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Bilas, V. Features and Always-On

Wake-Up Detectors for Sparse

Acoustic Event Detection. Electronics

2022, 11, 478. https://doi.org/

10.3390/electronics11030478

Academic Editors: Min Xia,

Xiangcheng Chen, Haoxiang Lang,

Haidong Shao and Darren Williams

Received: 31 December 2021

Accepted: 4 February 2022

Published: 6 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Features and Always-On Wake-Up Detectors for Sparse
Acoustic Event Detection
Marko Gazivoda * , Dinko Oletić and Vedran Bilas
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Abstract: The need to understand and manage our surroundings has led to increased interest in
sensor networks for the continuous monitoring of events and processes of interest. To reduce the
power consumption required for continuous monitoring, dedicated always-on wake-up detectors
have been designed, with an emphasis on their low power consumption, simple and robust design,
and reliable and accurate detection. An especially interesting application of these wake-up detectors is
in detecting acoustic signals. In this paper, we present a study on the features and detectors applicable
for the detection of sporadic acoustic events. We perform a state-of-the-art acoustic detector analysis,
grouping the detectors based on the features they utilize and their implementations. This analysis
shows that acoustic wake-up detectors predominantly utilize spectro-temporal (56%) and temporal
features (36%). Following the state-of-the-art analysis, we select two detector architecture candidates
for a case study on passing motor vehicle detection. We utilize our previously developed spectro-
temporal decomposition detector and develop a novel level-crossing rate detector. The results of
the case study shows that the proposed level-crossing rate detector has lower component count
(44 compared to 70) and power consumption (9.1 µW compared to 34.6 µW) and is an optimal
solution for SNRs over 0 dB.

Keywords: low power; state-of-the-art analysis; wake-up detector architecture; embedded electronics;
case study; motor vehicle detection

1. Introduction

The growing need to better understand and manage our surroundings has led to
increased interest in the continuous monitoring of events and processes, utilizing sensor
networks consisting of hundreds or thousands of small, robust sensor nodes [1–4]. However,
having a complex system continuously monitoring for events of interest consumes a lot of
power [5,6]. To reduce this power consumption, dedicated always-on low-power wake-up
detectors have been designed that wake up the more complex circuits with higher power
consumption only when an event of interest is detected [3,7]. Such detectors determine
the presence of event candidates by performing low-power extraction and analysis of the
sensor signal’s features [8–11].

The key emphasis in the design of wake-up detectors is on low power consumption,
cheap, simple design, and accurate detection [7,11–14] to ensure low false detection rates,
even in the most adverse conditions, as false event detections increase the overall system’s
power consumption by causing unnecessary activations of the main stage.

Wake-up detectors are often employed in acoustic event recognition because acoustic
signals contain a lot of easily extracted information [15–17]. Because of this, they have
been utilized in many fields, including safety and security [5,18–21], biomedical and
health monitoring [22–24], environmental monitoring [12,25–27], Internet of Things (IoT)
applications [2,8], structural health monitoring, non-destructive testing and machinery
diagnosis [24], speech or voice activity detection [24,28–33], and others.
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In this paper, we present a study on the signal features and wake-up detector archi-
tectures applicable for the detection of sporadic, rarely occurring transient acoustic events
that appear in the lower end of the acoustic spectrum (up to a few kHz), such as passing
motor vehicles.

Our contributions include a review of the state-of-the-art (SOTA) acoustic detectors,
the selection of detector architectures of interest, and a comparison of their performance
in a case study of motor vehicle (speedboat) detection. A dditionally, we develop a novel
implementation of a level-crossing rate acoustic wake-up detector and analyze its perfor-
mance.

The rest of the paper is organized as follows. Section 2 details the SOTA acoustic
wake-up detector analysis. Stemming from the SOTA analysis, in Section 3, the detector
selection is performed, and the principles of operation and generalized block schematics
of the selected detectors are presented. In Section 4, a case study experiment is presented
to evaluate the performance of the selected detectors in the detection of passing motor
vehicles. Section 5 concludes the paper and presents future work.

2. State-of-the-Art Acoustic Wake-Up Detector Analysis
2.1. Methodology

To select the applicable detectors, we perform an analysis of SOTA acoustic wake-up
detectors. We explore detector implementations, feature extraction domains (analog, digital,
or mixed), power consumptions, and detection accuracies (true and false positive rates).
The detector implementation is divided into embedded and integrated, and both are further
divided into analog, digital, and mixed-signal detectors. The embedded implementations
utilize commercial off-the-shelf (COTS) components, while the integrated implementations
are custom-made.

In this analysis, we group the detectors by the acoustic signal features they utilize. To
enable this grouping, we devise a feature categorization (Table 1) by analyzing the literature
on acoustic signal features [34–36]. While a detailed description of each feature used in
acoustic event detection would go beyond the scope of this paper, readers interested in a
more detailed explanation of any mentioned feature can find detailed explanations in the
literature focused on acoustic feature analysis [34–36].

Table 1. Acoustic signal feature categorization.

Temporal Spectral Spectro-temporal Cepstral Other

Level-crossing
rate-based Spectral shape-based Spectro-temporal

decomposition-based
Mel-frequency cepstral

coefficient-based Eigenspace-based

Temporal
amplitude-based Brightness-based Hurst parameter-based Other cepstral

coefficient-based
Acoustic

environment-based

Temporal power-based Tonality-based MP-based Gabor
features - -

Rhythm-based Chroma-based Sparse coding
tensor-based -

Correlation-based - - - -

2.2. Results

As we can see from the results of the SOTA acoustic wake-up detector analysis (pre-
sented in Table 2), six of the categorized acoustic feature subgroups are used in power-
constrained wake-up detector event detection.
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Table 2. Acoustic wake-up detectors.

Feature Group Feature
Subgroup Feature Ref. Detector Im-

plementation

Feature
Extraction

Domain
Power (µW)

Detection Accuracy

TP (%) FP (%)

Spectro-
temporal

Spectro-
temporal

decomposi-
tion

Spectro-temporal
envelope

[37,38] Embedded
mixed Analog 7.33;

34.92 90.91 Not stated

[8,15] Embedded
mixed Analog 26.89 98.67; 100 14;

0

[16] Integrated
mixed Analog 43 100 0

Spectro-temporal energy
[39] Integrated

mixed Analog 1.01 Not stated Not stated

[32] Integrated
digital Digital ~100 96.63 2.33

Spectro-temporal power [40] Integrated
mixed Mixed 0.142 90–91.5 Not stated

Spectro-temporal RMS [41] Integrated
mixed Analog 6 89 Not stated

Spectro-temporal
(absolute) voltage

[17] Integrated
mixed Digital 0.012 96–98 0

[30] Integrated
analog Analog 2.5 Not stated Not stated

[28,42] Integrated
mixed Analog 1;

27.77
~85;
~80

Not stated;
0

Spectro-temporal instant
rate of change [43] Integrated

digital Digital 0.148 85–99 1–18

Temporal

Level-crossing
rate

Zero-crossing rate

[13] Embedded
analog Analog 34 Not stated Not stated

[8] Embedded
digital Digital ~600 Not stated Not stated

Zero-crossing rate with
peak amplitude (ZCPA) [44] Integrated

digital Digital Not stated 98 Not stated

Zero-crossing with
short-time magnitude

difference
[45] Embedded

digital Digital 30.71 91 Not stated

Correlation
Autocorrelation

[31] Integrated
digital Digital 24.4 55–95 5–20

[46] Integrated
mixed Digital 0.835 97 0

Cross-correlation [47] Integrated
mixed Mixed 1.5 92 7

Short-time
energy

Short-time energy
difference [31] Integrated

digital Digital 8.5 55–95 5–20

Multiple Rise time, min/max,
energy [48] Embedded

mixed Digital 8.7 100 Not stated

Spectral Spectral shape Power spectrum density [49] Integrated
mixed Digital 4.7 Not stated Not stated

Cepstral Cepstral
coefficients Mel-frequency CC [33] Integrated

digital Digital 0.51 97.3 2–2.3

The spectro-temporal decomposition feature subgroup implies the filtering of the
input signals into sub-bands, and the continuous extraction of each sub-band’s feature of
interest (envelope, energy, power, root mean square (RMS)). After extraction, the feature
values are quantified and converted into a binarized spectro-temporal template. A classifier
determines this template’s resemblance to a preset template, defined by the event of interest.
These detectors are usually implemented as mixed-signal detectors, with feature extraction
and processing performed in the analog and classification in the digital domain.

The level-crossing rate feature subgroup entails converting the input signal’s crossings
of a predefined level into pulses of fixed length and amplitude, estimating the number of
those pulses in a defined time interval, quantifying it and, therefore, quantifying the level
crossing rate and determining if it is within the bounds of level-crossing rates specific for
the event of interest. These detectors are usually implemented fully digitally, but they can
also be implemented completely in the analog domain.
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The correlation subgroup requires the input signal to be compared to a delayed version
of itself (autocorrelation) or to a preset template representing the event of interest (cross-
correlation). Autocorrelation can also be employed to estimate the input signal’s spectral
content by examining and locating the local maxima of the autocorrelation function, which
appear at delay times equal to periods of the input signal’s dominant spectral components.
These detectors are usually implemented as digital, because of the impracticality of the
analog implementation of some required elements, such as delay lines or memories for
storing templates.

The short-time energy feature subgroup implies measuring the input signal’s energy
in short time windows and comparing it to a preset template. While the SOTA detector uti-
lizing this feature subgroup ([31]) is implemented as digital, a mixed-signal implementation
similar to the spectro-temporal decomposition could also be considered.

The spectral shape feature subgroup requires the signal spectrum to be determined,
and then for certain parameters of its shape to be examined and quantified. To obtain a
detailed enough spectrum representation, these detectors must be implemented as digital.

The cepstral coefficients entail estimating the signal’s spectrum, calculating the loga-
rithm of the spectral amplitude, and then performing the discrete cosine transformation on
it, generating a cepstrum. The amplitudes of the cepstrum peaks represent cepstral coef-
ficients. Detectors utilizing these features can be implemented as mixed-signal detectors,
employing analog domain filtering specific for the cepstral coefficients of interest, followed
by digital domain cepstral coefficient estimation.

2.3. Discussion

As can be seen from Table 2, most acoustic wake-up detectors utilize spectro-temporal
(56% of all analyzed detectors) and, to a lesser extent, temporal features (36% of all ana-
lyzed detectors). Furthermore, of those detectors, spectro-temporal-decomposition-based
(61%), level-crossing rate-based (17%) and correlation-based (13%) detectors constitute the
majority.

Next, we can see that the integrated custom designs account for 68% of all analyzed
wake-up detector designs, while embedded implementations utilizing COTS components
constitute around 32%.

There is approximately the same number of detectors that extract the features in the
analog and digital domains, with only a few detectors extracting features in both domains
simultaneously (8%).

Acoustic wake-up detectors have high detection accuracies (over 90% true positives
and under 15% false positives, where stated) and their power consumptions vary from
around 10 nW to around 600 µW, greatly depending on the detector implementation and
utilized feature. Integrated mixed-signal and digital spectro-temporal decomposition
detectors can reach sub-µW power consumptions, while embedded level-crossing rate
detectors reach tens or even hundreds of µW.

3. Wake-Up Detector Selection
3.1. Criteria

Motivated by the passing motor vehicle use case scenario, we aim to develop a wake-
up detector of sporadic, transient acoustic events, lasting for several seconds, with the
bandwidth spanning up to 2 kHz.

We focus on wake-up detector architectures implementable with COTS components,
operating on analog-domain signals, designed for direct interfacing with acoustic sensors
with little or no amplification, and avoiding power-hungry analog-to-digital (AD) conver-
sion [16]. Hence, the detector should be able to reliably operate with weak electric input
signals (on the order of 10 mV).

Finally, a wake-up detector must have high detection accuracy, both in terms of high
true positive rates, as a detector should not miss events, and low false positive rates, as
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false detections lead to wasting power due to unnecessary activations of the power-hungry
main stage.

3.2. Results

As we can see from Table 3, wake-up detectors utilizing level-crossing rate and spectro-
temporal decomposition meet all our selection criteria.

Table 3. Detector Selection.

Detectors Utilizing

Criteria

Applicable for Signals
of Interest

Embedded
Implementation No AD Conversion Detection Accuracy

Autocorrelation/cross-
correlation 3 7 7 3

Level-crossing rate 3 3 3 3

Spectro-temporal
decomposition 3 3 3 3

Other features 3 7 7 3

3.3. Selected Detectors
3.3.1. Spectro-Temporal Decomposition

The generalized architecture of the spectro-temporal decomposition wake-up detector
is shown in Figure 1.

Figure 1. Spectro-temporal decomposition wake-up detector generalized architecture.

The spectro-temporal decomposition detector consists of a filter for spectral decompo-
sition, a feature extractor, a quantifier for quantifying the extracted features, and a classifier
to determine if the input signal is from an event of interest. It is usually implemented with
multiple channels.

3.3.2. Level-Crossing Rate

The level-crossing rate wake-up detector general architecture is shown in Figure 2.

Figure 2. Level-crossing rate wake-up detector generalized architecture.

The level-crossing rate detector consists of a level-to-pulse converter that detects
level crossings and converts them into pulses, a pulse rate estimator for estimating the
level-crossing rate, and a quantifier for quantifying the level-crossing rate. It is usually
implemented as a single-channel detector.
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4. Motor Vehicle Passing Detection

In this section, we present a case study in which we evaluate the performance of the
two selected detectors in the detection of passing motor vehicles through the analysis of
their power consumption, minimal input voltage, detection accuracy, and component count
(estimate of hardware complexity).

4.1. Motor Vehicle Passing Event and Signal

For our dataset, we used 11 prerecorded signals of a twin-engine speedboat passing
over a hydrophone submerged approximately 1 m under the surface in shallow water [50].
A representative signal and its spectrogram are shown in Figure 3a,b, respectively.

Figure 3. (a) Speedboat passing signal and (b) its spectrogram.

In case of the wake-up detector utilizing spectro-temporal decomposition, the passage
of the speedboat can be detected by detecting and tracking the duration of the presence of
the signal in the characteristic frequency band (e.g., 100 Hz to 1 kHz for typically 0.5–5 s).
On the other hand, a similar type of information is obtained by the level-crossing wake-up
detector by tracking the rate at which the signal passes a predefined level in a set time
interval.

4.2. Detector Implementations
4.2.1. Spectro-Temporal Decomposition Detector Implementation

We utilize an embedded spectro-temporal decomposition detector that we first pre-
sented in [38] (schematic and photograph shown in Figure 4).
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Figure 4. Spectro-temporal decomposition wake-up detector from [38]: (a) schematic and
(b) photograph.

As can be seen from Figure 4a, the implemented detector consists of three channels.
Each channel extracts information on signal presence within its frequency band. Each
channel filters the input signal by a digitally programmable active bandpass filter in the
general impedance converter (GIC) topology, implemented with two MCP6142 operational
amplifiers. The first channel spans the frequency range from 200 Hz to 500 Hz, the second
from 500 Hz to 1 kHz, and the third from 1 kHz to 2.5 kHz. The central frequency and
bandpass are programmable (within set limits) in 256 steps by digitally adjustable AD5144
potentiometers.

After filtering, the envelope is extracted utilizing an active voltage doubler, consisting
of an MCP6141 operational amplifier and two diodes. The envelope is then quantified
using a TLV3701 comparator, with a digitally adjustable threshold, adjusted by another
AD5144 potentiometer.

Classification is implemented by binary template matching. A template represent-
ing the signal of interest is programed into an MSP430F2013 low-power microcontroller,
which also implements a three-channel digital sequence recognition state machine. If the
spectro-temporal envelopes’ relations match the predefined template, a wake-up signal
triggers a more power-hungry digital audio signal processing stage. To achieve this, the
microcontroller implements a state machine, which in each state S0, . . . , Sk compares the
binary outputs of the three comparators to the prestored three-channel template. The
change from S0 to S1 is asynchronous, and occurs upon the first change of comparator state
(started by an interrupt), while S1 to Sk each last 0.5 s up to the maximal sequence length. A
more detailed explanation on the basics of the state machine implementation can be found
in [9]. For this experiment, the sequence either ends without a wake-up after 7 s (in S14) if
there is no template match, or with a wake-up signal if all three channels’ comparators are
simultaneously in a high state for a duration between 0.5 s and 4 s (preset template). This
sequence description leads to the state machine implementation with states S0 to S14. The
state machine functionality is also illustrated in Figure 5.
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Figure 5. Microcontroller state machine implementation and event detection scheme. Ch1 to Ch3 and
the three colored lines (green, blue and red) represent each channel’s comparator output, and S0 to
Sk are the state machine states, each lasting 0.5 s. (a) Event detected: at least 2 and no more than
9 consecutive states have all 3 comparator outputs in a high state, and a wake-up signal is generated.
(b) No event detected: the total S0 to S14 sequence passes without meeting the detection condition,
no wake-up signal is generated.

4.2.2. Level-Crossing Rate Detector Implementation

We developed and utilized a novel embedded level-crossing rate detector, which is an
adapted version of a similar detector presented in [13] (schematic and photograph shown
in Figure 6).

Figure 6. Novel level-crossing rate wake-up detector: (a) schematic and (b) photograph.

The level-crossing detector consists of three main parts. In the first part, each level-
crossing is detected with a TLV3701 comparator. The level is set by adjusting the comparator
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threshold and, for this experiment, it is set to 2.2 mV. Every time the comparator output
changes to a high state, a monostable (consisting of two SN74AUP1G02 NOR gates) is
triggered to generate a fixed-length pulse. These pulses are summed by a passive RC circuit,
whose output, thus, represents the number of level crossings.

The second part is the timer that consists of a capacitor connected to a TLV3701
comparator with an adjustable threshold. The capacitor is charged by a fixed voltage
source over a trimmer resistor. The trimmer resistor and comparator threshold values
determine the capacitor charge time, which is set to around 600 ms for this experiment.
When the capacitor voltage reaches the comparator threshold, the comparator output
changes and closes the S1 switch (TMUX1101) to propagate the RC circuit voltage to the
final detector part. After an interval determined by the delay line, the reset switches S2 and
S3 (TMUX1101) of the RC circuit and the timer close, allowing their capacitors to discharge
to the ground. During the reset, the switch S1 opens, disconnecting the RC circuit from the
final detector part. After the RC circuit and timer resets are complete, the reset switches
open, and a new level crossing counting interval starts. For this experiment, the delay of
the reset signal is set to around 5 ms.

The final part consists of two TLV3701 comparators with adjustable thresholds and an
AND logic gate. If the RC circuit voltage is both higher than the lower threshold and lower
than the higher one, the level-crossing rate is within the set bounds, an event of interest is
detected, and a wake-up pulse is generated at the AND gate output. For this experiment,
the lower and upper bounds are set to 100 mV and 625 mV, respectively.

4.3. Experimental Setup and Procedure
4.3.1. Experimental Setup

The experimental setup utilized in this case study is shown in Figure 7.

Figure 7. Experimental setup, with marked components: (1) power source, (2) waveform generator,
(3) tested detector PCB, (4) data acquisition card, and (5) multimeter.

The experimental setup (Figure 7) consists of a GW INSTEK GPD-4303S power source
(1), a Keysight 33500B waveform generator (2), the tested detector PCBs (spectro-temporal
decomposition or level-crossing rate detector) (3), a National Instruments USB-6211 data
acquisition card (4), and a Fluke 45 multimeter (5).

4.3.2. Experimental Procedure

The prerecorded speedboat signals were processed in MATLAB, cropped to a duration
of 7 s, and then attenuated to determine the lowest input signal with which each detector
is operational. Then, for the detection accuracy test, the input signals are scaled to 10 mV
and 20 mV peak-to-peak for the level-crossing and spectro-temporal detector, respectively.
This voltage scaling adjusts the input signal peak-to-peak voltages to adequately represent
the signals generated by passing speedboats on passive hydrophones. Additionally, both
detectors are operational with higher voltage levels, with threshold adjustments. However,
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if the approximate expected voltage levels are not known for a given application, or the
input signal dynamic range would expectedly exceed around 40 dB, an additional automatic
gain control (AGC) amplifier would have to be added to each detector’s input to ensure
correct operation.

To compare the performance of the two wake-up detectors, different levels of white
noise were added to each signal to achieve signal-to-noise ratio (SNR) levels from −15 dB
to 15 dB with a 5 dB step. Such signals were then stored in the waveform generator used as
a signal source for the detectors. The detector outputs are recorded by a data acquisition
card, and the recordings are processed using MATLAB.

For the spectro-temporal detector, a successful wake-up was recorded when its com-
parator outputs matched the predefined binary template and the detector generated a
wake-up signal. On the other hand, for the level-crossing rate detector, successful detection
is recorded if the RC circuit capacitor voltage was within predefined bounds, generating a
wake-up signal.

The detector’s power consumption was assessed by measuring its supply current
(using a multimeter) and multiplying it with the detector’s supply voltage, consumed in
the steady state, while listening for the acoustic event.

4.4. Results

In Table 4 and Figure 8, we present the case study results, showing each detector’s
power consumption, minimal input voltage, component count, and detection accuracy.

Table 4. Wake-up detector’s power consumption, minimal input voltage and component count.

Detector Power (µW)
Minimal Input
Voltage (mVpp)

Number of Components

Active Passive Diode Total

Spectro-temporal envelope detector 34.6 20 12 + µC 51 6 70

Level-crossing rate detector 9.1 10 7 35 2 44

Figure 8. Comparison of speedboat passing detections at given SNR with selected detectors.

As we can see from Table 4 and Figure 8, the level-crossing rate detector has a signifi-
cantly lower component count and would require around a 40% smaller area to implement
(hardware complexity), has lower power consumption, and is operational with lower input
voltages, while the spectro-temporal detector has slightly better performance with low-SNR
signals, being operational even with −5 dB SNR, as opposed to the level-crossing rate one,
which requires at least an SNR of 0 dB for the examined implementation.
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5. Conclusions

In this paper, we presented a study on low-power always-on sporadic acoustic event
wake-up detector designs. To determine the employable detectors and features for this
application, we performed a SOTA acoustic wake-up detector analysis, which showed
that most acoustic wake-up detectors utilize spectro-temporal (56%) and temporal features
(36%), and that the dominant detector implementation is integrated custom-made detectors
(68%). Following the SOTA analysis, we presented criteria and selected spectro-temporal
decomposition and level-crossing rate as features that allow for the design of a low-power,
embedded, always-on wake-up detector operating in the analog domain. These two wake-
up detector designs were compared on a case study on passing marine motor vehicle
detection. This case study showed that the level-crossing rate detector can be made
with a significantly lower component count (44 compared to 70) and power consumption
(9.1 µW compared to 34.6 µW), but a slightly narrower SNR range of operation (minimum
of 0 dB SNR compared to −5 dB) than the spectro-temporal detector. In future work,
the possibilities of utilizing features not utilized previously in wake-up detectors will
be examined, and a more detailed study of the novel level-crossing rate detector will
be performed.
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