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Abstract: Path voting is a widely used technique for line structure detection in images. Traditional
path voting, based on minimal-path, is performed to track paths based on how seeds grow. The
former requires to set a starting point and an end point. Thus, the performance of minimal-path
path voting depends on the initialization. However, high-quality initialization often requires human
interaction, which limits its applications in practice. In this paper, a fully automatic path voting
method has been proposed and applied for crack detection. The proposed path voting is performed
to segment images, which partitions an image patch along the potential crack path and integrates
the path to form a crack probability map. After path voting, crack seeds are sampled and modeled
into a graph, and the edge weights are assigned using an attraction field algorithm. Finally, cracks
are extracted by using spanning tree and tree pruning algorithms. Experimental results demonstrate
that the proposed path voting approach can effectively infer the cracks from 2D optic images and 3D
depth images.

Keywords: crack detection; path voting; minimal-path; pavement crack; defect detection

1. Introduction

Cracks are common defects that can be found on the surface of various types of
physical structures such as metal surfaces, road pavement, and plastic shells. Although
cracks are not troublesome defects, detection and reparation reduce costs, as a crack can
quickly deteriorate into an important defect such as a hole. As a result, crack detection is
generally a necessary and periodic operation for many engineering projects. On the other
hand, crack detection is a time-consuming and labor-intensive task when performed by
human staff.

In the past two decades, a large number of crack detection methods have been pro-
posed. Pavement crack detection has attracted wide attention from both the academia and
the industry [1,2] due to its importance and urgency. The goal of these methods/systems is
to detect and locate pavement cracks automatically in the pavement images. For pavement
data collection, techniques have evolved from 2D optic imaging [3–7] to 3D depth imag-
ing [8–10]. Prior to 3D laser imaging technology, high speed, and high-resolution CCD
cameras were used for real-time pavement image-based collection, which gave birth to
a number of image-based crack detection methods [11–15]. Note that line scan imaging
captures pavement accurately and is used by most of the methods for image collection.
However, crack detection that uses 2D optic images has to deal with the following problems.
First, the intensity of a crack pixel is very sensitive to the direction of the exposure light.
Under some exposure directions, the shadow can be formed in the crack area which makes
the crack appear darker than the background. While under other exposure directions, no
discriminative shadow will be formed in the crack area, especially when the exposure light
shoots directly inside the crack. As the camera is commonly mounted onto the vehicle
rear with a fixed pose, the captured optic images often capture and represent pavement
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cracks with low contrast. Second, some cracks may have low continuity under frequent
rolling of wheels with heavy loadings. The vehicles, especially the heavy truck, run on
the road pavement day by day, which damages some parts of the crack walls, and makes
the crack less distinctive under the light. An example image is shown in Figure 1a. Third,
possible shadows have a similar intensity to cracks. The vehicle body, as well as the road
facilities such as trees and light poles, cast shadows on the pavement. Cracks outside the
shadow would have a similar intensity to the pavement in the shadow, and cracks inside
the shadow will have decreased contrast to the undamaged pavement.

Figure 1. Three example cracks. (a) A crack with low continuity in a 2D optic pavement image (from
CrackTree206). (b) A pavement crack in a 3D depth image (from CrackPV14). (c) A crack in a material
profile image (from StoneCrack50).

In recent years, 3D laser imaging technology has become mature and has gradually
been applied to collect pavement data, e.g., the 3D depth image [16–18]. Generally, the 3D
laser imaging system is comprised of laser light, a highspeed camera, and a computing
unit. The laser projects a beam on the ground to form a line, the camera captures the
line of light, and the computing unit calculates the 3D depth based on the line structure
theory. Three-dimensional laser imaging is widely used as it can reduce the influence of
cast shadows when compared to optic imaging technologies. An example depth image
captured by 3D laser imaging is shown in Figure 1b. Consequently, crack detection using
3D depth images is performed, and has become a popular research topic in recent years.
Despite pavement maintenance and testing, crack detection has also been required in many
other applications, e.g., the visual examinations of nuclear power plant components [19]
and the inspection of crack defects on the material profile, as shown in Figure 1c.

Although cracks may show different appearances in different kinds of images, they
share some characteristics which make them special and discriminative to other objects.
One major characteristic of the crack is that a crack is a linear/curvilinear structure that has
a relatively lower intensity than the background. Based on this observation, various crack
detection methods have been proposed, such as the thresholding based methods [20], the
edge detection based methods [14,21], and the minimal-path methods [22–24], delineation
filtering based methods [25,26]. Among the various line structure detection methods, the
minimal-path method and its extension path voting is an outstanding one which holds a
stable performance in enhancing the line structures and has been applied to the detection
many kinds of line structures other than pavement cracks, for example, the guide-wire
segmentation from X-ray images [27], the road extraction from remote sensing images [28],
etc. However, traditional path voting is usually dependent on the minimal-path search,
which requires a set start point and end point for the path tracking. This requirement
would make the minimal-path path voting less automatic. Meanwhile, the minimal-path
searching would return the false path when the crack has sharp corners, as will be illustrated
in Section 3.

In this study, we propose a novel path voting algorithm that yields the votes seg-
mentate images. Based on the proposed path voting algorithm, we construct a two-level
grouping approach for crack detection. It consists of a local grouping and a global group-
ing. In local grouping, potential crack curves are enhanced by the proposed path voting
algorithm. This path voting adapts the standard normalized cut algorithm to partition an
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image patch along the potential crack path, which makes it fully automatic and avoids
the limitation of the minimal-path path voting that requires the careful setting of tracking
points. Through path voting on the whole image, the votes aggregated to form a crack
probability map. Then, in the global grouping, potential crack seeds are sampled on the
crack probability map and modeled into a graph. An attractive field-based algorithm is
presented to calculate the weights for the edges in the graph, and the final crack curves are
extracted using the minimum spanning tree and tree pruning algorithms. A flowchart of
the proposed method is shown in Figure 2.

Figure 2. A flowchart of the proposed method.

The remainder of this paper is organized as follows. Section 2 introduces the related
work. Section 3 presents the proposed crack detection method. Section 4 reports the
experimental results on two optic image datasets and one depth image dataset, and Section 5
concludes our work.

2. Related Work

In the past two decades, crack detection has become a popular research topic, inspired
by the urgent demands of industrial and infrastructure inspections. Crack detection is
usually performed in two kinds of data, one is the 2D optic images, and the other is the 3D
depth images. The former can be commonly found in the early research in the community,
while the latter has gradually become a research focus since 2010 in an environment of
rapid development of laser imaging technologies. In the following section, we briefly
overview both of them.

2.1. Crack Detection Using 2D Images

In the early research of crack detection, the cracks are commonly captured using 2D
optic images. An interesting study was performed in [29], where the characteristics of
the cracks and their influence on the crack recognition were analyzed by using different
illumination conditions and image acquisition distance. Under a normal illuminance, a
crack is generally darker than the background and distributes into a linear or curvilinear
structure. Thus, image thresholding is a straightforward way to detect cracks. In [22,30], the
threshold value was figured out by examining the difference between the cracks and their
neighboring non crack pixels. In [31], entropy is embedded into a two-level thresholding
framework for pavement crack detection. In [20], the threshold value was calculated in a
heuristic way and was used to extract the sealed cracks. However, pavement shadows and
uneven illuminations would undermine the robustness of the thresholding methods [32].
As the crack is thin and displays an edge-like disturbance in intensity, many methods
stemming from edge detection and wavelet transformation have been developed for crack
detection. In [33], the Sobel edge detector was investigated for crack detection. In [14,21,34],
wavelet transforms such as Gabor filters and anisotropic-based method were developed to
examine the edge properties of the cracks. In [21], a 2D continuous wavelet transform is
applied to create multiscale complex coefficient maps, on which the modulus and phase
maps are constructed and a maxima location map is obtained for crack detection. In [14,35],
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the crack features were extracted by Gabor filters. In [34], cracks are examined by an
anisotropic clustering method and were applied to extract surface cracks. However, the
edge information would easily be tangled by sparkle noise. Minimal-path methods have
also been studied. In [22], a seed growing method built on minimal-path searching was
proposed for pavement crack detection. A similar method was presented in [24], where a
set of minimal paths were selected by checking the intensities of the pixels in the image, and
two postprocessing steps were introduced to guarantee the accuracy of the detected results.
In [23], the minimal-path search was used to track cracks in the complex background in
the 2D image, where the seed points for path tracking should be handily set in advance.
As a self-adaptive strategy, machine learning-based methods were investigated for crack
detection. In [36], a backpropagation neural network was employed to classify cracks
based on the moment invariants features. In [37], deep convolutional neural networks
were used to classify the image patches into crack blocks and non crack ones. In [38], the
detection of bridge cracks was studied by using a modified active contour model and
greedy search-based support vector machine. In [19], fully convolutional neural networks
were studied to infer cracks of nuclear power plants using multi-view images. Many other
methods were also proposed for crack detection, e.g., the saliency detection method [12],
the structure analysis methods by using the minimal spanning tree [4] and the random
structure forest [39], and the high efficient crack detection using GPUs [40].

2.2. Crack Detection Using 3D Images

With the development of sensing technology, especially the advancement of laser
scanning sensors, accurate 3D measurement of the object’s surface has become possible. As
a result, several types of research have been conducted to use 3D depth images for crack
detection. In [8], a mobile laser scanning system was developed to collect high-density
point clouds of the pavement, and a framework named ITVCrack was introduced to handle
the point clouds data. The road points are separated from the nonroad points, and then
an iterative tensor voting algorithm was proposed to extract the cracks from the noisy
background. The method was reported to be applicable for pavement cracks with low
contrast, low signal-to-noise ratio, and bad continuity. In [9], the performance of crack
segmentation was improved by an enhanced dynamic optimization algorithm using 3D
laser imaging data. In this method, the data were preprocessed using a two-step Gaussian
filter to obtain a smooth depth image avoiding the influence of cross-slope and ruts, and
then a dynamic optimization algorithm was proposed to extract the final cracks from
the crack candidates obtained by rough segmentation. In [41], a hybrid procedure was
proposed for pavement crack detection, where the 3D pavement data was collected by
3D Ultra. The precision of the range value is 1 mm. In addition, the system developed is
also equipped with optical cameras, which makes it possible to fuse the depth image with
the intensity image. In crack detection, algorithms based on tensor voting and minimum
spanning trees were employed. In [15], the 2D optic image and 3D depth images were
also combined to detect the surface cracks, in which a 3D camera captures the laser line
and calculates the 3D profile of the pavement every 10 mm along the road. The AdaBoost
algorithm [42,43] is equipped with two strong classifiers where the first strong classifier
composed of 56 Gabor filters is used for transverse crack detection, and the other strong
classifier composed of 9 filters is used for longitudinal crack detection. The method was
reported to obtain an accuracy of over 90%. In [44], crack classification was performed
based on the 3D laser scanning data. In this method, the structure of the pavement surface
was represented by the 3D depth image at an accuracy of 1 mm, and the crack segments
extracted were modeled with bounding box-based technologies and used for classification
and defect severity evaluation.
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3. Crack Detection Method

In a 2D optic image or a 3D depth image, a crack is a linear/curvilinear structure
that is represented by a spatially continuous gradient and intensity. To extract cracks from
the images, we first propose a novel path voting local grouping algorithm to enhance
the potential crack curves and then present a global grouping algorithm to extract the
final cracks.

3.1. Local Grouping

Over the past two decades, path voting as an image processing tool has been used
in several applications, e.g., map matching in GPS tracks [45], guidewire in fluoroscopy
image [27], and road detection in remote sensing images [28], etc. In our work, a new crack
detection method is proposed based on the path voting algorithm.

In curve enhancement/extraction research, minimal-path algorithms have been widely
used [46–49]. However, the minimal-path algorithm is limited, as it requires a start point
and an end point in advance. One possible way to loosen the constraint is using a seed
growing strategy [22,23,50], where only one seed point is required for searching one
minimal path. In particular, the minimal path algorithm can be performed in a voting way
for curve structure enhancement [27,28]. In path voting, the number of times that a pixel
is passed by all minimal paths is taken as the probability (normalized to [0 1]) that the
pixel belongs to a curve. In this work, we perform path voting locally to produce a crack
probability map.

Let I be a gray image, q be a pixel in I, r be a searching radius, and Ir
q be a (2r + 1)× (2r + 1)

sub-image centered at q. Then, the path locally found at point q w.r.t.r can be described
as Cq,

Cq = Ψ
(

Ir
q

)
(1)

where Ψ() denotes the ways to find a path in the sub-image Ir
q. One popular way is a

minimal-path seed growing, as introduced by Li and Zou [22], where the center of a sub-
image is taken as a seed point for the seed growing algorithm. However, it would incur
problems when the potential crack curve does not go across the center of the sub-image.
Figure 3 gives an example to illustrate the limitation of the seed growing strategy. Figure 3a
is a sub-image with a crack crossing it. Figure 3b shows the seed growing result, in which
the center of the sub-image is the seed point. We can see that the seed growing path does
not fully cover the target curve, as the seed points are not guaranteed to locate on the
crack curve. Even when the start point and the end point are given for crack tracking,
the minimal-path algorithm may have errors in tracking the true crack. For example, the
result produced by the minimal-path tracking with the start and end points is shown in
Figure 3e, where a tracking error occurs at the sharp section as having been annotated by
the red region in Figure 3d. This is because the minimal-path algorithm is not robust in
handling the grid graph [23]. In this work, we get the paths involved in voting by image
segmentation strategy other than the seed growing, as described by Equation (2),

Cq = Ncut
(

Ir
q

)
(2)

where Ncut() denotes a popular image segmentation method, normalized cut [51]. In the
following, we will show how to adapt it to meet requirements for the local grouping of
crack points.
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Figure 3. Illustration of the weakness of the minimal-path algorithm inline structure extraction
in a local subitem age. In the top row, it illustrates the weakness of minimal-path seed growing,
where (a) is an input image, (b) is the seed growing results based on a seed S located at the image
center, and (c) is the proposed adaptive NCut result. In the bottom row, it illustrates the weakness
of minimal-path tracking, where (d) is another input image, (e) is the minimal-path tracking results
based on two end points marked in yellow, and (f) is the proposed adaptive NCut result. The crack in
the red circle, which has a sharp curve, cannot be tracked in the minimal-path tracking.

Let G = (V, E) be a graph, which can be partitioned into two disjoint sets, A and B,
A ∪ B = V, A ∩ B = φ, by removing edges connecting the two parts. Let w(u, v) be the
weight between nodes u and v, then the similarity of the two parts can be measured by the
total weight of the edges that have been removed, which is defined as the graph-cut cost:

Cut(A, B) = ∑
u∈A,v∈B

w[u, v] (3)

In normalized cut (Ncut [51]), the cut cost is computed as a fraction of the total edge
connections to all the nodes in the graph:

N cut(A, B) =
cut(A, B)

assos(A, V)
+

cut(A, B)
assos(B, V)

(4)

where assos(A, V) = ∑u∈A,t∈V w(u, t) is the total connection from nodes in A to all nodes
in the graph and assos(B, V) is the total connection from nodes in B to all nodes in the
graph. According to Ncut [51], the cut cost in Equation (4) can be minimized by an efficient
eigenvalue-based technique. In the context of crack detection, we want to achieve a
minimum cut along the crack curve. To achieve this goal, we adapt the weight function.
Specifically, we assign lower weights to edges involved in the nodes on the crack curve,
and higher weights to other edges. As a crack has a certain width, the weight should also
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be formulated to reach a local maximum at the center of the crack. Based on the discussion
above, the weight between pixel i and j is defined by

wij = e
−(Yi+Yo)2

σ2 ×
{

1 i f ‖ Xi − Xj ‖< r
0 otherwise

(5)

where
Yo = arg max{(Yi + Yk)|‖Xi − Xk‖ < r} (6)

Xi and Yi denote the location and intensity of pixel i, respectively. σ tunes wij to a
reasonable range and makes it discriminative to one another. As in the voting process,
a segmentation curve will be generated in each patch. However, for the patches that do
not contain any cracks, it is not desired to be predicted with any crack curve. In other
words, the segmentation path generated in a non-crack patch should give less vote to the
crack probability map. Thus, in our solution, we give an additional weight to relieve this
concern. Specifically, we set it as a two-class segmentation problem as we suppose there
is only one crack line in a small patch, for example, a 23 × 23 patch cropped from an
original large image. Then, two eigenvalues will be calculated by the NCut solution. The
two eigenvalues indicate the confidence of the two parts to be segmented. When there
is a crack curve in the patch and the segmentation path goes on it, the two eigenvalues
will be very close as the crack curve gives confidence to both parts in the segmentation,
otherwise, the second eigenvalue will be much smaller than the first eigenvalue. On this
point, we propose to highlight the crack curve, which is likely to be the segmentation path
obtained by the adapted NCut, by placing additional weight on the segmentation path.
Let Ir

q be a (2r + 1) × (2r + 1) subimgage centered at q, eig1 and eig2 be the two eigenvalues
generated by the adapted NCut, and Cq be the segmentation path on Ir

q, then we give the
segmentation path Cq a weight defined by Equation (7),

Z
(
Cq

)
= e−c×(eig1−eig2) (7)

where c is a constant to increase the contrast between the crack path and non-crack path,
which further highlights the cracks. We empirically set c as 10. When a sub-image is cropped
at a pixel and the adapted Ncut is applied to it, the segmentation path can generally cover
a set of pixels in the corresponding sub-image. In our approach, path voting is achieved
by aggregating the segmentation path generated by the adapted Ncut on a set of sampled
pixels. Note that each pixel will be crossed through by multiple paths. Let N be the
maximum number of crossing paths over all pixels; with N as a normalization base, then a
crack probability at pixel i can be computed by

Pi =
1
N ∑

Ir
q∈Φ(I,r,s)

ξ(+,−)(Xi, Cq
)

(8)

where
ξ+

(
Xi, Cq

)
=

{
Z
(
Cq

)∣∣Xi ∈ Cq
}

(9)

and
ξ−

(
Xi, Cq

)
=

{
0
∣∣Xi /∈ Cq

}
(10)

The Xi is the location of pixel i, Φ(I, r, s) denotes all the sub-images sampled on the
original image I, with a searching radius r, and a marching step s. Cq is the path found on
sub-image Ir

q by using the proposed adapted NCut algorithm.
Figure 4 shows the results of different voting algorithms on an image. In the section of

experiments, we will examine the influence of the two parameters on the crack detection
performance. Figure 5 illustrates the robustness of the proposed path voting algorithm on
enhancing the crack curves under different widths and different noise rates. To facilitate
the comparison, simulated cracks of different widths are used and are added noise at a
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different rate. It can be seen from Figure 5 that the proposed path voting holds a stable
performance in enhancing the crack curves of different widths and different noise rates.

Figure 4. Results generated by different path voting algorithms. (a) An original image. (b) The
result was produced by the minimal-path path voting. (c) The result was produced by the proposed
path voting.

Figure 5. Results obtained by the proposed path voting method on simulated cracks of different
widths and different noise rates. The cracks in the top row, middle row, and bottom row have
the width of 1 pixel, 3 pixels, and 5 pixels, respectively. The simulated crack images have been
added the ‘pepper and salt’ noise at an intensity of 0.1, 0.2, and 0.3 in the first, third, and fifth
column, respectively.

3.2. Global Grouping

Taking the local grouping result as a crack probability map, we implement the crack
seed sampling with a maximal value validation algorithm [4]. Based on the crack seeds,
we construct an undirected graph G to model the possible connections among these crack
seeds. Let each crack seed be a vertex vi, and each pair of vertices

(
vi, vj

)
be assigned with

an edge ei,j, then the graph can be represented by

G = (V, E) (11)

where V = {vi|i = 1, 2, . . . N} is the vertex set, and E =
{

ei,j
∣∣eij =

(
vi, vj

)}
is the edge set.

There are two major rules in assigning the weight to the edges.
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First, for two vertices, the larger distance is between them, the lower weight is set to
the corresponding edge. This is because a larger distance will decrease the continuity, and
hence makes them less groupable.

Second, for two vertices, the larger values they have in the crack probability map, the
higher weight it would set to the corresponding edge. This is because a pixel with a larger
crack probability value will bring more influence to the surrounding area, and two vertices
with larger crack probability values are likely to group together.

The above observations may easily remind us of the gravity field model. Similarly,
we defined the weight of an edge ei,j in the graph by Equation (12), and we name it as
attraction field,

wi,j =
Ii·Ij

Di,j
(12)

We find the minimum spanning tree (MST) from the constructed graph G to identify
the desired edge connections among crack seeds. As MST is a spanning tree with the
minimum total edge weight, the edges remaining in an MST connect the crack seeds with
the best proximity. In addition, a recursive edge pruning algorithm [4] is applied to find
long branches, and remove short branches with poor proximity and continuity in the
resulting MSTs.

4. Experiments and Results

In this section, we will validate the effectiveness of the proposed method by evaluating
and comparing the crack detection performances on several datasets. Specifically, we will
first introduce the metrics for performance evaluation, and then present two 2D optic
image datasets and one 3D depth image dataset used in the experiments, and give the
experiment results.

4.1. Metrics

For each image, Precision and Recall were computed by comparing the detected cracks
against the human-annotated ground truth. These two metrics are defined by

Precision =
Ture Positives

Ture Positives + False Positives
(13)

Recall =
Ture Positives

Ture Positives + False Negatives
(14)

and an overall performance metric F measure is defined by

F−measure = 2· Precision·Recall
Precision + Recall

(15)

Considering that cracks have a certain width, a detected crack pixel is still taken as a
true positive if it is no more than 2 pixels away from human-annotated crack curves.

4.2. Results on CrackTree206 Dataset

The CrackTree206 dataset 1 contains 206 2D optic pavement images captured by using
a CCD camera. All images share the same size of 800 × 600. The cracks in the images have
been annotated using an interactive crack detection tool. About one-fourth of the images
contain shadows that are cast by trees or light poles, which brings additional challenges
to the crack detection problem. Several crack detection methods have been introduced
for comparison, such as the segmentation extension method (Seg-ext) [52], the global Pb
series [53], and the CrackTree [4]. The precision–recall curves of these methods have been
shown in Figure 6a. It can be seen from Figure 6a that the proposed path voting method
achieves an F-measure value of 0.88, which is the highest among all comparison methods.
Figure 6b shows the results of the proposed path voting algorithm by using different radius
r and different step length s. In the top figure of Figure 6b, the radius is fixed to r = 11, and
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the step length s is tuned from 3 to 9 at an interval of 2 pixels. It can be observed that the
increase in step length s from 3 to 9 will slightly decrease the performance of the proposed
method. In the bottom figure of Figure 6b, the step length s is fixed to 5, and the radius r is
tuned from 5 to 11 at an interval of 2 pixels. It can be observed that the increase in radius
valuer will dramatically decrease the performance of the proposed method. Figure 7 shows
the results under different r and s values.

Figure 6. Crack detection results on CrackTree206 dataset. (a) The precision–recall curves for the
comparison methods. (b) The performance of the proposed path voting method running at different
step s and different radius r.

Figure 7. Path voting results by using different radius r and different step length s. In the top row, the
radius is fixed to be r = 11, and the step length s is varied from 1 to 7 at an interval of 2. In the bottom
row, the step length is fixed to be s = 5, and the radius r is varied from 5 to 13 at an interval of 2.

4.3. Results on StoneCrack50 Dataset

The StoneCrack50 dataset is a material crack dataset. In many stone material factories,
stones have to be reformulated or cut into specific shapes. During the process, cracks may
appear on the surface of the stone. We collect a set of 50 2D optic stone images. Each image
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has a size of 628 × 516. The cracks in the image are also annotated with human interactions.
We compare the performance of the proposed method with the CrackTree method and
the minimal-path path voting method on the StoneCrack50 dataset. The results have been
given in Table 1. For the two path voting-based methods, they have the same parameter
settings, that is, step length s = 5 and radius r = 11.

Table 1. Crack Detection on StoneCrack50 dataset.

Method CrackTree Minimal-Path Path Voting The Proposed Path Voting

Precison 0.8725 0.8218 0.9182
Recall 0.5562 0.5236 0.5697

FMeasure 0.6793 0.6397 0.7031

We also examine the influence of the step length s and the radius r on the performance
of the proposed path voting method. It can be seen from Table 2 that a larger radius r
will decrease the performance of the proposed method. This is because the segmentation
performed in too small a patch will easily bring poor results. It can also be observed from
Table 2 that a larger marching step length s generally leads to a lower performance for the
proposed method. This is because too large a step length will lead to inadequate voting for
the discriminative curves.

Table 2. Performance of the proposed path voting method on StoneCrack50 at different radius r and
different step length s.

Location s = 5 s = 7 s = 9 s = 11

Precison
r = 5

0.9522 0.9521 0.9490 0.9823
Recall 0.0645 0.0663 0.0635 0.0607
FMeasure 0.1208 0.1240 0.1190 0.1144
Precison

r = 7
0.9581 0.9668 0.9424 0.9112

Recall 0.1782 0.1382 0.1026 0.0689
FMeasure 0.3005 0.2418 0.1851 0.1281
Precison

r = 9
0.9247 0.9116 0.8751 0.9064

Recall 0.4274 0.3517 0.2328 0.1517
FMeasure 0.5846 0.5076 0.3678 0.2599
Precison

r = 11
0.9182 0.9284 0.8735 0.8612

Recall 0.5696 0.4908 0.4403 0.2103
FMeasure 0.7031 0.6421 0.5855 0.3381

4.4. Results on CrackPV14 Dataset

The CrackPV14 dataset is collected using a 3D laser imaging system. The 3D laser
imaging system consists of a line structure laser and a 3D camera mounted onto the rear
of a vehicle, as illustrated in Figure 8. The laser projects a laser beam onto the pavement.
The projected beam will be curved under a bumpy pavement surface. The 3D camera will
recognize the beam curve in real-time and transform the beam curve into a number of 3D
points by using the Laser Triangulation techniques [54]. When the vehicle moves along
the road, the pavement surface will be measured with dense 3D points. In our system, the
collected 3D points have the following attributes: (i) the resolution in X-axis (perpendicular
to Y-axis on the road surface plan) is 1.80 mm; (ii) the resolution in Y-axis (along the road)
is 1.00 mm; (iii) the resolution in Z-axis (perpendicular to the road surface plan) is 0.25 mm.
Originally, the Z values of 3D points represent the relative range from the laser device to
the pavement surface in the vertical direction. For convenience, we negate the range values
and normalize them to [0 255]. Thus we can represent them with a gray image, namely the
range image or the 3D depth image. A set of 14 laser range images are collected to validate
the proposed approach. The ground truth crack curves were manually annotated on these
images for objective performance evaluation.
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Figure 8. An illustration of the laser imaging system.

For comparison, the CrackTree [4] and FoSA [22] were tested on the same data, where
the parameters were uniformly set as σ = 11, Le = 10, and Lp = 100 for CrackTree, and
seed growing radius = 28 for FoSA. For the proposed approach, in the local grouping step,
the searching radius for path voting was set as r = 11, and the step length for sub-image
sampling was set as s = 5. While in the global grouping step, parameters were set as same
as that of the CrackTree.

Figure 9 displays the results of five images in the dataset. From Figure 9, we can
see the crack maps (in row 3) produced by the proposed path voting algorithm have well
grouped the potential crack points into salient crack curves. Compared with the crack
map (in row 2) obtained from tensor voting, the path voting-based crack map shows more
concentrated energy on the crack center. Note that, in tensor voting, a thresholding step
is required before calculating the crack map. As improper thresholding would result in
false crack seeds, the crack map produced by tensor voting is largely dependent on the
thresholding quality. Unlike tensor voting, the proposed path voting algorithm does not
require a thresholding step in crack map computation. Therefore, the proposed path voting
algorithm is more reliable than tensor voting in crack map construction. Comparing results
in rows 4, 5, and 6 in Figure 9, we can find that the proposed approach produced better
crack results than CrackTree and FoSA.

Table 3. Crack detection performance on 14 laser range images (Prop: proposed approach,
CrTr: CrackTree).

Method Prop CrTr FoSA Prop CrTr FoSA Prop CrTr FoSA Prop CrTr FoSA

img. #1 img. #2 img. #3 img. #4
Precison 0.872 0.821 0.845 0.842 0.625 0.733 0.846 0.885 0.897 0.793 0.753 0.756
Recall 0.965 0.691 0.628 0.904 0.605 0.568 0.905 0.713 0.612 0.903 0.776 0.691

FMeasure 0.916 0.751 0.721 0.872 0.614 0.640 0.874 0.790 0.728 0.845 0.764 0.722
img. #5 img. #6 img. #7 img. #8

Precison 0.949 0.845 0.860 0.671 0.780 0.836 0.960 0.698 0.716 0.846 0.696 0.749
Recall 0.939 0.600 0.557 0.843 0.649 0.647 0.915 0.605 0.552 0.929 0.668 0.654

FMeasure 0.994 0.700 0.691 0.747 0.708 0.729 0.937 0.648 0.623 0.886 0.682 0.698
img. #9 img. #10 img. #11 img. #12

Precison 0.767 0.722 0.779 0.833 0.927 0.811 0.833 0.839 0.792 0.997 0.847 0.868
Recall 0.996 0.669 0.636 0.961 0.860 0.805 0.993 0.967 0.937 0.823 0.923 0.805

FMeasure 0.867 0.695 0.700 0.892 0.892 0.808 0.906 0.898 0.858 0.893 0.883 0.835
img. #13 img. #14 Average

Precison 0.449 0.775 0.696 0.848 0.948 0.925
Recall 0.890 0.706 0.663 0.988 0.985 0.880

FMeasure 0.639 0.739 0.679 0.931 0.966 0.901 0.867 0.766 0.738
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Figure 9. Experimental results. Row 1: five pavement images with ground truth cracks (in blue)
shifted, corresponding to images No. 4, 2, 5, 6, and 11 in Table 3. Row 2: crack maps from tensor
voting (in CrackTree). Row 3: crack maps from the proposed path voting. Row 4: results from the
proposed approach. Row 5: CrackTree results. Row 6: FoSA results.
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In our experiment, we evaluated and compared the running efficiency. CrTr, FoSA,
and our method took an average of 2 s, 2.5 s, and 1.2 s to process an image, respectively.
The hardware platform is configured with PC Operating System Windows 10, Intel CPU
2.6 G, and 32 G of DDR4 RAM.

Table 3 lists the results on fourteen laser range images. It can be seen from Table 3 that
most of results from the proposed approach are better than that from CrackTree and FoSA.
To make an overall comparison, the average Fmeasures over all the testing images were
calculated. The proposed approach gained an average F measure much higher than that of
CrackTree and FoSA, which demonstrated the advancement of the proposed approach.

5. Conclusions and Future Directions

In this paper, we have proposed a novel path voting algorithm that performed voting
segment images. Based on this path voting, a two-level grouping framework has been
present for detecting cracks from 2D optic images and 3D depth images. First, in the local
grouping, the proposed path voting was applied to enhance the potential crack strings and
produce a crack probability map. Then, in the global grouping, edge linking and pruning
algorithms were performed to extract the desired cracks. In the experiments, two optic
image datasets and one depth image dataset have been used for performance evaluation.
The experimental results demonstrated that the proposed segmentation-based path voting
could effectively enhance the crack curves at the different background and noise rates, and
the proposed crack detection method outperformed several competing methods in crack
detection from both optic images and depth images.

In our future work, we will study two aspects. One is to use more advanced sensors
for pavement modeling, and the other is to use more advanced machine learning methods
such as deep convolution neural networks for crack detection in [55–57].
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