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Abstract: Path voting is a widely used technique for line structure detection in images. Traditional 

path voting, based on minimal-path, is performed to track paths based on how seeds grow. The 

former requires to set a starting point and an end point. Thus, the performance of minimal-path 

path voting depends on the initialization. However, high-quality initialization often requires human 

interaction, which limits its applications in practice. In this paper, a fully automatic path voting 

method has been proposed and applied for crack detection. The proposed path voting is performed 

to segment images, which partitions an image patch along the potential crack path and integrates 

the path to form a crack probability map. After path voting, crack seeds are sampled and modeled 

into a graph, and the edge weights are assigned using an attraction field algorithm. Finally, cracks 

are extracted by using spanning tree and tree pruning algorithms. Experimental results demonstrate 

that the proposed path voting approach can effectively infer the cracks from 2D optic images and 

3D depth images. 
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1. Introduction 

Cracks are common defects that can be found on the surface of various types of phys-

ical structures such as metal surfaces, road pavement, and plastic shells. Although cracks 

are not troublesome defects, detection and reparation reduce costs, as a crack can quickly 

deteriorate into an important defect such as a hole. As a result, crack detection is generally 

a necessary and periodic operation for many engineering projects. On the other hand, 

crack detection is a time-consuming and labor-intensive task when performed by human 

staff. 

In the past two decades, a large number of crack detection methods have been pro-

posed. Pavement crack detection has attracted wide attention from both the academia and 

the industry [1,2] due to its importance and urgency. The goal of these methods/systems 

is to detect and locate pavement cracks automatically in the pavement images. For pave-

ment data collection, techniques have evolved from 2D optic imaging [3–7] to 3D depth 

imaging [8–10]. Prior to 3D laser imaging technology, high speed, and high-resolution 

CCD cameras were used for real-time pavement image-based collection, which gave birth 

to a number of image-based crack detection methods [11–15]. Note that line scan imaging 

captures pavement accurately and is used by most of the methods for image collection. 

However, crack detection that uses 2D optic images has to deal with the following prob-

lems. First, the intensity of a crack pixel is very sensitive to the direction of the exposure 

light. Under some exposure directions, the shadow can be formed in the crack area which 

makes the crack appear darker than the background. While under other exposure direc-

tions, no discriminative shadow will be formed in the crack area, especially when the ex-

posure light shoots directly inside the crack. As the camera is commonly mounted onto 

the vehicle rear with a fixed pose, the captured optic images often capture and represent 
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pavement cracks with low contrast. Second, some cracks may have low continuity under 

frequent rolling of wheels with heavy loadings. The vehicles, especially the heavy truck, 

run on the road pavement day by day, which damages some parts of the crack walls, and 

makes the crack less distinctive under the light. An example image is shown in Figure 1a. 

Third, possible shadows have a similar intensity to cracks. The vehicle body, as well as 

the road facilities such as trees and light poles, cast shadows on the pavement. Cracks 

outside the shadow would have a similar intensity to the pavement in the shadow, and 

cracks inside the shadow will have decreased contrast to the undamaged pavement. 

   
(a) (b) (c) 

Figure 1. Three example cracks. (a) A crack with low continuity in a 2D optic pavement image (from 

CrackTree206). (b) A pavement crack in a 3D depth image (from CrackPV14). (c) A crack in a mate-

rial profile image (from StoneCrack50). 

In recent years, 3D laser imaging technology has become mature and has gradually 

been applied to collect pavement data, e.g., the 3D depth image [16–18]. Generally, the 3D 

laser imaging system is comprised of laser light, a highspeed camera, and a computing 

unit. The laser projects a beam on the ground to form a line, the camera captures the line 

of light, and the computing unit calculates the 3D depth based on the line structure theory. 

Three-dimensional laser imaging is widely used as it can reduce the influence of cast shad-

ows when compared to optic imaging technologies. An example depth image captured by 

3D laser imaging is shown in Figure 1b. Consequently, crack detection using 3D depth 

images is performed, and has become a popular research topic in recent years. Despite 

pavement maintenance and testing, crack detection has also been required in many other 

applications, e.g., the visual examinations of nuclear power plant components [19] and 

the inspection of crack defects on the material profile, as shown in Figure 1c. 

Although cracks may show different appearances in different kinds of images, they 

share some characteristics which make them special and discriminative to other objects. 

One major characteristic of the crack is that a crack is a linear/curvilinear structure that 

has a relatively lower intensity than the background. Based on this observation, various 

crack detection methods have been proposed, such as the thresholding based methods 

[20], the edge detection based methods [14,21], and the minimal-path methods [22–24], 

delineation filtering based methods [25,26]. Among the various line structure detection 

methods, the minimal-path method and its extension path voting is an outstanding one 

which holds a stable performance in enhancing the line structures and has been applied 

to the detection many kinds of line structures other than pavement cracks, for example, 

the guide-wire segmentation from X-ray images [27], the road extraction from remote 

sensing images [28], etc. However, traditional path voting is usually dependent on the 

minimal-path search, which requires a set start point and end point for the path tracking. 

This requirement would make the minimal-path path voting less automatic. Meanwhile, 

the minimal-path searching would return the false path when the crack has sharp corners, 

as will be illustrated in Section 3. 

In this study, we propose a novel path voting algorithm that yields the votes segmen-

tate images. Based on the proposed path voting algorithm, we construct a two-level 

grouping approach for crack detection. It consists of a local grouping and a global group-

ing. In local grouping, potential crack curves are enhanced by the proposed path voting 

algorithm. This path voting adapts the standard normalized cut algorithm to partition an 
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image patch along the potential crack path, which makes it fully automatic and avoids the 

limitation of the minimal-path path voting that requires the careful setting of tracking 

points. Through path voting on the whole image, the votes aggregated to form a crack 

probability map. Then, in the global grouping, potential crack seeds are sampled on the 

crack probability map and modeled into a graph. An attractive field-based algorithm is 

presented to calculate the weights for the edges in the graph, and the final crack curves 

are extracted using the minimum spanning tree and tree pruning algorithms. A flowchart 

of the proposed method is shown in Figure 2. 

 

Figure 2. A flowchart of the proposed method. 

The remainder of this paper is organized as follows. Section 2 introduces the related 

work. Section 3 presents the proposed crack detection method. Section 4 reports the ex-

perimental results on two optic image datasets and one depth image dataset, and Section 

5 concludes our work. 

2. Related Work 

In the past two decades, crack detection has become a popular research topic, in-

spired by the urgent demands of industrial and infrastructure inspections. Crack detec-

tion is usually performed in two kinds of data, one is the 2D optic images, and the other 

is the 3D depth images. The former can be commonly found in the early research in the 

community, while the latter has gradually become a research focus since 2010 in an envi-

ronment of rapid development of laser imaging technologies. In the following section, we 

briefly overview both of them. 

2.1. Crack Detection Using 2D Images 

In the early research of crack detection, the cracks are commonly captured using 2D 

optic images. An interesting study was performed in [29], where the characteristics of the 

cracks and their influence on the crack recognition were analyzed by using different 

illumination conditions and image acquisition distance. Under a normal illuminance, a 

crack is generally darker than the background and distributes into a linear or curvilin-

ear structure. Thus, image thresholding is a straightforward way to detect cracks. In 

[22,30], the threshold value was figured out by examining the difference between the 

cracks and their neighboring non crack pixels. In [31], entropy is embedded into a two-

level thresholding framework for pavement crack detection. In [20], the threshold 

value was calculated in a heuristic way and was used to extract the sealed cracks. 

However, pavement shadows and uneven illuminations would undermine the robustness 

of the thresholding methods [32]. As the crack is thin and displays an edge-like disturb-

ance in intensity, many methods stemming from edge detection and wavelet transfor-

mation have been developed for crack detection. In [33], the Sobel edge detector was 

investigated for crack detection. In [14,21,34], wavelet transforms such as Gabor filters 

and anisotropic-based method were developed to examine the edge properties of the 

cracks. In [21], a 2D continuous wavelet transform is applied to create multiscale complex 

coefficient maps, on which the modulus and phase maps are constructed and a maxima 
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location map is obtained for crack detection. In [14,35], the crack features were extracted 

by Gabor filters. In [34], cracks are examined by an anisotropic clustering method and 

were applied to extract surface cracks. However, the edge information would easily be 

tangled by sparkle noise. Minimal-path methods have also been studied. In [22], a seed 

growing method built on minimal-path searching was proposed for pavement crack de-

tection. A similar method was presented in [24], where a set of minimal paths were se-

lected by checking the intensities of the pixels in the image, and two postprocessing steps 

were introduced to guarantee the accuracy of the detected results. In [23], the minimal-

path search was used to track cracks in the complex background in the 2D image, where 

the seed points for path tracking should be handily set in advance. As a self-adaptive strat-

egy, machine learning-based methods were investigated for crack detection. In [36], a back-

propagation neural network was employed to classify cracks based on the moment 

invariants features. In [37], deep convolutional neural networks were used to classify the 

image patches into crack blocks and non crack ones. In [38], the detection of bridge 

cracks was studied by using a modified active contour model and greedy search-based 

support vector machine. In [19], fully convolutional neural networks were studied to infer 

cracks of nuclear power plants using multi-view images. Many other methods were also 

proposed for crack detection, e.g., the saliency detection method [12], the structure analysis 

methods by using the minimal spanning tree [4] and the random structure forest 

[39], and the high efficient crack detection using GPUs [40]. 

2.2. Crack Detection Using 3D Images 

With the development of sensing technology, especially the advancement of laser 

scanning sensors, accurate 3D measurement of the object’s surface has become possible. As 

a result, several types of research have been conducted to use 3D depth images for crack 

detection. In [8], a mobile laser scanning system was developed to collect high-density 

point clouds of the pavement, and a framework named ITVCrack was introduced to han-

dle the point clouds data. The road points are separated from the nonroad points, and then 

an iterative tensor voting algorithm was proposed to extract the cracks from the noisy 

background. The method was reported to be applicable for pavement cracks with low 

contrast, low signal-to-noise ratio, and bad continuity. In [9], the performance of crack seg-

mentation was improved by an enhanced dynamic optimization algorithm using 3D laser 

imaging data. In this method, the data were preprocessed using a two-step Gaussian 

filter to obtain a smooth depth image avoiding the influence of cross-slope and ruts, and 

then a dynamic optimization algorithm was proposed to extract the final cracks from the 

crack candidates obtained by rough segmentation. In [41], a hybrid procedure was pro-

posed for pavement crack detection, where the 3D pavement data was collected by 3D 

Ultra. The precision of the range value is 1 mm. In addition, the system developed is also 

equipped with optical cameras, which makes it possible to fuse the depth image with 

the intensity image. In crack detection, algorithms based on tensor voting and minimum 

spanning trees were employed. In [15], the 2D optic image and 3D depth images were 

also combined to detect the surface cracks, in which a 3D camera captures the laser line 

and calculates the 3D profile of the pavement every 10 mm along the road. The 

AdaBoost algorithm [42,43] is equipped with two strong classifiers where the first strong 

classifier composed of 56 Gabor filters is used for transverse crack detection, and the other 

strong classifier composed of 9 filters is used for longitudinal crack detection. The method 

was reported to obtain an accuracy of over 90%. In [44], crack classification was performed 

based on the 3D laser scanning data. In this method, the structure of the pavement surface 

was represented by the 3D depth image at an accuracy of 1 mm, and the crack segments ex-

tracted were modeled with bounding box-based technologies and used for classification 

and defect severity evaluation. 
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3. Crack Detection Method 

In a 2D optic image or a 3D depth image, a crack is a linear/curvilinear structure 

that is represented by a spatially continuous gradient and intensity. To extract cracks from 

the images, we first propose a novel path voting local grouping algorithm to enhance the 

potential crack curves and then present a global grouping algorithm to extract the final 

cracks. 

3.1. Local Grouping 

Over the past two decades, path voting as an image processing tool has been used 

in several applications, e.g., map matching in GPS tracks [45], guidewire in fluoroscopy 

image [27], and road detection in remote sensing images [28], etc. In our work, a new crack 

detection method is proposed based on the path voting algorithm. 

In curve enhancement/extraction research, minimal-path algorithms have been 

widely used [46–49]. However, the minimal-path algorithm is limited, as it requires a start 

point and an end point in advance. One possible way to loosen the constraint is using a 

seed growing strategy [22,23,50], where only one seed point is required for searching one 

minimal path. In particular, the minimal path algorithm can be performed in a voting 

way for curve structure enhancement [27,28]. In path voting, the number of times that 

a pixel is passed by all minimal paths is taken as the probability (normalized to [0 1]) 

that the pixel belongs to a curve. In this work, we perform path voting locally to 

produce a crack probability map. 

Let I be a gray image, q be a pixel in I, r be a searching radius, and ��
� be a (2r + 1) × 

(2r + 1) sub-image centered at q. Then, the path locally found at point q w.r.t.r can be de-

scribed as ��, 

�� = Ψ���
�� (1)

where Ψ( ) denotes the ways to find a path in the sub-image ��
�. One popular way is a 

minimal-path seed growing, as introduced by Li and Zou [22], where the center of a sub-

image is taken as a seed point for the seed growing algorithm. However, it would incur 

problems when the potential crack curve does not go across the center of the sub-image. 

Figure 3 gives an example to illustrate the limitation of the seed growing strategy. Figure 

3a is a sub-image with a crack crossing it. Figure 3b shows the seed growing result, in 

which the center of the sub-image is the seed point. We can see that the seed growing path 

does not fully cover the target curve, as the seed points are not guaranteed to locate on 

the crack curve. Even when the start point and the end point are given for crack tracking, 

the minimal-path algorithm may have errors in tracking the true crack. For example, the 

result produced by the minimal-path tracking with the start and end points is shown in 

Figure 3e, where a tracking error occurs at the sharp section as having been annotated by 

the red region in Figure 3d. This is because the minimal-path algorithm is not robust in 

handling the grid graph [23]. In this work, we get the paths involved in voting by image 

segmentation strategy other than the seed growing, as described by Equation (2),  

�� = �������
�� (2)

where ����( ) denotes a popular image segmentation method, normalized cut [51]. In 

the following, we will show how to adapt it to meet requirements for the local grouping 

of crack points. 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 3. Illustration of the weakness of the minimal-path algorithm inline structure extraction in a 

local subitem age. In the top row, it illustrates the weakness of minimal-path seed growing, where 

(a) is an input image, (b) is the seed growing results based on a seed S located at the image center, 

and (c) is the proposed adaptive NCut result. In the bottom row, it illustrates the weakness of mini-

mal-path tracking, where (d) is another input image, (e) is the minimal-path tracking results based 

on two end points marked in yellow, and (f) is the proposed adaptive NCut result. The crack in the 

red circle, which has a sharp curve, cannot be tracked in the minimal-path tracking. 

Let � =  (�, �) be a graph, which can be partitioned into two disjoint sets, A and B, 

� ∪ � = �, � ∩  � =  �， by removing edges connecting the two parts. Let w(u, v) be the 

weight between nodes u and v, then the similarity of the two parts can be measured by 

the total weight of the edges that have been removed, which is defined as the graph-cut 

cost: 

�����，�� = � �[�, �]

�∈�,�∈�

 (3)

In normalized cut (Ncut [51]), the cut cost is computed as a fraction of the total edge 

connections to all the nodes in the graph: 

� ���(�, �) =  
���(�, �)

�����(�, �)
+  

���(�, �)

�����(�, �)
 (4)

where �����(�, �) =  ∑ �(�, �)�∈�,�∈�  is the total connection from nodes in A to all nodes 

in the graph and �����(�, �) is the total connection from nodes in B to all nodes in the 

graph. According to Ncut [51], the cut cost in Equation (4) can be minimized by an efficient 

eigenvalue-based technique. In the context of crack detection, we want to achieve a mini-

mum cut along the crack curve. To achieve this goal, we adapt the weight function. Spe-

cifically, we assign lower weights to edges involved in the nodes on the crack curve, and 

higher weights to other edges. As a crack has a certain width, the weight should also be 

formulated to reach a local maximum at the center of the crack. Based on the discussion 

above, the weight between pixel i and j is defined by 
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��� =  �
�(�����)�

��  ×  �
1 ����� − ��� < �

0 otherwise
 (5)

where 

�� = arg ���{(�� + ��)|‖�� − ��‖ < �} (6)

�� and �� denote the location and intensity of pixel i, respectively. � tunes ���  to a 

reasonable range and makes it discriminative to one another. As in the voting process, a 

segmentation curve will be generated in each patch. However, for the patches that do not 

contain any cracks, it is not desired to be predicted with any crack curve. In other words, 

the segmentation path generated in a non-crack patch should give less vote to the crack 

probability map. Thus, in our solution, we give an additional weight to relieve this con-

cern. Specifically, we set it as a two-class segmentation problem as we suppose there is 

only one crack line in a small patch, for example, a 23 × 23 patch cropped from an original 

large image. Then, two eigenvalues will be calculated by the NCut solution. The two ei-

genvalues indicate the confidence of the two parts to be segmented. When there is a crack 

curve in the patch and the segmentation path goes on it, the two eigenvalues will be very 

close as the crack curve gives confidence to both parts in the segmentation, otherwise, the 

second eigenvalue will be much smaller than the first eigenvalue. On this point, we pro-

pose to highlight the crack curve, which is likely to be the segmentation path obtained by 

the adapted NCut, by placing additional weight on the segmentation path. Let ��
� be a (2r 

+ 1) × (2r + 1) subimgage centered at q, ����and ���� be the two eigenvalues generated by 

the adapted NCut, and �� be the segmentation path on ��
�, then we give the segmentation 

path �� a weight defined by Equation (7), 

����� =  ���×(���������) (7)

where c is a constant to increase the contrast between the crack path and non-crack path, 

which further highlights the cracks. We empirically set c as 10. When a sub-image is 

cropped at a pixel and the adapted Ncut is applied to it, the segmentation path can gener-

ally cover a set of pixels in the corresponding sub-image. In our approach, path voting is 

achieved by aggregating the segmentation path generated by the adapted Ncut on a set of 

sampled pixels. Note that each pixel will be crossed through by multiple paths. Let N be 

the maximum number of crossing paths over all pixels; with N as a normalization base, 

then a crack probability at pixel i can be computed by  

�� =
1

�
� �(�,�)

��
�∈�(�,�,�)

���, ��� (8)

where 

�����, ��� =  ��������� ∈ ��� (9)

and 

�����, ��� =  �0��� ∉ ��� (10)

The �� is the location of pixel i, Φ(�, �, �) denotes all the sub-images sampled on the 

original image I, with a searching radius r, and a marching step s. �� is the path found on 

sub-image ��
� by using the proposed adapted NCut algorithm. 

Figure 4 shows the results of different voting algorithms on an image. In the section 

of experiments, we will examine the influence of the two parameters on the crack detec-

tion performance. Figure 5 illustrates the robustness of the proposed path voting algo-

rithm on enhancing the crack curves under different widths and different noise rates. To 

facilitate the comparison, simulated cracks of different widths are used and are added 

noise at a different rate. It can be seen from Figure 5 that the proposed path voting holds 
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a stable performance in enhancing the crack curves of different widths and different noise 

rates. 

   
(a) (b) (c) 

Figure 4. Results generated by different path voting algorithms. (a) An original image. (b) The result 

was produced by the minimal-path path voting. (c) The result was produced by the proposed path 

voting. 

 

Figure 5. Results obtained by the proposed path voting method on simulated cracks of different 

widths and different noise rates. The cracks in the top row, middle row, and bottom row have the 

width of 1 pixel, 3 pixels, and 5 pixels, respectively. The simulated crack images have been added 

the ‘pepper and salt’ noise at an intensity of 0.1, 0.2, and 0.3 in the first, third, and fifth column, 

respectively. 

3.2. Global Grouping 

Taking the local grouping result as a crack probability map, we implement the crack 

seed sampling with a maximal value validation algorithm [4]. Based on the crack seeds, 

we construct an undirected graph G to model the possible connections among these crack 

seeds. Let each crack seed be a vertex ��, and each pair of vertices ���, ��� be assigned 

with an edge ��,�, then the graph can be represented by  

� =  (�, �) (11)

where � =  {��|� = 1,2, … �} is the vertex set, and � =  ���,����� =  ���, ���� is the edge set. 

There are two major rules in assigning the weight to the edges.  

First, for two vertices, the larger distance is between them, the lower weight is set to 

the corresponding edge. This is because a larger distance will decrease the continuity, and 

hence makes them less groupable.  
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Second, for two vertices, the larger values they have in the crack probability map, the 

higher weight it would set to the corresponding edge. This is because a pixel with a larger 

crack probability value will bring more influence to the surrounding area, and two verti-

ces with larger crack probability values are likely to group together. 

The above observations may easily remind us of the gravity field model. Similarly, 

we defined the weight of an edge ��,� in the graph by Equation (12), and we name it as 

attraction field,  

��,� =  
�� ∙ ��

��,�

 (12)

We find the minimum spanning tree (MST) from the constructed graph G to identify 

the desired edge connections among crack seeds. As MST is a spanning tree with the min-

imum total edge weight, the edges remaining in an MST connect the crack seeds with the 

best proximity. In addition, a recursive edge pruning algorithm [4] is applied to find long 

branches, and remove short branches with poor proximity and continuity in the resulting 

MSTs. 

4. Experiments and Results 

In this section, we will validate the effectiveness of the proposed method by evaluat-

ing and comparing the crack detection performances on several datasets. Specifically, we 

will first introduce the metrics for performance evaluation, and then present two 2D optic 

image datasets and one 3D depth image dataset used in the experiments, and give the 

experiment results. 

4.1. Metrics 

For each image, Precision and Recall were computed by comparing the detected cracks 

against the human-annotated ground truth. These two metrics are defined by  

��������� =  
���� ���������

���� ��������� + ����� ���������
 (13)

������ =  
���� ���������

���� ��������� + ����� ���������
 (14)

and an overall performance metric F measure is defined by 

� − ������� =  2 ∙
��������� ∙ ������

��������� + ������
 (15)

Considering that cracks have a certain width, a detected crack pixel is still taken as a 

true positive if it is no more than 2 pixels away from human-annotated crack curves. 

4.2. Results on CrackTree206 Dataset 

The CrackTree206 dataset 1 contains 206 2D optic pavement images captured by us-

ing a CCD camera. All images share the same size of 800 × 600. The cracks in the images 

have been annotated using an interactive crack detection tool. About one-fourth of the 

images contain shadows that are cast by trees or light poles, which brings additional chal-

lenges to the crack detection problem. Several crack detection methods have been intro-

duced for comparison, such as the segmentation extension method (Seg-ext) [52], the 

global Pb series [53], and the CrackTree [4]. The precision–recall curves of these methods 

have been shown in Figure 6a. It can be seen from Figure 6a that the proposed path voting 

method achieves an F-measure value of 0.88, which is the highest among all comparison 

methods. Figure 6b shows the results of the proposed path voting algorithm by using dif-

ferent radius r and different step length s. In the top figure of Figure 6b, the radius is fixed 

to r = 11, and the step length s is tuned from 3 to 9 at an interval of 2 pixels. It can be 

observed that the increase in step length s from 3 to 9 will slightly decrease the perfor-

mance of the proposed method. In the bottom figure of Figure 6b, the step length s is fixed 
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to 5, and the radius r is tuned from 5 to 11 at an interval of 2 pixels. It can be observed that 

the increase in radius valuer will dramatically decrease the performance of the proposed 

method. Figure 7 shows the results under different r and s values. 

 

 
(a) (b) 

Figure 6. Crack detection results on CrackTree206 dataset. (a) The precision–recall curves for the 

comparison methods. (b) The performance of the proposed path voting method running at different 

step s and different radius r. 

     
(a) Input (b) r = 11 (c) r = 11 (d) r = 11 (e) r = 11, s = 7 

     
(f) r = 5, s = 5 (g) r = 7, s = 5 (h) r = 9, s = 5 (i) r = 11, s = 5 (j) r = 13, s = 5 

Figure 7. Path voting results by using different radius r and different step length s. In the top row, 

the radius is fixed to be r = 11, and the step length s is varied from 1 to 7 at an interval of 2. In the 

bottom row, the step length is fixed to be s = 5, and the radius r is varied from 5 to 13 at an interval 

of 2. 

4.3. Results on StoneCrack50 Dataset 

The StoneCrack50 dataset is a material crack dataset. In many stone material facto-

ries, stones have to be reformulated or cut into specific shapes. During the process, cracks 

may appear on the surface of the stone. We collect a set of 50 2D optic stone images. Each 

image has a size of 628 × 516. The cracks in the image are also annotated with human 

interactions. We compare the performance of the proposed method with the CrackTree 
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method and the minimal-path path voting method on the StoneCrack50 dataset. The re-

sults have been given in Table 1. For the two path voting-based methods, they have the 

same parameter settings, that is, step length s = 5 and radius r = 11. 

We also examine the influence of the step length s and the radius r on the perfor-

mance of the proposed path voting method. It can be seen from Table 2 that a larger radius 

r will decrease the performance of the proposed method. This is because the segmentation 

performed in too small a patch will easily bring poor results. It can also be observed from 

Table 2 that a larger marching step length s generally leads to a lower performance for the 

proposed method. This is because too large a step length will lead to inadequate voting 

for the discriminative curves.  

Table 1. Crack Detection on StoneCrack50 dataset. 

Method CrackTree Minimal-Path Path Voting 
The Proposed Path 

Voting 

Precison 0.8725 0.8218 0.9182 

Recall 0.5562 0.5236 0.5697 

FMeasure 0.6793 0.6397 0.7031 

Table 2. Performance of the proposed path voting method on StoneCrack50 at different radius r and 

different step length s. 

Location  s = 5 s = 7 s = 9 s = 11 

Precison 

r = 5 

0.9522 0.9521 0.9490 0.9823 

Recall 0.0645 0.0663 0.0635 0.0607 

FMeasure 0.1208 0.1240 0.1190 0.1144 

Precison 

r = 7 

0.9581 0.9668 0.9424 0.9112 

Recall 0.1782 0.1382 0.1026 0.0689 

FMeasure 0.3005 0.2418 0.1851 0.1281 

Precison 

r = 9 

0.9247 0.9116 0.8751 0.9064 

Recall 0.4274 0.3517 0.2328 0.1517 

FMeasure 0.5846 0.5076 0.3678 0.2599 

Precison 

r = 11 

0.9182 0.9284 0.8735 0.8612 

Recall 0.5696 0.4908 0.4403 0.2103 

FMeasure 0.7031 0.6421 0.5855 0.3381 

4.4. Results on CrackPV14 Dataset 

The CrackPV14 dataset is collected using a 3D laser imaging system. The 3D laser 

imaging system consists of a line structure laser and a 3D camera mounted onto the rear 

of a vehicle, as illustrated in Figure 8. The laser projects a laser beam onto the pavement. 

The projected beam will be curved under a bumpy pavement surface. The 3D camera will 

recognize the beam curve in real-time and transform the beam curve into a number of 3D 

points by using the Laser Triangulation techniques [54]. When the vehicle moves along 

the road, the pavement surface will be measured with dense 3D points. In our system, the 

collected 3D points have the following attributes: (i) the resolution in X-axis (perpendicu-

lar to Y-axis on the road surface plan) is 1.80 mm; (ii) the resolution in Y-axis (along the 

road) is 1.00 mm; (iii) the resolution in Z-axis (perpendicular to the road surface plan) is 

0.25 mm. Originally, the Z values of 3D points represent the relative range from the laser 

device to the pavement surface in the vertical direction. For convenience, we negate the 

range values and normalize them to [0 255]. Thus we can represent them with a gray im-

age, namely the range image or the 3D depth image. A set of 14 laser range images are 

collected to validate the proposed approach. The ground truth crack curves were manu-

ally annotated on these images for objective performance evaluation. 
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Figure 8. An illustration of the laser imaging system. 

For comparison, the CrackTree [4] and FoSA [22] were tested on the same data, where 

the parameters were uniformly set as σ = 11, Le = 10, and Lp = 100 for CrackTree, and seed 

growing radius = 28 for FoSA. For the proposed approach, in the local grouping step, the 

searching radius for path voting was set as r = 11, and the step length for sub-image sam-

pling was set as s = 5. While in the global grouping step, parameters were set as same as 

that of the CrackTree.  

Figure 9 displays the results of five images in the dataset. From Figure 9, we can see 

the crack maps (in row 3) produced by the proposed path voting algorithm have well 

grouped the potential crack points into salient crack curves. Compared with the crack 

map (in row 2) obtained from tensor voting, the path voting-based crack map shows more 

concentrated energy on the crack center. Note that, in tensor voting, a thresholding step 

is required before calculating the crack map. As improper thresholding would result in 

false crack seeds, the crack map produced by tensor voting is largely dependent on the 

thresholding quality. Unlike tensor voting, the proposed path voting algorithm does not 

require a thresholding step in crack map computation. Therefore, the proposed path vot-

ing algorithm is more reliable than tensor voting in crack map construction. Comparing 

results in rows 4, 5, and 6 in Figure 9, we can find that the proposed approach produced 

better crack results than CrackTree and FoSA.  

In our experiment, we evaluated and compared the running efficiency. CrTr, FoSA, 

and our method took an average of 2 s, 2.5 s, and 1.2 s to process an image, respectively. 

The hardware platform is configured with PC Operating System Windows 10, Intel CPU 

2.6 G, and 32 G of DDR4 RAM. 

Table 3 lists the results on fourteen laser range images. It can be seen from Table 3 

that most of results from the proposed approach are better than that from CrackTree and 

FoSA. To make an overall comparison, the average Fmeasures over all the testing images 

were calculated. The proposed approach gained an average F measure much higher than 

that of CrackTree and FoSA, which demonstrated the advancement of the proposed ap-

proach.  
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Figure 9. Experimental results. Row 1: five pavement images with ground truth cracks (in blue) 

shifted, corresponding to images No. 4, 2, 5, 6, and 11 in Table 3. Row 2: crack maps from tensor 

voting (in CrackTree). Row 3: crack maps from the proposed path voting. Row 4: results from the 

proposed approach. Row 5: CrackTree results. Row 6: FoSA results. 
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Table 3. Crack detection performance on 14 laser range images (Prop: proposed approach, CrTr: 

CrackTree). 

Method Prop CrTr FoSA Prop CrTr FoSA Prop CrTr FoSA Prop CrTr FoSA 

 img. #1 img. #2 img. #3 img. #4 

Precison 0.872 0.821 0.845 0.842 0.625 0.733 0.846 0.885 0.897 0.793 0.753 0.756 

Recall 0.965 0.691 0.628 0.904 0.605 0.568 0.905 0.713 0.612 0.903 0.776 0.691 

FMeasure 0.916 0.751 0.721 0.872 0.614 0.640 0.874 0.790 0.728 0.845 0.764 0.722 

 img. #5 img. #6 img. #7 img. #8 

Precison 0.949 0.845 0.860 0.671 0.780 0.836 0.960 0.698 0.716 0.846 0.696 0.749 

Recall 0.939 0.600 0.557 0.843 0.649 0.647 0.915 0.605 0.552 0.929 0.668 0.654 

FMeasure 0.994 0.700 0.691 0.747 0.708 0.729 0.937 0.648 0.623 0.886 0.682 0.698 

 img. #9 img. #10 img. #11 img. #12 

Precison 0.767 0.722 0.779 0.833 0.927 0.811 0.833 0.839 0.792 0.997 0.847 0.868 

Recall 0.996 0.669 0.636 0.961 0.860 0.805 0.993 0.967 0.937 0.823 0.923 0.805 

FMeasure 0.867 0.695 0.700 0.892 0.892 0.808 0.906 0.898 0.858 0.893 0.883 0.835 

 img. #13 img. #14 Average    

Precison 0.449 0.775 0.696 0.848 0.948 0.925       

Recall 0.890 0.706 0.663 0.988 0.985 0.880       

FMeasure 0.639 0.739 0.679 0.931 0.966 0.901 0.867 0.766 0.738    

5. Conclusions and Future Directions 

In this paper, we have proposed a novel path voting algorithm that performed voting 

segment images. Based on this path voting, a two-level grouping framework has been 

present for detecting cracks from 2D optic images and 3D depth images. First, in the local 

grouping, the proposed path voting was applied to enhance the potential crack strings 

and produce a crack probability map. Then, in the global grouping, edge linking and 

pruning algorithms were performed to extract the desired cracks. In the experiments, two 

optic image datasets and one depth image dataset have been used for performance eval-

uation. The experimental results demonstrated that the proposed segmentation-based 

path voting could effectively enhance the crack curves at the different background and 

noise rates, and the proposed crack detection method outperformed several competing 

methods in crack detection from both optic images and depth images. 

In our future work, we will study two aspects. One is to use more advanced sensors 

for pavement modeling, and the other is to use more advanced machine learning methods 

such as deep convolution neural networks for crack detection in [55–57]. 
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