula: A

Scalable and Flexible Accelerator for

DNN Multi-Branch Blocks on

Embedded Systems. Electronics 2022,

11, 505. https://doi.org/10.3390/

electronics11040505

Academic Editors: Thierry A.

Meynard and Jaime W. Zapata

Received: 17 January 2022

Accepted: 4 February 2022

Published: 9 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Nebula: A Scalable and Flexible Accelerator for DNN
Multi-Branch Blocks on Embedded Systems
Dawei Yang 1, Xinlei Li 2, Lizhe Qi 1,*, Wenqiang Zhang 1,* and Zhe Jiang 3

1 Academy for Engineering and Technology, Fudan University, Shanghai 200433, China;
dwyang18@fudan.edu.cn

2 School of Statistics and Information, Shanghai University of International Business and Economics,
Shanghai 201620, China; lixinlei@suibe.edu.cn

3 Computer Science, University of Cambridge, Cambridge CB3 0FD, UK; zhejiang.uk@gmail.com
* Correspondence: 19110860064@fudan.edu.cn (L.Q.); 18110860061@fudan.edu.cn (W.Z.)

Abstract: Deep neural networks (DNNs) are widely used in many artificial intelligence applications;
many specialized DNN-inference accelerators have been proposed. However, existing DNN accelera-
tors rely heavily on certain types of DNN operations (such as Conv, FC, and ReLU, etc.), which are
either less used or likely to become out of date in future, posing challenges of flexibility and compati-
bility to existing work. This paper designs a flexible DNN accelerator from a more generic perspective
rather than speeding up certain types of DNN operations. Our proposed Nebula exploits the width
property of DNNs and gains a significant improvement in system throughput and energy efficiency
over multi-branch architectures. Nebula is a first-of-its-kind framework for multi-branch DNNs.

Keywords: DNN accelerators; multi-branch network; energy-efficient accelerators

1. Introduction

Deep neural networks (DNNs) have been widely used for solving complex prob-
lems across a wide range of domains, including computer vision, speech processing, and
robotics [1–4], while DNNs can achieve remarkable results on high-performance cloud-
servers, it is still expected to perform efficiently when used locally on mobile/embedded
devices, due to connectivity and latency limitations, as well as privacy and security con-
cerns [5,6]. Since mobile devices have tight latency, throughput, and energy constraints,
many specialized DNN-inference accelerators, which achieve compelling results compared
to traditional CPUs and GPUs, have been proposed [7]. DianNao [8] is one of the earliest
accelerators designed for large-scale DNNs, followed by those in references [9–11]. These
pioneers focus on the basic operations of early DNNs (such as Conv, FC, Pooling, and
Activation). With the development of DNNs, various operations have been proposed and
have been gradually supported by specialized DNN accelerators. Examples include Lee
et al. (2019), who propose an efficient hardware architecture to accelerate ReLU by skipping
zero activations, as ReLU sets negative values and leaves zero sparsity [12]; Ham et al.
(2020) [13] apply a software–hardware co-design to achieve orders of magnitude energy
efficiency improvements over Attention (one of the most important recent advancements
in DNNs [14]); and, Ding et al. (2019) use double-buffering-based memory channels to
improve the system throughput and performance in Depthwise Conv [15].

Despite their successes, these DNN accelerators rely heavily on specific types of DNN
operations, as mentioned above, some of which might be less used or will become out
of date in the future. For example, PReLU [16] and Swish [17] tend to work better than
ReLU accross a number of challenging datasets. Moreover, the wide range of emerging
operations (e.g., ViTransformer [18], Swin transformer [19]) poses a challenge of flexibility
and compatibility to DNN accelerators. The above findings inspired us to design a flexible
DNN accelerator from a more generic perspective rather than speeding up specific DNN

Electronics 2022, 11, 505. https://doi.org/10.3390/electronics11040505 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11040505
https://doi.org/10.3390/electronics11040505
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11040505
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11040505?type=check_update&version=2

Electronics 2022, 11, 505 2 of 13

operations. The architecture of a DNN is often specified by: width and depth: the depth is
defined as the number of layers, and a deep depth leads the DNN to a better generalization
due to the learned features at various levels of abstraction; while the width is defined
to be the maximum number of branches inside a block (or a layer, see Figure 1 for more
details), which captures salient features adaptively in different branches. It is difficult to
use the depth property in hardware acceleration because the dataflow of a DNN inference
is in the form of a chain and has a strict dependency between two layers. For this reason,
we take a closer look at the width property: the multi-branch topology (e.g., Figure 1) is
associated with high similarity and independence, which provides an enormous potential
for hardware acceleration.

1x1 Conv

1x1 Conv 1x1 Conv Max Pool

3x3 Conv 5x5 Conv 1x1 Conv

Input

Concat

1x1 Conv

3x3 Conv,
group =32

Split Attention

Input

5x5 Conv,
group =32

1x1 Conv

+

1x1 Conv 1x1 Conv 1x1 Conv

3x3 Conv 3x3 Conv 3x3 Conv

Input

+

+

1x1 Conv 1x1 Conv 1x1 Conv

total n
paths
……

Sep
3x3

Input

Sep
5x5

Sep
3x3

Sep
3x3

Sep
3x3

Input

Sep
3x3

Sep
3x3

1x3
3x3

Concat+ + +

Concat

(a) Inception (b) SKNet (c) ResNeXt (d) NASNet

Figure 1. Multi-branch architectures.

Research Challenge: The existing research has not always recognized the importance
of width, where the multi-branch architectures can only be executed in a sequential or
partitioned manner.

Sequential execution is an essential yet naive method to run multiple branches inside
DNN blocks on an accelerator, e.g., references [20,21]. This method sees a multi-branch
block as multiple independent branches and then executes them sequentially (shown in
Figure 2a). Therefore, sequential execution forbids data reuse between branches, which
brings in redundant memory accesses of the same input data. The frequent redundant
memory accesses result in significant reductions in system throughput and energy efficiency.
More seriously, the weakness is magnified when the number of branches or channels
increases. Considering a two-branch block taking a 128-channel feature map as input, the
sequential mode still has to access the external memory 256 (2 × 128) times to fetch the
input data.

PE PE

PE PE

PE

PE

PE PE PE

PE PE

PE PE

PE

PE

PE PE PE

Cluster Router

(2,0)

Iact SRAM

Weight SRAM

Psum SRAM

Cluster (2,0)

Cluster (1,0)

32bBandwidth :

Channel: Iact Weight Psum

32b 42b32bBandwidth :

Channel: Iact Weight Psum

32b 42b

Cluster Router

(2,1)

Cluster (2,1)

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Cluster ACluster A Cluster BCluster B Cluster A Cluster B Cluster A Cluster B Cluster A Cluster B

Cluster

RAM

Cluster

Router

PE

 Router

PE

Cluster

(0,0)

Cluster

(1,0)

Cluster

(2,0)

Cluster

(0,1)

Cluster

(1,1)

Cluster

(2,1)

Cluster

(0,2)

Cluster

(1,2)

Cluster

(2,2)

Cluster

(0,3)

Cluster

(1,3)

Cluster

(2,3)

Top-level Configurations

E
x
te

rn
a
l D

D
R

Application Processors

Edison

Cluster

(0,0)

Cluster

(1,0)

Cluster

(2,0)

Cluster

(0,1)

Cluster

(1,1)

Cluster

(2,1)

Cluster

(0,2)

Cluster

(1,2)

Cluster

(2,2)

Cluster

(0,3)

Cluster

(1,3)

Cluster

(2,3)

Top-level Configurations

E
x
te

rn
a
l D

D
R

Application Processors

Edison

Cluster RAM

PE Cluster

Convolution Primitive (CP)

Ifmap

Kernel

Weight Ifmap Psum

 W1 x P1 +

 W2 x P2 +

 W3 x P3 = Psum 1

 W1 x P2 +

 W2 x P3 +

 W3 x P4 = Psum 2

 W1 x P3 +

 W2 x P4 +

 W3 x P5 = Psum 3

Ifmap

Kernel

vPE
(0,0)

vPE
(0,1)

vPE
(0,2)

vPE
(1,0)

vPE
(2,0)

vPE
(1,1)

vPE
(1,2)

vPE
(2,1)

vPE
(2,2)

Ifmap

Kernel
Ifmap
reuse

Kernel
reuse

vPE
(0,0)

vPE
(0,1)

vPE
(0,2)

vPE
(1,0)

vPE
(2,0)

vPE
(1,1)

vPE
(1,2)

vPE
(2,1)

vPE
(2,2)

vPE
(3,0)

vPE
(3,1)

vPE
(3,2)

vPE
(4,0)

vPE
(4,1)

vPE
(4,2)

vPE
(0,0)

vPE
(0,1)

vPE
(0,2)

vPE
(1,0)

vPE
(2,0)

vPE
(1,1)

vPE
(1,2)

vPE
(2,1)

vPE
(2,2)

vPE
(0,3)

vPE
(1,3)

vPE
(2,3)

vPE
(0,4)

vPE
(1,4)

vPE
(2,4)

vPE_Set-2-x-1 vPE_Set-1-x-1

with the same color: Ifmap reuse

Time

BR A BR B BR C BR D BR E

BR
E

BR
G

BR
F

BR
H

Sequential
Execution

Partitioned
Execution

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

(a)

PE PE

PE PE

PE

PE

PE PE PE

PE PE

PE PE

PE

PE

PE PE PE

Cluster Router

(2,0)

Iact SRAM

Weight SRAM

Psum SRAM

Cluster (2,0)

Cluster (1,0)

32bBandwidth :

Channel: Iact Weight Psum

32b 42b32bBandwidth :

Channel: Iact Weight Psum

32b 42b

Cluster Router

(2,1)

Cluster (2,1)

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Cluster ACluster A Cluster BCluster B Cluster A Cluster B Cluster A Cluster B Cluster A Cluster B

Cluster

RAM

Cluster

Router

PE

 Router

PE

Cluster

(0,0)

Cluster

(1,0)

Cluster

(2,0)

Cluster

(0,1)

Cluster

(1,1)

Cluster

(2,1)

Cluster

(0,2)

Cluster

(1,2)

Cluster

(2,2)

Cluster

(0,3)

Cluster

(1,3)

Cluster

(2,3)

Top-level Configurations

E
x
te

rn
a
l D

D
R

Application Processors

Edison

Cluster

(0,0)

Cluster

(1,0)

Cluster

(2,0)

Cluster

(0,1)

Cluster

(1,1)

Cluster

(2,1)

Cluster

(0,2)

Cluster

(1,2)

Cluster

(2,2)

Cluster

(0,3)

Cluster

(1,3)

Cluster

(2,3)

Top-level Configurations

E
x
te

rn
a
l D

D
R

Application Processors

Edison

Cluster RAM

PE Cluster

Convolution Primitive (CP)

Ifmap

Kernel

Weight Ifmap Psum

 W1 x P1 +

 W2 x P2 +

 W3 x P3 = Psum 1

 W1 x P2 +

 W2 x P3 +

 W3 x P4 = Psum 2

 W1 x P3 +

 W2 x P4 +

 W3 x P5 = Psum 3

Ifmap

Kernel

vPE
(0,0)

vPE
(0,1)

vPE
(0,2)

vPE
(1,0)

vPE
(2,0)

vPE
(1,1)

vPE
(1,2)

vPE
(2,1)

vPE
(2,2)

Ifmap

Kernel
Ifmap
reuse

Kernel
reuse

vPE
(0,0)

vPE
(0,1)

vPE
(0,2)

vPE
(1,0)

vPE
(2,0)

vPE
(1,1)

vPE
(1,2)

vPE
(2,1)

vPE
(2,2)

vPE
(3,0)

vPE
(3,1)

vPE
(3,2)

vPE
(4,0)

vPE
(4,1)

vPE
(4,2)

vPE
(0,0)

vPE
(0,1)

vPE
(0,2)

vPE
(1,0)

vPE
(2,0)

vPE
(1,1)

vPE
(1,2)

vPE
(2,1)

vPE
(2,2)

vPE
(0,3)

vPE
(1,3)

vPE
(2,3)

vPE
(0,4)

vPE
(1,4)

vPE
(2,4)

vPE_Set-2-x-1 vPE_Set-1-x-1

with the same color: Ifmap reuse

Time

BR A BR B BR C BR D BR E

BR
E

BR
G

BR
F

BR
H

Sequential
Execution

Partitioned
Execution

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

(b)

Figure 2. Executing multiple branches on conventional accelerators. (a) Sequential execution
(BR: branch); (b) Partitioned execution (BR: branch).

Different from sequential execution, some of the flexible accelerators, e.g.,
references [8,9], enable the partitioned execution of multi-branch blocks. That is, the ac-
celerator distributes the branches into different portions of the hardware and then executes
them in parallel. Ideally, partitioned execution can alleviate the issues introduced in se-
quential execution by enabling a certain level of data reuse between branches. However,
these accelerators were not designed for a multi-branch architecture, ignoring the branches’
inner connection and executing them independently. Moreover, it is very difficult to ensure
that branches fetch the same data input at the same time point, as different branches usually
involve uneven computation complexity. Compared to sequential execution, partitioned ex-
ecution also needs to solve other system-level problems, e.g., the workload balance between
processors. Potential solutions to these problems (e.g., task migration) usually involve

Electronics 2022, 11, 505 3 of 13

additional software complexity and overhead, which further magnifies the aforementioned
issues.

In summary, existing accelerators pay little or no attention to multi-branch architec-
tures. Although a single multi-branch block may only have limited impacts to the system
performance, there are often 10s or 100s of multi-branch blocks stacked in a DNN model,
so the cumulative impact will seriously affect the throughput and energy efficiency of the
entire system.

Contributions: In this paper, we introduce Nebula, the first DNN accelerator to simul-
taneously guarantee the system throughput and energy efficiency of multi-branch blocks.
To achieve this, we present:

• A fully scalable and configurable hardware architecture for DNN execution, contain-
ing fully-connected network-on-chip (NoC), hierarchical memory meshes, and three
transaction modes. The hardware architecture provides the flexibility to optimize data
reuse and transaction flows between the branches;

• A compiler to map multi-branch DNN blocks on the proposed hardware, which firstly
decomposes the high-dimensional operations (such as Conv, Table 1) down into channel-
level primitives and then maps them to specified processors via a 2-level mapping.
This procedure optimizes data flow and eliminates repetitive data transfers, which
effectively improves the efficiency of parallel computation and the workload balance
of the processors. Furthermore, by maximizing the parallelism of multi-branch pro-
cessing, the novel data flow also significantly increases the throughput and workload
balance of the system. Nebula hence achieves considerable improvements in system
throughput and energy efficiency with respect to conventional DNN accelerators;

• Comprehensive experiments to examine resource consumption, energy efficiency,
scalability, and system-level throughput against state-of-the-art DNN accelerators.

The rest of this paper is organized as follows: Section 2 describes the basic concepts
of DNN. Sections 3 and 4 detail the design of Nebula, followed by the evaluation given in
Section 5. Section 6 makes conclusions.

Table 1. Shape parameters of Conv.

Parameter Description

B number of branches

H/W input feature map height/width

M/N number of input/output channels

K kernel (filter) size

kw/kh kernel (filter) width/height

2. Preliminaries: Width of DNN

Deep learning is a machine learning technique that teaches computers to do what
comes naturally to humans: learn by example. In deep learning, a computer model learns
to perform classification tasks directly from images, text, or sound. Models are trained
by using a large set of labeled data and neural network architectures that contain many
layers. Most deep learning methods use neural network architectures, which is why deep
learning models are often referred to as deep neural networks. As its name implies, one
of the primary characteristics of DNNs is their depth. The ‘depth’ can be defined as the
longest path between an input neuron and an output neuron. Traditional neural networks
only contain two to three hidden layers, while deep networks can easily contain over 10s or
100s of layers. However, is a great depth always necessary? The depth is an important issue
to consider because great depth does not come without downsides. For example, a deeper
network results in increased sequential processing and delay; it is also more difficult to

Electronics 2022, 11, 505 4 of 13

parallelise and is, therefore, less appropriate for applications that require rapid response
times.

The concept of width in DNN was first introduced in Inception [22], where multiple
kernels of different sizes were implemented within the same layer. To be more specific, the
width refers to the number of branches within a DNN block that can be presented as:

Fstm(x) =M(T1(x), T2(x), . . . , Tc(x))

where x is the input of the block;M can be any arbitrary function (such as weighted sum,
concatenation, or element-wise addition) to merge the results of the set of transformation T ;
c is the number of T ; and Ti can be a different set of operations (e.g., Conv, FC, Activation,
etc.) on the ith branch. Taking the Inception block (Figure 1a) as an example, the input
is fed into four branches. The first branch of the Inception block has one layer of 3 × 3
convolution, while the second to fourth branches stack two layers together. At the end of
the block, the results from each branch are merged by Concat.

Instead of simply going deeper in terms of the number of layers, Inception goes wider
and increases the number of branches with different kernel sizes. The idea is intuitive
and it has been recognized in the neuroscience community: the receptive field-size of
human visual cortical neurons is modulated by the stimulus according to the size of the
target. With a multi-branch architecture, Inception can adaptively capture salient features
in different branches. By contrast, ResNet builds very deep networks and solves two
tricky problems—vanishing gradient and degradation; however, we must be aware that
the residual block of ResNet [23] is also a special form of multi-branch architecture with
two branches (the original path and the identity skip path). Experiments [24–26] show
that increasing DNN width is a more effective way of gaining accuracy than going deeper,
especially when depth starts to give diminishing returns for existing models. As shown in
Figure 1c, ResNeXt, one of the most powerful DNN backbones to date, further expands
the number of branches to 32. In addition to expert-designed DNNs, the effectiveness of
multi-branch is also recognized by AutoML, a project released by Google, which adopts
the neural architecture search algorithm to search for the best neural network (Figure 1d).

3. Nebula: Hardware Architecture

In this section, we introduce the Nebula hardware architecture (Figure 3). The Neb-
ula hardware design partitions and groups essential components as clusters, keeping scal-
ability and flexibility in mind. To customize the hardware for different-sized networks,
the system designer only needs to add/remove a specific number of clusters to/from the
existing architecture.

3.1. Cluster

Figure 3b illustrates the top-level design of a cluster. As shown, a cluster contains
three key components: a cluster router, a PE cluster, and cluster RAMs, introduced below.

Cluster Router: In a cluster, a cluster router physically connects the PE cluster and
cluster RAMs, which provides data fetch interfaces for the PEs. At the same time, the
cluster router also connects to the cluster routers in the other clusters, which enables
inter-cluster communication. We established these connections on three communication
channels, designed for the transactions of input feature maps (Ifmaps, 32 bits), parameters
(32 bits), and output feature maps (Ofmaps, 64 bits), respectively.

PE Cluster: A Processing Element (PE) cluster contains 9 multiply-and-accumulate
(MAC) PEs (see Figure 4) arranged in a 3× 3 array. These PEs are connected to the routers
(namely PE routers) of a 2D mesh-type open-source NoC [27].

The PE routers contain the same communication channels as the cluster routers. With
the connections between the PE routers and cluster routers, a PE can directly communicate
with any other PE, either in the same or a different cluster, without memory access.

The design of the PE keeps resource efficiency in mind. Therefore, a PE only contains
four key elements (see Figure 4): an interpreter, FIFO queues, an adder, and a multiplier. The

Electronics 2022, 11, 505 5 of 13

interpreter receives transactions from a PE router and converts them to the corresponding
MAC operations. The FIFO queues behave as the scratchpads and buffer MAC operations.
The adder and the multiplier take charge of the calculations in the executed networks, i.e.,
addition and multiplication.

PE PE

PE PE

PE

PE

PE PE PE

PE PE

PE PE

PE

PE

PE PE PE

Cluster Router

(2,0)

Iact SRAM

Weight SRAM

Psum SRAM

Cluster (2,0)

Cluster (1,0)

32bBandwidth :

Channel: Iact Weight Psum

32b 42b32bBandwidth :

Channel: Iact Weight Psum

32b 42b

Cluster Router

(2,1)

Cluster (2,1)

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Cluster ACluster A Cluster BCluster B Cluster A Cluster B Cluster A Cluster B Cluster A Cluster B

Cluster

RAM

Cluster

Router

PE

 Router

PE

Cluster

(0,0)

Cluster

(1,0)

Cluster

(2,0)

Cluster

(0,1)

Cluster

(1,1)

Cluster

(2,1)

Cluster

(0,2)

Cluster

(1,2)

Cluster

(2,2)

Cluster

(0,3)

Cluster

(1,3)

Cluster

(2,3)

Top-level Configurations

E
x
te

rn
a

l D
D

R

Application Processors

Edison

Cluster

(0,0)

Cluster

(1,0)

Cluster

(2,0)

Cluster

(0,1)

Cluster

(1,1)

Cluster

(2,1)

Cluster

(0,2)

Cluster

(1,2)

Cluster

(2,2)

Cluster

(0,3)

Cluster

(1,3)

Cluster

(2,3)

Top-level Configurations

E
x
te

rn
a

l D
D

R

Application Processors

Edison

Cluster RAM

PE Cluster

Convolution Primitive (CP)

Ifmap

Kernel

Weight Ifmap Psum

 W1 x P1 +

 W2 x P2 +

 W3 x P3 = Psum 1

 W1 x P2 +

 W2 x P3 +

 W3 x P4 = Psum 2

 W1 x P3 +

 W2 x P4 +

 W3 x P5 = Psum 3

Ifmap

Kernel

vPE
(0,0)

vPE
(0,1)

vPE
(0,2)

vPE
(1,0)

vPE
(2,0)

vPE
(1,1)

vPE
(1,2)

vPE
(2,1)

vPE
(2,2)

Ifmap

Kernel
Ifmap
reuse

Kernel
reuse

vPE
(0,0)

vPE
(0,1)

vPE
(0,2)

vPE
(1,0)

vPE
(2,0)

vPE
(1,1)

vPE
(1,2)

vPE
(2,1)

vPE
(2,2)

vPE
(3,0)

vPE
(3,1)

vPE
(3,2)

vPE
(4,0)

vPE
(4,1)

vPE
(4,2)

vPE
(0,0)

vPE
(0,1)

vPE
(0,2)

vPE
(1,0)

vPE
(2,0)

vPE
(1,1)

vPE
(1,2)

vPE
(2,1)

vPE
(2,2)

vPE
(0,3)

vPE
(1,3)

vPE
(2,3)

vPE
(0,4)

vPE
(1,4)

vPE
(2,4)

vPE_Set-2-x-1 vPE_Set-1-x-1

with the same color: Ifmap reuse

Time

BR A BR B BR C BR D BR E

BR
E

BR
G

BR
F

BR
H

Sequential
Execution

Partitioned
Execution

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

1x1 Conv

Input

1x1 Conv 1x1 Conv Max Pool

3x3 Conv 5x5 Conv 1x1 Conv

Concat

Input

1x1 Conv 1x1 Conv Max Pool

3x3 Conv 5x5 Conv 1x1 Conv

Concat

Input

1x1 Conv

3x3 Conv,
Channel = 32

5x5 Conv,
Channel = 32

Split Attention

1x1 Conv

+

Input

1x1 Conv

3x3 Conv,
Channel = 32

5x5 Conv,
Channel = 32

Split Attention

1x1 Conv

+

Input hi-1

Sep
3x3

Sep
5x5

Sep
3x3

Sep
3x3

Sep
3x3

Sep
5x5

Sep
3x3

Sep
3x3

Concat

Concat

+ + +

Input

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv
Total n

paths

…….

+

+

Input

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv
Total n

paths

…….

+

+

Input hi

(a)

PE PE

PE PE

PE

PE

PE PE PE

PE PE

PE PE

PE

PE

PE PE PE

Cluster Router

(2,0)

Ifmap SRAM

Parameter SRAM

Ofmap SRAM

Cluster (2,0)

Cluster (1,0)

32bBandwidth :

Channel: Ifmap Para Ofmap

32b 64b32bBandwidth :

Channel: Ifmap Para Ofmap

32b 64b

Cluster Router

(2,1)

Cluster (2,1)

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Cluster ACluster A Cluster BCluster B Cluster A Cluster B Cluster A Cluster B Cluster A Cluster B

Cluster

RAM

Cluster

Router

PE

 Router

PE

Cluster

(0,0)

Cluster

(1,0)

Cluster

(2,0)

Cluster

(0,1)

Cluster

(1,1)

Cluster

(2,1)

Cluster

(0,2)

Cluster

(1,2)

Cluster

(2,2)

Cluster

(0,3)

Cluster

(1,3)

Cluster

(2,3)

Top-level Configurations

E
x
te

rn
a
l D

D
R

Application Processors

Edison

Cluster

(0,0)

Cluster

(1,0)

Cluster

(2,0)

Cluster

(0,1)

Cluster

(1,1)

Cluster

(2,1)

Cluster

(0,2)

Cluster

(1,2)

Cluster

(2,2)

Cluster

(0,3)

Cluster

(1,3)

Cluster

(2,3)

Top-level Configurations

E
x
te

rn
a
l D

D
R

Application Processors

Edison

Cluster RAM

PE Cluster

Convolution Primitive (CP)

Ifmap

Kernel

Weight Ifmap Psum

 W1 x P1 +

 W2 x P2 +

 W3 x P3 = Psum 1

 W1 x P2 +

 W2 x P3 +

 W3 x P4 = Psum 2

 W1 x P3 +

 W2 x P4 +

 W3 x P5 = Psum 3

Ifmap

Kernel

vPE
(0,0)

vPE
(0,1)

vPE
(0,2)

vPE
(1,0)

vPE
(2,0)

vPE
(1,1)

vPE
(1,2)

vPE
(2,1)

vPE
(2,2)

Ifmap

Kernel
Ifmap
reuse

Kernel
reuse

vPE
(0,0)

vPE
(0,1)

vPE
(0,2)

vPE
(1,0)

vPE
(2,0)

vPE
(1,1)

vPE
(1,2)

vPE
(2,1)

vPE
(2,2)

vPE
(3,0)

vPE
(3,1)

vPE
(3,2)

vPE
(4,0)

vPE
(4,1)

vPE
(4,2)

vPE
(0,0)

vPE
(0,1)

vPE
(0,2)

vPE
(1,0)

vPE
(2,0)

vPE
(1,1)

vPE
(1,2)

vPE
(2,1)

vPE
(2,2)

vPE
(0,3)

vPE
(1,3)

vPE
(2,3)

vPE
(0,4)

vPE
(1,4)

vPE
(2,4)

vPE_Set-2-x-1 vPE_Set-1-x-1

with the same color: Ifmap reuse

Time

BR A BR B BR C BR D BR E

BR
E

BR
G

BR
F

BR
H

Sequential
Execution

Partitioned
Execution

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

1x1 Conv

Input

1x1 Conv 1x1 Conv Max Pool

3x3 Conv 5x5 Conv 1x1 Conv

Concat

Input

1x1 Conv 1x1 Conv Max Pool

3x3 Conv 5x5 Conv 1x1 Conv

Concat

Input

1x1 Conv

3x3 Conv,
Channel = 32

5x5 Conv,
Channel = 32

Split Attention

1x1 Conv

+

Input

1x1 Conv

3x3 Conv,
Channel = 32

5x5 Conv,
Channel = 32

Split Attention

1x1 Conv

+

Input hi-1

Sep
3x3

Sep
5x5

Sep
3x3

Sep
3x3

Sep
3x3

Sep
5x5

Sep
3x3

Sep
3x3

Concat

Concat

+ + +

Input

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv
Total n

paths

…….

+

+

Input

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv
Total n

paths

…….

+

+

Input hi

(b)

Figure 3. Hardware architecture. (a) Hardware architecture: top level; (b) Hardware architecture:
cluster (2, 0). R: PE router.

Cluster Router

(2,0)

Iact SRAM

Weight SRAM

Psum SRAM

Cluster (2,0)

Cluster (1,0)

32bBandwidth:

Channel: Iact Weight Psum

32b 42b32bBandwidth:

Channel: Iact Weight Psum

32b 42b

Cluster Router

(2,1)

Cluster (2,1)

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Cluster

(0,0)

Cluster

(1,0)

Cluster

(2,0)

Cluster

(0,1)

Cluster

(1,1)

Cluster

(2,1)

Cluster

(0,2)

Cluster

(1,2)

Cluster

(2,2)

Cluster

(0,3)

Cluster

(1,3)

Cluster

(2,3)

Top-level Configurations

E
x
te

rn
a
l D

D
R

Application Processors

Edison

Cluster

(0,0)

Cluster

(1,0)

Cluster

(2,0)

Cluster

(0,1)

Cluster

(1,1)

Cluster

(2,1)

Cluster

(0,2)

Cluster

(1,2)

Cluster

(2,2)

Cluster

(0,3)

Cluster

(1,3)

Cluster

(2,3)

Top-level Configurations

E
x
te

rn
a
l D

D
R

Application Processors

Edison

Cluster RAM

PE Cluster

OP1

Rslt

Multiplier
OP1

OP2

Rslt

Adder
OP1

OP2

Rslt

OP2

OPD

Interpreter

Adder

OP1

OP2

Rslt

Multiplier

OP1

OP2

Rslt

OP1

OPD

OP2

Iact

Psum

Weight

Ctrl

Rslt

Data Path Control Path

Figure 4. Micro-architecture of a MAC PE. (OP: operator; OPD: oprand; Rslt: result).

Cluster RAM: Each cluster also contains a group of static RAM (SRAM) banks, namely
cluster RAM, for storing the run-time data for the PEs. Compared to the conventional DNN
accelerators (e.g., references [8,21]), in which all PEs access a globally shared external mem-
ory, the partitioned memory effectively reduces transaction delay and resource contention
during memory accesses, since most of the data fetch from the PEs can be handled within
the same cluster. This partitioned memory hierarchy considerably reduces the power and
time consumption caused by memory accesses and contentions in the conventional DNN
accelerators. Each cluster RAM has three groups of RAM banks, storing Ifmaps, parameters,
and Ofmaps. These banks are connected to the corresponding communication channels of
the cluster router.

3.2. Other Elements

As shown in Figure 3a, as well as the clusters, the Nebula hardware also contains
another two key elements: the top-level configurations and the external Dynamic RAM
(DRAM). The top-level configuration regulates the run-time data flow between the clusters
(discussed in Section 4) and globally shared data, e.g., the Ifmaps in the first layer and the
Ofmaps in the final layer.

Electronics 2022, 11, 505 6 of 13

3.3. Transaction Modes

The proposed hardware supports three transaction modes, which can be selectively
activated at run-time.

Unicast/anycast (Figure 5a): Each SRAM bank transfers data independently to a PE.
This transaction mode maximizes the hardware bandwidth when data reuse is unavailable.

Broadcast (Figure 5b): An SRAM bank delivers data to all PEs. This transaction mode
exploits data reuse in any spatial reuse patterns. It can reduce power consumption caused
by a large data movement (e.g., Ifmaps).

Multicast (Figure 5c): An SRAM bank delivers data to PEs in the same cluster. Dif-
ferent from the broadcast, this transaction mode introduces more flexibility, but less data
reuse and power consumption.

The proposed hardware design and the operating modes in Nebula provide scalability,
configurability, and flexibility in the hardware, which allows Nebula to support the parallel
computation of multi-branch blocks. The following section focuses on the compiler to map
a network to Nebula hardware.

PE PE

PE PE

PE

PE

PE PE PE

PE PE

PE PE

PE

PE

PE PE PE

Cluster Router

(2,0)

Iact SRAM

Weight SRAM

Psum SRAM

Cluster (2,0)

Cluster (1,0)

32bBandwidth:

Channel: Iact Weight Psum

32b 42b32bBandwidth:

Channel: Iact Weight Psum

32b 42b

Cluster Router

(2,1)

Cluster (2,1)

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Cluster Router

(2,0)

Iact SRAM

Weight SRAM

Psum SRAM

Cluster (2,0)

Cluster (1,0)

32bBandwidth:

Channel: Iact Weight Psum

32b 42b

Cluster Router

(2,1)

Cluster (2,1)

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Cluster ACluster A Cluster BCluster B Cluster A Cluster B Cluster A Cluster B Cluster A Cluster B

Cluster

RAM

Cluster

Router

PE

 Router

PE

Cluster

(0,0)

Cluster

(1,0)

Cluster

(2,0)

Cluster

(0,1)

Cluster

(1,1)

Cluster

(2,1)

Cluster

(0,2)

Cluster

(1,2)

Cluster

(2,2)

Cluster

(0,3)

Cluster

(1,3)

Cluster

(2,3)

Top-level Configurations

E
x
te

rn
a
l D

D
R

Application Processors

Edison

Cluster

(0,0)

Cluster

(1,0)

Cluster

(2,0)

Cluster

(0,1)

Cluster

(1,1)

Cluster

(2,1)

Cluster

(0,2)

Cluster

(1,2)

Cluster

(2,2)

Cluster

(0,3)

Cluster

(1,3)

Cluster

(2,3)

Top-level Configurations

E
x
te

rn
a
l D

D
R

Application Processors

Edison

(a)

PE PE

PE PE

PE

PE

PE PE PE

PE PE

PE PE

PE

PE

PE PE PE

Cluster Router

(2,0)

Iact SRAM

Weight SRAM

Psum SRAM

Cluster (2,0)

Cluster (1,0)

32bBandwidth :

Channel: Iact Weight Psum

32b 42b32bBandwidth :

Channel: Iact Weight Psum

32b 42b

Cluster Router

(2,1)

Cluster (2,1)

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Cluster Router

(2,0)

Iact SRAM

Weight SRAM

Psum SRAM

Cluster (2,0)

Cluster (1,0)

32bBandwidth :

Channel: Iact Weight Psum

32b 42b

Cluster Router

(2,1)

Cluster (2,1)

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Cluster ACluster A Cluster BCluster B Cluster A Cluster B Cluster A Cluster B Cluster A Cluster B

Cluster

RAM

Cluster

Router

PE

 Router

PE

Cluster

(0,0)

Cluster

(1,0)

Cluster

(2,0)

Cluster

(0,1)

Cluster

(1,1)

Cluster

(2,1)

Cluster

(0,2)

Cluster

(1,2)

Cluster

(2,2)

Cluster

(0,3)

Cluster

(1,3)

Cluster

(2,3)

Top-level Configurations

External

DDR

Application Processors

Edison

Cluster

(0,0)

Cluster

(1,0)

Cluster

(2,0)

Cluster

(0,1)

Cluster

(1,1)

Cluster

(2,1)

Cluster

(0,2)

Cluster

(1,2)

Cluster

(2,2)

Cluster

(0,3)

Cluster

(1,3)

Cluster

(2,3)

Top-level Configurations

External

DDR

Application Processors

Edison

(b)

PE PE

PE PE

PE

PE

PE PE PE

PE PE

PE PE

PE

PE

PE PE PE

Cluster Router

(2,0)

Iact SRAM

Weight SRAM

Psum SRAM

Cluster (2,0)

Cluster (1,0)

32bBandwidth :

Channel: Iact Weight Psum

32b 42b32bBandwidth :

Channel: Iact Weight Psum

32b 42b

Cluster Router

(2,1)

Cluster (2,1)

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Cluster Router

(2,0)

Iact SRAM

Weight SRAM

Psum SRAM

Cluster (2,0)

Cluster (1,0)

32bBandwidth :

Channel: Iact Weight Psum

32b 42b

Cluster Router

(2,1)

Cluster (2,1)

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Cluster ACluster A Cluster BCluster B Cluster A Cluster B Cluster A Cluster B Cluster A Cluster B

Cluster

RAM

Cluster

Router

PE

 Router

PE

Cluster

(0,0)

Cluster

(1,0)

Cluster

(2,0)

Cluster

(0,1)

Cluster

(1,1)

Cluster

(2,1)

Cluster

(0,2)

Cluster

(1,2)

Cluster

(2,2)

Cluster

(0,3)

Cluster

(1,3)

Cluster

(2,3)

Top-level Configurations

External

DDR

Application Processors

Edison

Cluster

(0,0)

Cluster

(1,0)

Cluster

(2,0)

Cluster

(0,1)

Cluster

(1,1)

Cluster

(2,1)

Cluster

(0,2)

Cluster

(1,2)

Cluster

(2,2)

Cluster

(0,3)

Cluster

(1,3)

Cluster

(2,3)

Top-level Configurations

External

DDR

Application Processors

Edison

(c)

Figure 5. Three transaction modes supported by Nebula. (a) Unicast/anycast; (b) Broadcast;
(c) Multicast.

4. Nebula: Compiler

Since CONV is usually more time-consuming and complex than other operations [9],
in this section, we focus on the mapping of the CONV layers in Nebula.

To maximize the parallel computation and overall throughput of the execution, we
introduce a three-step method:

Step 1: decomposition. The high-dimensional convolution is decomposed into 1D
Convolution Primitives (CPs), which calculate the Psum results of a specified row in a channel.
In the same channel, the CPs always have identical computation times, and can be executed
in parallel.

Step 2: channel-level mapping. The CPs within the same channel are grouped and
mapped to a set of virtual PEs (vPEs), which calculate and return the Ofmap of a specified
channel. In the same branch, the vPE sets always have identical computational times, and
can be executed in parallel.

Step 3: branch-level mappings. The vPE sets allocated for all branches are mapped to
a set of physical PEs (pPEs). This procedure ensures load balance and identical computation
times for all pPEs.

We detail the design of these three steps, below.

4.1. Decomposition

In decomposition, we split the computation of the CONV layer of each channel as a
CP. Each CP generates one row of Psums by operating on one row of kernel weights and
one row of Ifmaps. Figure 6 demonstrates an example of the first CP, where a 5× 5 Ifmap is
being filtered by a 3× 3 kernel. Following this rule, when a H ×W Ifmap is being filtered
by a kh× kw kernel, we can decompose it to kh× (H − kh + 1) CPs.

Electronics 2022, 11, 505 7 of 13

PE PE

PE PE

PE

PE

PE PE PE

PE PE

PE PE

PE

PE

PE PE PE

Cluster Router

(2,0)

Iact SRAM

Weight SRAM

Psum SRAM

Cluster (2,0)

Cluster (1,0)

32bBandwidth :

Channel: Iact Weight Psum

32b 42b32bBandwidth :

Channel: Iact Weight Psum

32b 42b

Cluster Router

(2,1)

Cluster (2,1)

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Cluster ACluster A Cluster BCluster B Cluster A Cluster B Cluster A Cluster B Cluster A Cluster B

Cluster

RAM

Cluster

Router

PE

 Router

PE

Cluster

(0,0)

Cluster

(1,0)

Cluster

(2,0)

Cluster

(0,1)

Cluster

(1,1)

Cluster

(2,1)

Cluster

(0,2)

Cluster

(1,2)

Cluster

(2,2)

Cluster

(0,3)

Cluster

(1,3)

Cluster

(2,3)

Top-level Configurations

E
x
te

rn
a
l D

D
R

Application Processors

Edison

Cluster

(0,0)

Cluster

(1,0)

Cluster

(2,0)

Cluster

(0,1)

Cluster

(1,1)

Cluster

(2,1)

Cluster

(0,2)

Cluster

(1,2)

Cluster

(2,2)

Cluster

(0,3)

Cluster

(1,3)

Cluster

(2,3)

Top-level Configurations

E
x
te

rn
a
l D

D
R

Application Processors

Edison

Cluster RAM

PE Cluster

Convolution Primitive (CP)

Ifmap

Kernel

Weight Ifmap Psum

 W1 x P1 +

 W2 x P2 +

 W3 x P3 = Psum 1

 W1 x P2 +

 W2 x P3 +

 W3 x P4 = Psum 2

 W1 x P3 +

 W2 x P4 +

 W3 x P5 = Psum 3

Ifmap

Kernel

vPE
(0,0)

vPE
(0,1)

vPE
(0,2)

vPE
(1,0)

vPE
(2,0)

vPE
(1,1)

vPE
(1,2)

vPE
(2,1)

vPE
(2,2)

Ifmap

Kernel
Ifmap
reuse

Kernel
reuse

Figure 6. Decomposition of convolution primitives (CPs); (Ifmap size: 5× 5; kernel size: 3× 3).

4.2. Channel-Level Mapping

In channel-level mapping, we first allocate each CP to a vPE and then group the vPEs
acquired from the same input channel as a vPE set. In each vPE set, we allocate the vPEs for
the jth row of the kernel as the jth column of the vPE sets. Figure 7 illustrates this mapping
strategy using the previously described example. The mapping ensures that the kernel
weights can be reused across the vPEs horizontally, and the Ifmap pixels can be reused
diagonally. After the channel-level mapping, for a branch with M input channels and N
output channels, we can acquire M× N sets of vPEs.

The left-hand side of Figure 8 shows an example of the vPE sets created for the first
CONV layer in a dual-branch network. In this example, the size of the Ifmap is 7× 7
(H = W = 7); both branches have eight input channels (M = 8) and two output channels
(N = 2); and the kernel sizes in these two branches are 3× 3 and 5× 5, respectively. After
the channel-level mapping, it creates 16 (M× N) sets of vPEs for each branch (32 in total).
We denote the vPE set for the mth input channel and nth output channel in the bth branch
as vPE_Set-b-n-m. For instance, we denote the vPE sets for the third input channel and
second output channel in the first branch as vPE_Set-1-2-3.

PE PE

PE PE

PE

PE

PE PE PE

PE PE

PE PE

PE

PE

PE PE PE

Cluster Router

(2,0)

Ifmap SRAM

Parameter SRAM

Ofmap SRAM

Cluster (2,0)

Cluster (1,0)

32bBandwidth :

Channel: Ifmap Para Ofmap

32b 64b32bBandwidth :

Channel: Ifmap Para Ofmap

32b 64b

Cluster Router

(2,1)

Cluster (2,1)

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Cluster ACluster A Cluster BCluster B Cluster A Cluster B Cluster A Cluster B Cluster A Cluster B

Cluster

RAM

Cluster

Router

PE

 Router

PE

Cluster

(0,0)

Cluster

(1,0)

Cluster

(2,0)

Cluster

(0,1)

Cluster

(1,1)

Cluster

(2,1)

Cluster

(0,2)

Cluster

(1,2)

Cluster

(2,2)

Cluster

(0,3)

Cluster

(1,3)

Cluster

(2,3)

Top-level Configurations

E
x
te

rn
a
l D

D
R

Application Processors

Edison

Cluster

(0,0)

Cluster

(1,0)

Cluster

(2,0)

Cluster

(0,1)

Cluster

(1,1)

Cluster

(2,1)

Cluster

(0,2)

Cluster

(1,2)

Cluster

(2,2)

Cluster

(0,3)

Cluster

(1,3)

Cluster

(2,3)

Top-level Configurations

E
x
te

rn
a
l D

D
R

Application Processors

Edison

Cluster RAM

PE Cluster

Convolution Primitive (CP)

Ifmap

Kernel

Weight Ifmap Psum

 W1 x P1 +

 W2 x P2 +

 W3 x P3 = Psum 1

 W1 x P2 +

 W2 x P3 +

 W3 x P4 = Psum 2

 W1 x P3 +

 W2 x P4 +

 W3 x P5 = Psum 3

Ifmap

Kernel

vPE
(0,0)

vPE
(0,1)

vPE
(0,2)

vPE
(1,0)

vPE
(2,0)

vPE
(1,1)

vPE
(1,2)

vPE
(2,1)

vPE
(2,2)

Ifmap

Kernel
Ifmap
reuse

Kernel
reuse

vPE
(0,0)

vPE
(0,1)

vPE
(0,2)

vPE
(1,0)

vPE
(2,0)

vPE
(1,1)

vPE
(1,2)

vPE
(2,1)

vPE
(2,2)

vPE
(3,0)

vPE
(3,1)

vPE
(3,2)

vPE
(4,0)

vPE
(4,1)

vPE
(4,2)

vPE
(0,0)

vPE
(0,1)

vPE
(0,2)

vPE
(1,0)

vPE
(2,0)

vPE
(1,1)

vPE
(1,2)

vPE
(2,1)

vPE
(2,2)

vPE
(0,3)

vPE
(1,3)

vPE
(2,3)

vPE
(0,4)

vPE
(1,4)

vPE
(2,4)

vPE_Set-2-x-1 vPE_Set-1-x-1

with the same color: Ifmap reuse

Time

BR A BR B BR C BR D BR E

BR
E

BR
G

BR
F

BR
H

Sequential
Execution

Partitioned
Execution

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

1x1 Conv

Input

1x1 Conv 1x1 Conv Max Pool

3x3 Conv 5x5 Conv 1x1 Conv

Concat

Input

1x1 Conv 1x1 Conv Max Pool

3x3 Conv 5x5 Conv 1x1 Conv

Concat

Input

1x1 Conv

3x3 Conv,
Channel = 32

5x5 Conv,
Channel = 32

Split Attention

1x1 Conv

+

Input

1x1 Conv

3x3 Conv,
Channel = 32

5x5 Conv,
Channel = 32

Split Attention

1x1 Conv

+

Input hi-1

Sep
3x3

Sep
5x5

Sep
3x3

Sep
3x3

Sep
3x3

Sep
5x5

Sep
3x3

Sep
3x3

Concat

Concat

+ + +

Input

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv
Total n

paths

…….

+

+

Input

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv
Total n

paths

…….

+

+

Input hi

CP

CP

Figure 7. vPE set acquired in the channel-level mapping (Ifmap size: 5× 5; kernel size: 3× 3).

Branch 1

IFMAP_1 W1_0vPE_Set-1-1-1 vPE_Set-2-1-1

Branch 2

IFMAP_1 W1_0

IFMAP_2 W1_1vPE_Set-1-1-2 vPE_Set-2-1-2IFMAP_2 W1_1

IFMAP_n W1_nvPE_Set-1-1-8 vPE_Set-2-1-8IFMAP_n W1_n

IFMAP_1 W2_0vPE_Set-1-2-1 vPE_Set-2-2-1IFMAP_1 W2_0

IFMAP_2 W2_1vPE_Set-1-2-2 vPE_Set-2-2-2IFMAP_2 W2_1

IFMAP_8 W1_8vPE_Set-1-2-8 vPE_Set-2-2-8IFMAP_8 W2_8

Channel-level Mapping

IFMAPs
channels=n

Conv
3×3

Conv
5×5

IFMAP_1 W2_0W1_0W1_0 W2_0pPE-1

IFMAP_2 W1_1 W2_1 W1_1 W2_1pPE-2

IFMAP_8 W1_8 W2_8 W1_8 W2_8pPE-8

Branch-level Mapping

vPE Virtual PE

IFMAP Input Feature Map

 Convolution

Figure 8. Channel-level mapping and branch-level mapping when B = 2, M = 8, and N = 2.

Electronics 2022, 11, 505 8 of 13

PE PE

PE PE

PE

PE

PE PE PE

PE PE

PE PE

PE

PE

PE PE PE

Cluster Router

(2,0)

Ifmap SRAM

Parameter SRAM

Ofmap SRAM

Cluster (2,0)

Cluster (1,0)

32bBandwidth :

Channel: Ifmap Para Ofmap

32b 64b32bBandwidth :

Channel: Ifmap Para Ofmap

32b 64b

Cluster Router

(2,1)

Cluster (2,1)

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Cluster ACluster A Cluster BCluster B Cluster A Cluster B Cluster A Cluster B Cluster A Cluster B

Cluster

RAM

Cluster

Router

PE

 Router

PE

Cluster

(0,0)

Cluster

(1,0)

Cluster

(2,0)

Cluster

(0,1)

Cluster

(1,1)

Cluster

(2,1)

Cluster

(0,2)

Cluster

(1,2)

Cluster

(2,2)

Cluster

(0,3)

Cluster

(1,3)

Cluster

(2,3)

Top-level Configurations

E
x
te

rn
a
l D

D
R

Application Processors

Edison

Cluster

(0,0)

Cluster

(1,0)

Cluster

(2,0)

Cluster

(0,1)

Cluster

(1,1)

Cluster

(2,1)

Cluster

(0,2)

Cluster

(1,2)

Cluster

(2,2)

Cluster

(0,3)

Cluster

(1,3)

Cluster

(2,3)

Top-level Configurations

E
x
te

rn
a
l D

D
R

Application Processors

Edison

Cluster RAM

PE Cluster

Convolution Primitive (CP)

Ifmap

Kernel

Weight Ifmap Psum

 W1 x P1 +

 W2 x P2 +

 W3 x P3 = Psum 1

 W1 x P2 +

 W2 x P3 +

 W3 x P4 = Psum 2

 W1 x P3 +

 W2 x P4 +

 W3 x P5 = Psum 3

Ifmap

Kernel

vPE
(0,0)

vPE
(0,1)

vPE
(0,2)

vPE
(1,0)

vPE
(2,0)

vPE
(1,1)

vPE
(1,2)

vPE
(2,1)

vPE
(2,2)

Ifmap

Kernel
Ifmap
reuse

Kernel
reuse

vPE
(0,0)

vPE
(0,1)

vPE
(0,2)

vPE
(1,0)

vPE
(2,0)

vPE
(1,1)

vPE
(1,2)

vPE
(2,1)

vPE
(2,2)

vPE
(3,0)

vPE
(3,1)

vPE
(3,2)

vPE
(4,0)

vPE
(4,1)

vPE
(4,2)

vPE
(0,0)

vPE
(0,1)

vPE
(0,2)

vPE
(1,0)

vPE
(2,0)

vPE
(1,1)

vPE
(1,2)

vPE
(2,1)

vPE
(2,2)

vPE
(0,3)

vPE
(1,3)

vPE
(2,3)

vPE
(0,4)

vPE
(1,4)

vPE
(2,4)

vPE_Set-2-x-1

vPE_Set-1-x-1

with the same color: Ifmap reuse

Time

BR A BR B BR C BR D BR E

BR
E

BR
G

BR
F

BR
H

Sequential
Execution

Partitioned
Execution

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

BR
A

BR
C

BR
B

BR
D

1x1 Conv

Input

1x1 Conv 1x1 Conv Max Pool

3x3 Conv 5x5 Conv 1x1 Conv

Concat

Input

1x1 Conv 1x1 Conv Max Pool

3x3 Conv 5x5 Conv 1x1 Conv

Concat

Input

1x1 Conv

3x3 Conv,
Channel = 32

5x5 Conv,
Channel = 32

Split Attention

1x1 Conv

+

Input

1x1 Conv

3x3 Conv,
Channel = 32

5x5 Conv,
Channel = 32

Split Attention

1x1 Conv

+

Input hi-1

Sep
3x3

Sep
5x5

Sep
3x3

Sep
3x3

Sep
3x3

Sep
5x5

Sep
3x3

Sep
3x3

Concat

Concat

+ + +

Input

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv
Total n

paths

…….

+

+

Input

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv

1x1 Conv

1x1 Conv

3x3 Conv
Total n

paths

…….

+

+

Input hi

CP

CP

vPE

Figure 9. Data flow in pPE-1, using example illustrated in Figure 8.

4.3. Branch-Level Mapping

In branch-level mapping, we allocate and then execute the vPEs on the pPEs. The
mapping of vPEs happens at the same granularity as the vPE set. This is because it preserves
data reuse inside each vPE set (see Figure 7 and it provides flexibility to reuse the data
between vPE sets. Moreover, the branch-level mapping strategy is proposed based on
observations of the vPE sets acquired from the channel-level mapping, in which the vPE
sets created for the same input channel (either in the same or different branches) always
require the same Ifmap. The vPE sets created for the same branch always involve the same
number of computations.With this in mind, branch-level mapping is proposed, targeting
the following two objectives:

Maximizing Intra-pPE Data Reuse: Mapping tries to map vPE_Sets requiring the
same Ifmap on the same pPE. Considering the example introduced in Figure 8, vPE_Set-1-
1-1 and vPE_Set-1-2-1 require the same Ifmap pixel data, which hence can be mapped on
the same pPE.

Balancing Inter-pPE Computation Load: Mapping tries to maintain the same number
of vPE_Sets on all pPEs. Considering the aforementioned example, each pPE can be mapped
by 4 vPE_Sets, including 2 vPE_Sets from each branch.

That is, the vPE_Set-1-1-1, 1-2-1, 2-1-1, and 2-2-1 are mapped to pPE-1; and vPE_Set-1-
1-2, 1-2-2, 2-1-2, and 2-2-2 are mapped to pPE-2.

Different from channel-level mapping, always returning a fixed result for a given
network, the results of the branch-level mapping vary depending on the availability of
hardware resources. In the previously introduced example, if the system provides enough
hardware resources, we only need to allocate 2 vPE_Sets to each pPE. In that case, vPE_Set-
1-1-1 and 2-1-1 are mapped to pPE-1, and vPE_Set-1-2-1 and 2-2-1 are mapped to pPE-2.

With the three-step method, we can allocate multi-branch DNN blocks onto the
Nebula hardware architecture. Additionally, we propose an optional optimization for the
data flow in the system, maximizing overall energy efficiency, which is introduced in the
following section.

4.4. Data Flow Optimization

We propose an optional optimization of the data flow from both intra- and inter-pPE
perspectives:

Intra-pPE Data Flow: Channel-level mapping (Section 4.2) provides the diagonal
reuse of the Ifmap pixels in each vPE set. At the same time, branch-level mapping (Sec-
tion 4.3) ensures the vPE sets allocated to the same pPE require the same Ifmap. With this in
mind, we optimize the intra-pPE data flow by allowing the Ifmap pixels to be transmitted
diagonally, crossing the vPE set. Figure 9 demonstrates the optimized data flow for pPE-1
in the previously introduced example.

Inter-pPE Data Flow: As introduced in Section 3, the Nebula hardware architecture is
partitioned and modularized. Hence, we try to allocate pPEs requiring the same data input

Electronics 2022, 11, 505 9 of 13

(e.g., Ifmaps) to the same cluster, and then use the multicast transaction mode (Figure 5c)
during run-time to reduce the number of memory fetches.

Having described the Nebula hardware and compiler design above, in next section, we
comprehensively examine the proposed system.

4.5. Discussion: Compatibility

Like much of the current research on DNN accelerators (e.g., references [8,9,28]) ,
the Nebula design mainly focuses on the CONV layers, since the CONV layers contribute
more than 95% of the workload of the popular DNNs. The design of Nebula always keeps
compatibility in mind. Therefore, the existing methods designed for the other layers can
be added in Nebula to further accelerate DNN execution, e.g., reference [12] for ReLU
acceleration. When we evaluated the Nebula in Section 5, we disabled the acceleration of
other DNN layers to ensure the accurate evaluation of the paper’s contribution and a fair
comparison with the other baseline accelerators.

5. Evaluation

We now evalaute Nebula using comprehensive experiments.
Experimental Platform: We built the Nebula hardware on a Xilinx VC709 evaluation

board. Specifically, the hardware was implemented using a BlueSpec System Verilog [29]
and configured into two variants, named Nebula and Nebula-H (high performance), contain-
ing four and six clusters (72 and 108 processors), respectively.

For the baseline DNN accelerators (BAs), however, different variants were demon-
strated in the previous work. As reviewed in Section 1, existing MCS frameworks usually
execute DNN multi-branch blocks by either using sequential execution (SEQ) or parti-
tioned execution (PAR). Therefore, we built two BSs (i.e., BA-PAR and BA-SEQ) using
the methods introduced in references [8,9], respectively. All evaluated accelerators were
executed at 150 Mhz and configured to run at full performance. It is important to note
that the modularized design of Nebula (see Section 3) allows it to be configured with any
number of clusters.

5.1. Hardware Overhead

Experimental Setup: We first evaluated the hardware consumption of a cluster in
Nebula against two general-purpose processors (MicroBlaze (MB-F) and RISC-V), and then
compared the two variants of Nebula with the two DNN accelerators (BA-PAR and BA-SEQ).
MB-F was fully-featured, enabling five-stage pipeline, debug modules, etc. The RSIC-V
was implemented based on reference [30], which supports all functionalities of the MB-F,
as well as multi-branch, out-of-ordering processing, and other related functionalities (e.g.,
branch prediction, etc.). All components were synthesized and implemented using Vivado
(2020.2), and compared using look-up tables (LUTs), registers, DSPs, and Block RAMs
(BRAMs).

Observation 1: The design of Nebula is resource-efficient.
This observation is given in Table 2. As shown, a cluster (nine processors) in Neb-

ula consumed similar resources compared to the general-purpose processors: MB-F (157.3%
LUTs, 132.6% registers, 87.7% DPSs) and RSIC-V (103.9% LUTs, 35.61% registers, 92.3%
DSPs). When compared to the other DNN accelerators, Nebula was also resource-efficient,
as it involved less consumption of LUTs, registers, DSPs, and RAMs.

Observation 2: Nebula-H involves more memory consumption compared to conven-
tional accelerators.

As shown in Table 2, Nebula-H consumed less LUTs and registers but more BRAMs
compared to the conventional accelerators. This mainly resulted from the modularized
design (see Section 3), which allocated dedicated memory resources to each cluster. These
additionally consumed resources are intended to bring an enhancement to system through-
put, which is specifically examined in the following sections.

Electronics 2022, 11, 505 10 of 13

Table 2. Hardware overhead (Implemented on FPGA).

LUTs Registers DSP RAM (KB)

MB-F 4908 4385 41 2048
RSIC-V 7432 16,321 39 2048

Nebula (Cluster) 7723 5813 36 2048

BA-PAR 70,560 141,120 360 13,824
BA-SEQ 89,773 70,121 733 16,920

Nebula 51,737 43,544 288 16,384
Nebula-H 71,015 57,443 432 24,576

5.2. Experiments Using Synthetic Workloads

Experimental Setup: To evaluate the effectiveness of Nebula performing on multi-
branch blocks against the existing DNN-inference accelerators, we carried out experiments
on blocks with a different number of synthetic workloads, i.e., branches (B). Since convo-
lutions account for over 90% of DNN operations and dominate the run-time [8,31], each
branch was constructed with a convolution with a random kernel size. We performed the
experiments 1000 times, and recorded the average throughput and run-time energy cost.
For each experimental configuration, we normalized the results using BA-SEQ.

Observation 3: While executing the DNNs blocks, Nebula significantly outperforms
the sequential and partitioned executions in both throughput and energy consumption.

This observation is illustrated in Figure 10. As shown, the benefits of introducing
two-level mapping in Nebula (see Section 4) increased with the increment of B. In particular,
when B = 32, the throughput speedup ratio reached 8.8× and the energy cost decreased
to 39%. Based on this observation, we deducted that the benefit to mainstream DNN
backbones would be increasingly significant, where B can be as high as 64 and 128.

Observation 4: Nebula-H outperformed Nebula, however it required more energy
consumption.

As shown in Figure 10, we also reported that Nebula-H consistently outperformed
Nebula in the performance speedup ratio but suffered from a certain amount of energy cost.
This means that if a production desires further improvement but is willing to sacrifice a
little energy, Nebula-H would be a better choice.

0

2

4

6

8

10

12

B=2 B=4 B=8 B=16 B=32

Chart Title

BA-SEQ BA-PAR Nebula Nebula-H

(a)

0.0

0.3

0.6

0.9

1.2

1.5

1.8

B=2 B=4 B=8 B=16 B=32

Chart Title

BA-SEQ BA-PAR Nebula Nebula-H

(b)

Figure 10. Evaluating using synthetic workloads (normalized by BA-SEQ in each configuration).
(a) Speedup ratio: throughput; (b) Energy cost.

5.3. Experiments Using Mainstream DNNs

Experimental Setup: We ran the same experiments as in Section 5.2 using mainstream
DNNs (including NASNet, ResNeSt, and ResNeXt-34/50/101) and two typical DNN
accelerators. We performed each test 20 times, and recorded the average throughput and
run-time energy cost. For each experimental configuration, the experimental results were
normalized by the results of BA-SEQ.

Observation 5: Nebula outperforms conventional DNN accelerators while executing
the mainstream DNNs that have a high computational complexity due to their large depths
and widths.

Electronics 2022, 11, 505 11 of 13

This observation is shown by Figure 11. Compared to the baseline DNN accelerators,
Nebula consumed around 30% less run-time energy cost, but achieved much better through-
put. Although speed and energy consumption have always been difficult to optimize at the
same time, Nebula provides an elegant and effective solution because of its well-designed
memory hierarchy and data flow, thereby reducing unnecessary data movement. Further-
more, we reported that the speedup ratio (5–6×) of Nebula here is weaker than Figure 11a.
This is because DNN models also contain non-multi-branch structures. As highlighted in
Section 4.5, we disabled the acceleration for these non-multi-branch structures to ensure a
fair and accurate evaluation.

0

2

4

6

8

10

12

NASNet ResNeSt ResNeXt-34 ResNeXt-50 ResNeXt-101

Chart Title

BA-SEQ BA-PAR Nebula Nebula-H

(a)

0.0

0.3

0.6

0.9

1.2

1.5

1.8

NASNet ResNeSt ResNeXt-34 ResNeXt-50 ResNeXt-101

Chart Title

BA-SEQ BA-PAR Nebula Nebula-H

(b)

Figure 11. Evaluating using mainstream DNNs (normalized by BA-SEQ in each configuration).
(a) Speedup ratio: throughput; (b) Energy cost.

5.4. Scalability

We acknowledge that the scalability finally determines the feasibility of the proposed
design [32]. Therefore, we examined the scalability (Figure 12) of Nebula using a varying
number of clusters.

0

6

12

18

24

30

36

2 3 4 5 6 7

R
at
io

h

Area

BRAM

Power

Frequency

Figure 12. Scalability: the x-axis denotes the scaling factor η and the y-axis denotes the increase ratio
compared with four-cluster Nebula.

Experimental Setup: We adopted the same method described in Section 5.1 to syn-
thesize and implement Nebula with a scaling number of clusters [7]. In the experiments,
we introduced a scaling factor: η, to control the number of clusters (2η). The experimental
results showed the scalability of the consumption of area, memory, and power, as well as
maximum clock frequency. The results are normalized with the four-cluster Nebula.

Observation 6: Nebula provides good scalability in the consumption of area, BRAMs,
power, and the maximum frequency.

As shown, the consumption of the BRAMs was linearly scaled with η, since we
allocated a fixed amount of 2048 KB BRAMs for each cluster. Different from this, the ratio
of the area increment was always below the linearly increased η. This benefited from the
optimization of the synthesis. As expected, we also observed that the ratio of the power
increment was lower than the increment of η. This is because the power consumption of a
system is determined by four factors [33,34]: voltage, clock frequency, toggle rate, and design
area. When the other factors are constant, the design area dominates the overall power
consumption. Lastly, we reported a loss of the maximum frequency in Nebula when η
increased. Such a decrease in the maximum frequency is acceptable, since these additionally
introduced clusters bring additional computation capability (shown in Sections 5.2 and 5.3).

6. Conclusions

The development of DNNs brings challenges to DNN accelerators due to various
emerging operations. In this paper, we identify the importance of the DNN width prop-

Electronics 2022, 11, 505 12 of 13

erty for hardware acceleration, and propose a new hardware architecture (Nebula) for
DNN multi-branch blocks, including a hardware platform and a dedicated compiler. The
hardware platform includes a fully-connected NoC, hierarchical memory meshes, and
different transaction modes. This scalable and configurable hardware architecture enables
the flexibility to optimize data reuse and transaction flows between most DNN layers, as
well as multi-branch blocks. Additionally, the compiler decomposes the high-dimensional
operations of multi-branch blocks into channel-level primitives and then maps them to
specified PEs using a two-level mapping method. This novel data flow eliminates repetitive
data movement, energy-hungry data staging, and transmission costs. Furthermore, by
maximizing the parallelism of multi-branch processing, the data flow significantly en-
hances the throughput and workload balance of the system. Thus, Nebula achieves better
performance on both speed and energy consumption when processing mainstream DNNs.
In conclusion, Nebula, which exploits the width property of DNN, provides an elegant and
effective solution to the problem of designing DNN hardware accelerators.

Author Contributions: Conceptualization, D.Y. and X.L.; methodology, D.Y. and Z.J.; software, W.Z.
and Z.J.; validation, D.Y., X.L. and L.Q.; writing—original draft preparation, W.Z.; writing—review
and editing, W.Z. and Z.J.; supervision, D.Y.; project administration. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by National Key R&D Program of China (2020AAA0108301),
National Natural Science Foundation of China (No. 62072112), and the Scientific and Technological
Innovation Action Plan of Shanghai Science and Technology Committee (No. 205111031020).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the editors and reviewers for their efforts and
suggestions to improve our manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
2. Bengio, Y.; Goodfellow, I.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2017; Volume 1.
3. Yang, D.; Li, X.; Dai, X.; Zhang, R.; Qi, L.; Zhang, W.; Jiang, Z. All in one network for driver attention monitoring. In Proceedings

of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain,
4–8 May 2020; pp. 2258–2262.

4. Wang, H.; Zhu, Y.; Adam, H.; Yuille, A.; Chen, L.C. Max-deeplab: End-to-end panoptic segmentation with mask transformers. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021;
pp. 5463–5474.

5. Jiang, Z.; Zhao, S.; Wei, R.; Yang, D.; Paterson, R.; Guan, N.; Zhuang, Y.; Audsly, N. Bridging the Pragmatic Gaps for Mixed-
Criticality Systems in the Automotive Industry. IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2021. [CrossRef]

6. Jiang, Z.; Zhao, S.; Dong, P.; Yang, D.; Wei, R.; Guan, N.; Audsley, N. Re-thinking mixed-criticality architecture for automotive
industry. In Proceedings of the 2020 IEEE 38th International Conference on Computer Design (ICCD), Hartford, CT, USA, 18–21
October 2020; pp. 510–517.

7. Jiang, Z.; Audsley, N.C.; Dong, P. Bluevisor: A scalable real-time hardware hypervisor for many-core embedded systems. In
Proceedings of the 2018 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Porto, Portugal, 11–13
April 2018; pp. 75–84.

8. Chen, T.; Du, Z.; Sun, N.; Wang, J.; Wu, C.; Chen, Y.; Temam, O. Diannao: A small-footprint high-throughput accelerator for
ubiquitous machine-learning. ACM Sigarch Comput. Archit. News 2014, 42, 269–284. [CrossRef]

9. Chen, Y.H.; Krishna, T.; Emer, J.S.; Sze, V. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural
networks. IEEE J.-Solid-State Circuits 2016, 52, 127–138. [CrossRef]

10. Parashar, A.; Rhu, M.; Mukkara, A.; Puglielli, A.; Venkatesan, R.; Khailany, B.K.; Emer, J.S.; Keckler, S.W.; Dally, W.J. Scnn: An
accelerator for compressed-sparse convolutional neural networks. Comput. Archit. News 2017, 45, 27–40. [CrossRef]

http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1109/TCAD.2021.3075422
http://dx.doi.org/10.1145/2654822.2541967
http://dx.doi.org/10.1109/JSSC.2016.2616357
http://dx.doi.org/10.1145/3140659.3080254

Electronics 2022, 11, 505 13 of 13

11. Sharma, H.; Park, J.; Mahajan, D.; Amaro, E.; Kim, J.K.; Shao, C.; Mishra, A.; Esmaeilzadeh, H. From high-level deep neural
models to FPGAs. In Proceedings of the 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
Taipei, Taiwan, 15–19 October 2016; pp. 1–12.

12. Lee, G.; Park, H.; Kim, N.; Yu, J.; Jo, S.; Choi, K. Acceleration of DNN Backward Propagation by Selective Computation of
Gradients. In Proceedings of the Annual Design Automation Conference, Las Vegas, NV, USA, 2–6 June 2019.

13. Ham, T.J.; Jung, S.J.; Kim, S.; Oh, Y.H.; Park, Y.; Song, Y.; Park, J.H.; Lee, S.; Park, K.; Lee, J.W.; et al. Aˆ 3: Accelerating Attention
Mechanisms in Neural Networks with Approximation. In Proceedings of the 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA), San Diego, CA, USA, 22–26 February 2020.

14. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In
Proceedings of the 2017 31st Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December
2017 ; pp. 5998–6008.

15. Ding, W.; Huang, Z.; Huang, Z.; Tian, L.; Wang, H.; Feng, S. Designing efficient accelerator of depthwise separable convolutional
neural network on FPGA. J. Syst. Archit. 2019, 97, 278–286. [CrossRef]

16. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE International Conference on Computer Vision, Boston, MA, USA, 7–12 June 2015; pp. 1026–1034.

17. Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for activation functions. arXiv 2017, arXiv:1710.05941.
18. Kolesnikov, A.; Dosovitskiy, A.; Weissenborn, D.; Heigold, G.; Uszkoreit, J.; Beyer, L.; Minderer, M.; Dehghani, M.; Houlsby, N.;

Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. In Proceedings of the 2021
International Conference on Learning Representations (ICLR), Vienna, Austria, 3–7 May 2021.

19. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada,
11–17 October 2021; pp. 10012–10022

20. Zhang, X.; Wang, J.; Zhu, C.; Lin, Y.; Xiong, J.; Hwu, W.M.; Chen, D. DNNBuilder: An automated tool for building high-
performance DNN hardware accelerators for FPGAs. In Proceedings of the 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), San Diego, CA, USA, 5–8 November 2018.

21. Xu, P.; Zhang, X.; Hao, C.; Zhao, Y.; Zhang, Y.; Wang, Y.; Li, C.; Guan, Z.; Chen, D.; Lin, Y. AutoDNNchip: An automated dnn
chip predictor and builder for both FPGAs and ASICs. In Proceedings of the 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA), Seaside, CA, USA, 23–25 February 2020.

22. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 1–9.

23. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2016; pp. 770–778.

24. Li, X.; Wang, W.; Hu, X.; Yang, J. Selective kernel networks. In Proceedings of the 2019 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 510–519.

25. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings
of the IEEE 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 22–25 July 2017;
pp. 1492–1500.

26. Zhang, H.; Wu, C.; Zhang, Z.; Zhu, Y.; Zhang, Z.; Lin, H.; Sun, Y.; He, T.; Mueller, J.; Manmatha, R.; et al. Resnest: Split-attention
networks. arXiv 2020, arXiv:2004.08955.

27. Plumbridge, G.; Audsley, N. Blueshell: A platform for rapid prototyping of multiprocessor NoCs. Comput. Archit. News 2014, 41,
107–117. [CrossRef]

28. Jiang, Z.; Dai, X.; Audsley, N. HIART-MCS: High Resilience and Approximated Computing Architecture for Imprecise Mixed-
Criticality Systems. In Proceedings of the 2021 IEEE Real-Time Systems Symposium (RTSS), Dortmund, Germany, 7–10 December
2021; pp. 290–303.

29. Bluespec System Verilog. Available online: https://bluespec.com (accessed on 12 January 2021).
30. Mashimo, S.; Fujita, A.; Matsuo, R.; Akaki, S.; Fukuda, A.; Koizumi, T.; Kadomoto, J.; Irie, H.; Goshima, M.; Inoue, K. An

Open Source FPGA-Optimized Out-of-Order RISC-V Soft Processor. In Proceedings of the 2019 International Conference on
Field-Programmable Technology (ICFPT), Tianjin, China, 9–13 December 2019.

31. Cong, J.; Xiao, B. Minimizing computation in convolutional neural networks. In International Conference on Artificial Neural
Networks; Springer: Cham, Switzerland , 2014.

32. Jiang, Z.; Dai, X.; Dong, P.; Wei, R.; Yang, D.; Audsley, N.; Guan, N. Towards an Analysable, Scalable, Energy-Efficient I/O
Virtualization for Mixed-Criticality Systems. IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2021. [CrossRef]

33. Bellaouar, A.; Elmasry, M. Low-Power Digital VLSI Design: Circuits and Systems; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2012.

34. Jiang, Z.; Yang, K.; Fisher, N.; Audsley, N.; Dong, Z. Pythia-MCS: Enabling Quarter-Clairvoyance in I/O-Driven Mixed-Criticality
Systems. In Proceedings of the 2020 IEEE Real-Time Systems Symposium (RTSS), Houston, TX, USA, 1–4 December 2020;
pp. 38–50.

http://dx.doi.org/10.1016/j.sysarc.2018.12.008
http://dx.doi.org/10.1145/2641361.2641379
https://bluespec.com
http://dx.doi.org/10.1109/TCAD.2021.3059566

	Introduction
	Preliminaries: Width of DNN
	Nebula: Hardware Architecture
	Cluster
	Other Elements
	Transaction Modes

	Nebula: Compiler
	Decomposition
	Channel-Level Mapping
	Branch-Level Mapping
	Data Flow Optimization
	Discussion: Compatibility

	Evaluation
	Hardware Overhead
	Experiments Using Synthetic Workloads
	Experiments Using Mainstream DNNs
	Scalability

	Conclusions
	References

