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Abstract: Social distancing is an utmost reliable practice to minimise the spread of coronavirus
disease (COVID-19). As the new variant of COVID-19 is emerging, healthcare organisations are
concerned with controlling the death and infection rates. Different COVID-19 vaccines have been
developed and administered worldwide. However, presently developed vaccine quantity is not
sufficient to fulfil the needs of the world’s population. The precautionary measures still rely on
personal preventive strategies. The sharp rise in infections has forced governments to reimpose
restrictions. Governments are forcing people to maintain at least 6 feet (ft) of safe physical distance
to stay safe. With summers, low-light conditions can become challenging. Especially in the cities of
underdeveloped countries, where poor ventilated and congested homes cause people to gather in
open spaces such as parks, streets, and markets. Besides this, in summer, large friends and family
gatherings mostly take place at night. It is necessary to take precautionary measures to avoid more
drastic results in such situations. To support the law and order bodies in maintaining social distancing
using Social Internet of Things (SIoT), the world is considering automated systems. To address the
identification of violations of a social distancing Standard Operating procedure (SOP) in low-light
environments via smart, automated cyber-physical solutions, we propose an effective social distance
monitoring approach named DepTSol. We propose a low-cost and easy-to-maintain motionless
monocular time-of-flight (ToF) camera and deep-learning-based object detection algorithms for real-
time social distance monitoring. The proposed approach detects people in low-light environments
and calculates their distance in terms of pixels. We convert the predicted pixel distance into real-
world units and compare it with the specified safety threshold value. The system highlights people
violating the safe distance. The proposed technique is evaluated by COCO evaluation metrics and
has achieved a good speed–accuracy trade-off with 51.2 frames per second (fps) and a 99.7% mean
average precision (mAP) score. Besides the provision of an effective social distance monitoring
approach, we perform a comparative analysis between one-stage object detectors and evaluate their
performance in low-light environments. This evaluation will pave the way for researchers to study
the field further and will enlighten the efficiency of deep-learning algorithms in timely responsive
real-world applications.

Keywords: social distancing; cyber-physical system; IoT towards COVID-19; machine learning;
social IoT; computer vision; DepTSol; deep learning; artificial intelligence

1. Introduction

COVID-19 caused by SARS-CoV2 originated from Wuhan, China, and created a catas-
trophe in 219 countries [1]. On 23 December 2021, World Health Organization (WHO) de-
clared it a pandemic when it spread in 114 countries with 0.5 million active daily cases [2–4].
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To date, 274,628,461 cases have been confirmed by WHO worldwide, with a death toll of
5,358,978 [1]. As of December 2021, many different vaccines were approved for public
use and 8,387,658,165 doses were administered worldwide [5]. However, with the new
drug-resistant variants such as Omicron and evidence of re-infection, vaccines are not suffi-
cient to counter the pandemic. The preventive measures still rely on personal prevention
strategies suggested by WHO, e.g., wearing facemasks, avoiding large gatherings and
poorly ventilated places, regular handwashing, cleansing and disinfecting touched surfaces
daily, and maintaining at least 6 ft of safe physical distance. Even after vaccination, social
distancing is still recommended as the best solution for infection avoidance [6].

Social distancing is the means of maintaining a safe distance in both indoor and
outdoor environments. As COVID-19 generally transfers between people, especially when
an infected person sneezes, talks, coughs, or physically touches another person, the chances
of that person becoming infected are increased. At the current stage, as the fifth wave of
COVID-19 is emerging in various countries, it is necessary to take precautions to protect
ourselves and our families by maintaining a safe physical distance. It has been noticed
that physical distancing can reduce the increased number of infected people and help in
reducing the burden of healthcare departments, especially in underdeveloped countries
where there is a shortage of healthcare resources. In a study, Kylie et al. [7] investigated the
correlation between transmissibility and movement based on daily reported cases from
Mainland China. They found that the correlation decreases as people’s movement decreases
within different provinces of China. As a result, China successfully exited its lockdown
early. The imposition of a complete lockdown is not a practical solution, as it can lead to an
economic crisis. In this situation, a proper strategic plan is needed. Institutes are required to
open following a feasible physical distancing strategy. Automated cyber-physical distance
monitoring systems can overcome the burden of officials. With the arrival of summer,
low-light conditions can become a problem, especially in the cities of underdeveloped
countries, where, due to poor ventilated and congested homes, people are often seen in
parks, streets, and markets. Besides this, large social gatherings take place at night. In such
situations, it is necessary to ensure a safe physical distance between people. By emphasising
the same scenario, our main contributions are the following:

• We develop an efficient deep-learning-based physical distance monitoring approach
in collaboration with ToF technology to monitor physical distancing under various
low-light conditions.

• In comparison to the social distance monitoring solution provided by Adina et al. [8] in
the DepTSol model, the limitation of monitoring people at a fixed camera distance in a
given environment is addressed by monitoring people at varying camera distances.

• In this article, we evaluate the performance of the newly released, scaled-YOLOv4
algorithm under various low-light environments and perform a comparative analysis
between seven different one-stage object detectors in low-light scenarios without
applying any image cleansing or visibility enhancement techniques. In the literature,
no other studies analyse the performance of deep learning algorithms in the context
of low-light scenarios. Based on comparative analysis, in terms of both speed and
accuracy, we choose the best algorithm for the implementation of our real-time social
distance monitoring framework.

• The proposed technique is not only limited to monitoring social distancing at night,
but it is also implementable in generic low-light environments for the detection and
tracking of people, as likely violation of safety measures occur at night.

2. Literature Review

The researchers have made remarkable contributions and presented effective solutions
to deal with the COVID-19 pandemic. Notable work has been done in the literature on
social distance monitoring after it was declared an effective solution for the prevention of
disease. Prem et al. [9] used synthetic location-specific contact patterns in Wuhan to monitor
the effect of population mixing on outbreaks. They simulated the outbreak trajectory by
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using the susceptible-exposed-infected-removed (SEIR) model. Their study showed that
the mixing of people of different age groups causes different effects in the spread of disease.
Young people are found to be less infected than older people, and physical distancing was
shown to be an utmost reliable practice to reduce the epidemic peak in Wuhan, China.
Adolph et al. [10] analysed the effects of outbreaks in the USA and further evaluated the
decision of different politicians and policymakers concerning social distancing. The results
were contradictory, which delayed the lockdown and resulted in the spread of COVID-19.
The pandemic has triggered a dire need for technology-oriented digital healthcare solu-
tions. To promote social distancing, many governments have utilised a social IoT system
comprised of infrared thermometers and self-temperature scanners. To educate the people
about the importance of social distancing, the Qatari government [9] employed security
robots in various residential and public areas. In Singapore, a temperature screening sys-
tem was introduced based on the artificial powered thermal scanner SPOTON [11]. The
Kuwaiti government [11] introduced an application named ‘Shlonik’ to monitor people
in quarantine. Indonesia launched a robot medical assistance system to limit the contact
between patients and medical staff. The robots can carry up to 50 kg of items such as
medicine, clothes, and food to a patient’s room [11]. Similarly, Iran developed a mobile
application for electronic self-tests of COVID infection [11]. Kyrgyzstan created a website
for its citizens [11]. The people who need food assistance can register their needs online and
obtain food at their doors. The Ministry of Health and Education provided a free program
named ‘MASK’ [11]. This application enables people to see contaminated areas on the map
based on the places highly visited by infected people.

In the past few decades, the detection of humanoid forms by using deep learning
algorithms have been widely practised. In the literature, different deep-learning-based
research studies have been conducted for the automation of social distance monitoring
by detecting and monitoring people with high accuracy. Punn et al. [12] presented a
deep-learning-based framework and implemented it with surveillance cameras for the
automation of physical distance monitoring. The YOLOv3 [13] algorithm is utilised in
collaboration with the deep-sort technique for real-time object detection and tracking. In
the same background, Sahraoui et al. [14] used Social Internet of Vehicles (SIoV) technology
with a Faster RCNN [15] algorithm to monitor physical distancing and alert generation.
According to this study, every vehicle is equipped with cameras that capture images,
objects in images are detected by Faster RCNN, and notifications regarding violations are
sent through an advertisement board. The model’s efficiency was evaluated by vehicle-
to-infrastructure communication and found very effective. Similarly, Bouhlel et al. [16]
introduced two different methods for measuring physical distancing. In the first method,
they estimated the crowd’s density and classification of ariel frame patches, whereas, in the
second method, they used deep learning for detection and tracking. They tested their model
on three different datasets and achieved good accuracy. Recently, Adina et al. [8] presented
a real-time social distance monitoring strategy in collaboration with deep learning and
ToF technology. The authors utilised the YOLOv4 [17] algorithm for real-time people
detection and suggested a camera calibration approach for social distance monitoring at a
fixed camera distance. The authors mainly focused on low-light scenarios. The model can
observe people and show their relevant distance in real-world units with high accuracy
and a minimal error rate.

In the drastic situation of COVID-19, Social IoT, deep learning, and computer vision
have played a vital role. Researchers have made contributions and provided efficacious,
deep-learning-based social distance monitoring solutions, as discussed above, but low-
light conditions are yet to receive due attention. We focused on low-light scenarios and
presented an efficient social distance monitoring approach by maintaining a good speed–
accuracy trade-off, but the technique was limited to monitoring people at a fixed camera
distance in a given environment [8]. By considering this research gap, in this article, a
real-time physical distance monitoring approach was introduced by maintaining optimal
performance in terms of both speed and accuracy. The proposed approach maintains high
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privacy standards. Instead of targeting individuals when a safety breach is detected, we
propose general voice warnings via speakers.

3. Overview of Scaled-YOLOv4 Algorithm

We have seen a vast number of applications of computer vision and deep-learning-
based algorithms in the current era, such as fraud detection [18–20], face recognition [21],
theft detection [22,23], pedestrian detection [24–26], traffic monitoring [27–29], and business
analytics [30,31]. All of these applications need to be trained on large datasets for effective
results. These vast datasets require massive computing capabilities such as GPU, cloud
computing facilities, single embedded devices, and large clusters for training. Model scaling
plays a vital role in the design of an effective object detector with optimal speed–accuracy
features. To make training easier and suitable on different devices, the most common
practice is to change the number of convolutional filters, i.e., the width of the backbone, and
the number of convolutional layers, i.e., the depth of the backbone, in convolutional neural
networks (CNNs). By following the same practice, on 22 February 2021, Wang et al. [32]
introduced a scalable-YOLOv4 model, where they showed that a YOLOv4 object detector
based on a cross-stage-partial (CSP) framework can be easily scaled up or down and can
be easily applied to both small and large networks by maintaining a good speed–accuracy
trade-off.

After the successful execution of model scaling, the next phase is to monitor quantita-
tive and qualitative elements that will change. These elements incorporate cost, inference
time, and accuracy. The qualitative elements have different effects than quantitative el-
ements depending on the user database or equipment. During the design of effective
model scaling strategies, it is ensured that, whether the model is scaled up or down, the
quantitative cost can be easily managed accordingly. The authors of the scaled-YOLOv4
model have analyzed different CNN models (ResNet [33], ResNext [34], and Darknet [13])
and monitored their quantitative cost by performing upscaling and downscaling. From the
experiments, they found that the change in the number of layers, network size, and width
increases the computational cost, whereas their proposed approach of converting CNNs
to CSPNet can effectively minimise the floating-point operations per second on ResNet,
ResNext, and Darknet by 23.5%, 46.7%, and 50.0%, proving to be the overall best model
scaling approach so far. The architecture of the scaled-YOLOv4 model is shown in Figure 1.

Figure 1. Diagrammatic representation of the scaled-YOLOv4 architecture.
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3.1. CSP-ized YOLOv4

Authors of scaled-YOLOv4 have designed scaling algorithms for all general, high-end,
and low-end GPUs, as YOLOv4 [17] is the only general GPU-based real-time object detec-
tor. The downsampling convolution was not present in the design of the CSPDarknet53,
which proved helpful in the reduction of computation in every stage of CSPDarknet by
whb2(9/4 + 3/4 + 5k/2). This reduction formula has proved the CSPDarknet to be benefi-
cial over the simple Darknet backbone only when the value of k is greater than 1. Every
stage of CSPDarknet has [1-2-8-8-4] residual layers. To attain an optimal performance, the
authors placed the first CSP stage into the original Darknet residual layer [17].

The path aggregation network (PAN), a short form of PANet, is used for image seg-
mentation by conserving spatial information, which improves localisation. The PAN in
the YOLOv4 is CSP-ized in scaled-YOLOv4 to lessen the computational cost by 40%. In
previous object detection algorithms, the Spatial Pyramid Pooling (SPP) is present in the
centre of the first computational list of the neck [35]. The designers of scaled-YOLOv4 also
added that it is the centre of the first computational list of CSPPAN. The architecture of the
proposed computational list is shown in Figure 2.

Figure 2. Computational blocks of SPP and CSPPAN.

3.2. YOLOv4-Tiny

Model size affects the inference time and computational cost and requires powerful
hardware resources for the best performance. Therefore, during tiny model scaling for
low-end devices, some factors such as memory access cost (MAC), the traffic of dynamic
random-access memory (DRAM), and memory bandwidth need to be fully examined.

In lightweight models, to acquire high accuracy with minimal computations, a higher
parameter utilisation efficiency is required. The authors analysed the network with the
computational load of DenseNet and OSANet with the growth rate (g) and found that
OSANet was the best model for tiny model scaling because of its low computational
complexity, which is less than O(whkb2). Similarly, to attain the best computing speed,
the authors introduced a new concept and performed gradient truncation between the
computational layers of CSPOSANet. Power consumption is the most significant factor that
is considered when the computational cost of low-end devices is being evaluated. MAC
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is found to be the biggest factor that affects power consumption, which is calculated by
Equation (1).

MAC = hw (Cin + Cout) + KCinCout (1)

where h represents height, w represents the width of the feature map, Cin represents the
channel number of inputs, Cout represents the channel number of outputs, and K represents
the kernel size of the convolutional filter. According to the authors, the smallest MAC value
can be derived when Cin = Cout.

By minimising the convolutional input–output (CIO), the DRAM traffic can be min-
imised. The authors evaluated the CIO of OSA, CSP, and their designed CSPOSANet, as
shown in Equation (2), and found that the proposed CSPOSANet can achieve the best CIO
results when kg > b = 2.

kg2 + (b + kg)2 = 4 (2)

3.3. YOLOv4-Large

While scaling for high-end devices, the accuracy and inference speed can be improved
by adjusting the detector’s input, backbone, and neck. The prediction capability of the
model depends upon the receptive fields of the feature vector. In neural networks, the stage
is directly related to the receptive fields, and the feature pyramid network (FPN) indicates
that a higher number of stages helps in the prediction of larger objects. YOLOv4-large
is designed for the training of large models on distributed cloud-based GPUs. A fully
CSP-ized YOLO-P5 is designed and is scaled in YOLOv4-P6 and YOLOv4-P7. The authors
performed compound scaling on {sizeinput, #stage}, set the depth scale of each stage to 2dsi,
set ds to [1, 3, 15, 15, 7, 7, 7], and found the best results.

4. Materials and Methods
4.1. Data Curation
4.1.1. Training Dataset

To observe people in low-light environments, we utilised the ExDark [36] dataset,
which contains images of 12 different low-light scenarios. It is the first dataset available
that is entirely based on low-light scenarios. The dataset contains the images of 10 different
classes. We extracted the dataset for the person class and trained our models to it.

4.1.2. Testing Dataset

DepTSol was tested on a custom dataset collected from Pakistan at night in the days
of COVID-19. Pakistan is one of the most urbanised countries in South Asia. The large
population and congested streets make it a riskier place in the growth of COVID-19, and it
is very difficult to maintain a safe distance in such narrow places. Hence, the monitoring
system needs a high accuracy in terms of the detection and location of people. The test
dataset was a collection of 323 RGB frames collected from different low-light conditions and
different crowded and less crowded places. In this study, 186 frames were collected from
images depicting a crowd in the market of Rawalpindi Pakistan, which help in assessing
the performance of object detectors in low-light conditions; the remaining 134 frames were
collected from various outdoor environments. We obtained signed consent forms from the
participants of the study, and the identities of those captured in crowded areas have been
removed. All frames were captured by a ToF camera of a Samsung Galaxy Note 10+, where
Gh is 4.5 ft, and FL is 35 mm [37]. The dataset is publicly available [38].

4.2. Problem Articulation

We defined a scene as five-tuple value S = {Vf, Gh, THud, An, BBc}, where
Vf = height × width × 3 shows the width and height of an RGB video frame and Vf ∈ <+, Gh
is the camera height from the ground in feet, THud shows the least physical distance that
should be maintained to stay safe, An is a binary control signal for sending a voice warning
if the monitored inter-personal distance is less than THud, and BBc is the colour of the
detected bounding boxes. In a given S, we are interested in finding the inter-personal
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pixel dis- tance Dpx = {pd(1,2), pd(1,3), . . . , pd(1,n), pd(2,3), pd(2,4), . . . , pd(2,n), . . . , pd(n−1,n)}
at varying CFD values, where CFD ∈ a, and a is a multiple of the specified safe physical
distance. In our case, it is 180 cm ≈ 6 ft. Therefore, a = {180, 360, 540, 720, . . . , n}. After
finding the Dpx, we converted it into real-world units centimeters (cm) UDi+n. We found
THud to highlight the safety distance violations (UDi+n < THud|UDi+n ≥ THud) in the given
ROI. In the end, if a safety breach is detected, the BBc becomes red, and a voice warning
is sent to the people violating the safe physical distance by setting the An = 1; else, in the
normal cases, BBc remains green, and An = 0.

4.3. Real-Time People Detection

In this study, from the list of scaled-YOLOv4, the CSP-ized YOLOv4 algorithm was
utilised for the detection of humans in Vf, as it improves prediction accuracy with a high
inference speed. A detailed discussion of the model is presented in the Data Model section.
The output of the model is the bounding boxes of detected people bbi = {bb(i,1), bb(i,2), bb(i,3),
. . . , bb(i,n)}, their confidence score bci, and the class label bli. bb(i,j) = {x(i,j), y(i,j)} gives pixel
indices of bounding boxes in Vf, where j shows the associative four corners: bottom-left,
bottom-right, top-left, and top-right. The aim was to develop a robust real-time people
detection model with minimal localisation and classification errors, capable of delivering
high precision by considering various challenges such as variations in clothes, height,
poses, and partial visibility. Figure 3 demonstrates the structure of the YOLO-based person
detection module.

Figure 3. YOLO-based real-time people detection.

4.4. Camera-to-People Distance Estimation

We propose a motionless monocular ToF camera [38] for real-time video surveil- lance.
The built-in accuracy of ToF cameras is good, as it combines the advantage of active sensors
and camera-based approaches. Bad lighting conditions and texture mixing are usually
noticed in stereo vision cameras, and they are computationally expensive, whereas ToF
cameras have proven to be best in such scenarios. In comparison with 3D vision systems,
ToF was found to be compact and straightforward, as they have a built-in illumination
ability with no moving parts. It yields efficient results based on low processing power. In
contrast to laser scanners, ToF cameras can measure up to 100 fps in one shot, which is much
faster than laser technology. ToF technology has a variety of applications, including path-
planning for manipulators [39,40], obstacle avoidance [41,42], wheelchair assistance [42],
medical respiratory motion detection [43], semantic scene analysis [43], simultaneous
localization and mapping (SLAM) [44], and human–machine interaction [45–48].

A ToF camera helps us measure the camera-to-person distance with high accuracy,
which allows us obtain optimal performance in our people monitoring approach. In the
ToF camera unit, the camera’s light blinks, and a modulated light pulse travels from
the illumination source to the object. The distance between the camera and the object is
calculated by the time taken by the light pulse to return to the source object after striking the
target object. The transmitted light faces a delay according to the distance it covers to reach
the object and then return to the source, which means that the farther the object, the more
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time the pulse will take to return to the source. The time delay TD that the illumination
faces is expressed in Equation (3).

TD = 2× Do

vo
(3)

where Do represents the object distance in meters (m), and vo is the velocity of the light in
meters per second (m/s). The maximum range that the camera can cover is determined by
the pulse width of the illumination and calculated by Equation (4), whereas the camera-to-
object distance is calculated by Equation (5).

Dmax =
1
2
× vo × To (4)

The distance between the camera and the object is half of the total distance travelled
by the light pulse. Here, To shows the length of the pulse.

Dmax =
1
2
×vo × To ×

a2

a1 + a2
(5)

where a2 is the signal that is generated when the light pulse is emitted, and a1 represents
the signal when no light emission is encountered.

4.5. Threshold Specification and People Inter-Distance Estimation

To initiate the monitoring process, we calibrated the camera in the real-world envi-
ronment by specifying intrinsic and extrinsic camera parameters. For intrinsic camera
parameters, we assumed the fixed focal length (FL) that we set according to the area where
the surveillance system was installed, depending on the required field of view (FoV). To
specify the extrinsic camera parameters, we divided the S into three different camera ranges:
CFD − near, CFD − far, and CFDR. To start the monitoring process, we defined a threshold
distance in Vf in the form of pixels. For the specification of threshold distance in Vf and
to proceed further, we made arrangements in a real-world environment. We took four
target objects, T1, T2, T3, and T4, from which two targets (T1, T2) were placed on the
camera-to-frame distance CFD − near, and the other two (T3, T4) were placed at CFD − far.
Two different ranges of frames, i.e., CFD − near and CFD − far with respect to the camera,
with four target objects are shown in Figure 4, where CFD is the distance between the ToF
camera and the Vf, (hm, hf) is the total height, (lm, lf) is the total length of the near and the
far Vf, (ixmT1, ixmT2) and (ixfT3, ixfT4) show the length, and (iymT1, iymT2) and (iyfT3, iyfT4)
show the height of the objects in the near and far frames. The pixel size of objects projected
in CFD − near is different from the target objects in CFD − far and decreases as the value
of CFD increases. Figure 4 shows that, as long as the frame moves away from the camera,
the pixel size of all other parameters increases in addition to the pixel size of the objects
present in the frames. We execute Algorithms 1 and 2 to specify the threshold value and
monitor people at CFD − near and CFD − far, whereas Algorithm 3 is executed to monitor
people at a distance above the CFD − far up to the specified maximum camera range CFDR,
which means that people outside CFDR will not be monitored.

4.5.1. Monitoring People at CFD − near

To initiate the procedure, we should know the threshold distance between the target
objects (T1 and T2) in units—in our case, THud = 180 cm ≈ 6 ft, the minimum specified
safe distance by WHO. We then initialise the camera-to-frame distance CFD − near, which
shows how far we start the monitoring process from the camera. Epx represents extra pixels
that we require because, as CFD increases, the number of pixels starts to decrease. At
the start, Epx is initialised at 0 because, at the beginning of the procedure, no pixel loss is
encountered. In Step 8, we calculate the Euclidean distance between the centroids of T1
and T2, which yields the threshold distance in terms of pixels THpd, equivalent to THud. In
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Step 10, to convert pixel distance into units, we find that the proportion of THud and THpd
yields the unit points equivalent to pixels, where k represents a constant value that maps
pixel distance to the unit distance (cm). In Steps 11 and 12, we calculate the Euclidean
distance between the centre points of all detected bbi at CFD − near and convert it to the
unit distance cm. UDi+1 shows the distance between all detected persons at CFD − near in
terms of cm. In Steps 13 to 18, we compare the monitored unit distance with THud. The
people violating the THud are highlighted by red bounding boxes and are notified by a
general voice warning.

Figure 4. Real-world arrangements of ToF-based video surveillance.

4.5.2. Monitoring People at CFD − Far

In Algorithm 2, we change the camera-to-frame distance from CFD − near to CFD − far.
We place T3 and T4 at CFD − far, where their self-distance is the same threshold value
THud = 180 cm. We then calculate the Euclidean distance between the centre points of T3
and T4. The value of Epx is updated this time as objects are now at CFD − far, so the
Euclidean distance between the centre points of objects at CFD − far is not the same as that
of objects at CFD − near, but the THud between both CFD values is the same.

To recover the lost pixels at CFD − far, we calculate the difference between the Eu-
clidean distance of T1 and T2 at CFD − near and that of T3 and T4 at CFD − far and multiply
it by c, where the initial value of c is 1 and increases as long as CFD increases. After calcu-
lating the difference, we update the value of Epx and add the lost pixels that are stored in
Epx to UDi+2 by multiplying Epx with k, which converts the recovered pixels into cm, where
UDi+2 shows the distance between all detected persons at CFD − far in terms of cm.

4.5.3. Monitoring People up to CFDR

In Step 1 of Algorithm 3, we start a loop to monitor people above the CFD − far up
to the maximum specified camera range CFDR. We initialise CFD with a3, where a3 ∈ a. In
Step 2, we check whether more than one object is present at CFD. If more than one object
is present at CFD, then Steps 5–17 of the algorithm are executed, where we increment the
value of c to recover the lost pixels at each CFD, convert the monitored Euclidean distance
between the centre points of detected objects into cm, and compare it with THud. We
execute Steps 16 and 17 if a single object or no object is detected at CFD. The workflow of
the proposed DepTSol model is shown in Figure 5.
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Algorithm 1: Monitoring people at CFD − near

Input: CFDR
Output: UDi+n 1

1 Start variables:
c, Global var1
Epx, Global var2
An, Global var3
BBc, Global var4
THud, Global var5
End variables

2 Initialization: CFD − near← a1, c← 1, THud ← 180 cm, Epx ← 0
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Algorithm 2: Monitoring people at CFD − far
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cute Steps 16 and 17 if a single object or no object is detected at CFD. The workflow of the 
proposed DepTSol model is shown in Figure 5. 
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5. Experiments & Results 
5.1. Experimental Setup 

We performed transfer-learning on the MS COCO dataset [49] to train a custom ob-
ject detector to attain the highest model accuracy. The selection of hyper-parameters for 
the training of one stage object detectors on the ExDARK dataset were as follows: The 
network size was 512 × 512. The initial learning rate was 0.01. The initial batch size was 64 
with 16 subdivisions. To accelerate gradients vectors in the right directions, stochastic gra-
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Figure 5. Workflow of the DepTSol model.

5. Experiments & Results
5.1. Experimental Setup

We performed transfer-learning on the MS COCO dataset [49] to train a custom object
detector to attain the highest model accuracy. The selection of hyper-parameters for the
training of one stage object detectors on the ExDARK dataset were as follows: The network
size was 512 × 512. The initial learning rate was 0.01. The initial batch size was 64 with
16 subdivisions. To accelerate gradients vectors in the right directions, stochastic gradient
descent (SGD) momentum was used with an initial value of 0.937 and a weight decay of
0.0005. For bounding box regression, generalised intersection over union (GIOU) loss was
adopted with an initial value of 0.05. The initial class loss gain was 0.5, and the class binary
cross-entropy (BCE) loss positive gain was 1.0. The object loss gain and object BCE loss
positive gain was 1.0. The adopted intersection over union (IoU) target-anchor training
threshold was 0.2, and the anchor threshold was 4.0. To handle the class imbalance problem
by assigning more weights to hard or easily misclassified examples, the focal loss (gamma)
was used with an initial value of 0.0.

From data augmentation, the following parameters were adopted: To train the model
on varying image colours, the chosen fraction of hue, saturation, and value augmentation
were 0.015, 0.7, and 0.4, respectively. To add non-linearity, the mish activation function was
used. To make the model localise all people in different portions of the frame, the mosaic
data augmentation technique was utilised. All experiments were performed on a Tesla T4
GPU. The utilised PyYAML version was 5.4.1, the torch version was 1.8.0 with cu101, and
the mish version was 0.0.3. The architectural configuration of CSP-ized YOLOv4 is shown
in Figure 6.

5.2. Evaluation Measures

We used common performance evaluation metrics precision and recall to perform
comparative analysis between different one stage object detectors and chose the best for
our real-time social distance monitoring solution in terms of performance [50].

Precision is the proportion of the number of true positives (TP) to the total number of
positive predictions. In contrast, recall is the proportion of the number of TP to the total
number of actual objects. Precision and recall are calculated by Equations (6) and (7). In the
field of object detection, IoU is a threshold value that determines whether the predicted
result is TP or true negative (TN).

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)
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Figure 6. Architectural configuration of CSP-ized YOLOv4.

Average precision (AP) depends on the precision–recall (PR) curve and is defined
as the precision score averaged over all distinctive recall levels as shown in Equation (8),
whereas average recall (AR) is calculated by Equation (9).

AP =
n−1

∑
i=1

(ri+1 − ri)pinterp(ri+1) (8)

where pinterp is interpolated precision at recall levels r1, r2, r3, . . . , rn.

AR = 2
∫ 1

0.5
recall(iou)do (9)

In this article, the COCO evaluation metric [51] was used for performance evaluation
because of its varsity. The standard evaluation metric is Pascal VOC [52], but it defines
the mAP score at only 0.5 IoU. However, the COCO evaluation metric contains an mAP
score at three different IoU threshold values, including the primary challenge metric that
averages the mAP score at 10 different IoU thresholds from 0.50 up to 0.95 with a step
size of 0.05. A standard metric is the same as Pascal VOC, which considers only a single
threshold value of 0.5, and a strict metric, where the IoU threshold is 0.75. Besides this,
COCO provides an mAP score for small (area < 322), medium (area > 322 and < 962), and
large size objects (area > 962). As demonstrated in Equation (10), the mAP score is the mean
of all AP values over N number of classes.

mAP =
1
N ∑n

i=1 APi (10)

Similar to the mAP score, the mAR score also has two sets of variations. In the first
set, mAR gives the various number of detections per frame; e.g., mARmax=1 gives only
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one detection per frame, mARmax=10 gives 10 detections per frame, and mARmax=100 gives
100 detections per frame. In the second set, the mAR is calculated based on the size of
detected objects such as small (area < 322), medium (area > 322 and < 962), and large objects
(area > 962). The mean average recall (mAR) is the mean of all AR values over N number of
classes as shown in Equation (11).

mAR =
1
N ∑n

i=1 ARi (11)

For the final evaluation of the DepTSol model, we used the mean absolute error
(MAE) [53] score, which is the mean of the difference of observed and actual distance
values, as shown in Equation (12).

MAE =
1
N ∑n

i=1|yi − yi′ | (12)

where yi shows the observed distance, and yi′ represents the actual distance.

5.3. Results

We performed various experiments for the evaluation of our social distance monitor-
ing approach DepTSol. Besides evaluating the performance of the CSP-ized YOLOv4, we
evaluated the performance of one-stage object detection models on the ExDark dataset
and compared the results with CSP-ized YOLOv4 both in terms of speed and accuracy. As
per the literature, low-light environments are not focused on much in the field of object
detection. The direct evaluation of object detection models in low-light scenarios will
pave the way for researchers to further study the field. The comparative analysis between
seven different object detection models, including the Single-Shot Detector (SSD) [54], Reti-
naNet [55], the Enriched Feature Guided Refinement Network (EFGRNet) [56], YOLOv3,
YOLOv3 Spatial Pyramid Pooling (YOLOv3-SPP) [35], YOLOv4, and the CSP-ized YOLOv4,
is shown in Tables 1 and 2. From the results, we can analyse that CSP-ized YOLOv4 shows
the best performance both in terms of speed and accuracy. The training convergence of
CSP-ized YOLOv4 on GIoU loss, objectness loss, classification, precision, recall, and mAP
is shown in Figure 7 with a network size of 512 × 512. The SSD has attained the second
position in terms of speed but achieved the sixth rank at various mAP scores and remained
at the last level in terms of mAP for small area objects. YOLOv4 has achieved the second
rank in terms of accuracy and the third rank in terms of speed. YOLOv3-SPP stands at the
third level in terms of accuracy, YOLOv3 achieves the fourth rank in terms of speed, and
YOLOv3-SPP and YOLOv3 achieve almost the same fps score with a difference of 0.7 fps.
EFGRNet has achieved the third rank in terms of fps score and the fourth in terms of mAR
and mAP. RetinaNet has reported the lowest speed and mAP score as compared to all other
models, while performing better than SSD, EFGRNet, and YOLOv3 for small-size objects.

Based on the comparative analysis, we have taken the trained model of CSP-ized
YOLOv4 for high performance. We obtained the object detection results from CSP-ized
YOLOv4 and applied social distance monitoring algorithms on the obtained images coor-
dinates for inter distance estimation. We tested our DepTSol model at 230 different RGB
frames. Some of the test results from the qualitative evaluation are shown in Figure 8, and
Table 3 shows the quantitative results in terms of the predicted unit distance UD, the actual
unit distance AUD, and their relevant pixel values. Figure 9 depicts the further qualitative
results of the DepTSol model from the testing dataset. To start the monitoring process, we
initialised CFD − near with a1 CFD − far with a2, and the CFDR was a3, where (a1, a2, a3) ∈ a.
We monitored people at each CFD, calculated the error rate between UD and AUD at each
level, and summarised it with an MAE score.
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Table 1. Comparative analysis of one-stage object detectors on the ExDARK dataset at various thresholds.

Model Backbone Size FPS mAP[0.50] mAP[0.75] mAPsmall mAPmedium mAPlarge

SSD VGG-16 512 44.2 73.1% 57.2% 13.6% 31.3% 47.1%
RetinaNet ResNet-50 512 22.3 70.0% 62.1% 23.28% 28.0% 56.1%
EFGRNet VGG-16 512 37.9 87.0% 69.1% 17.2% 47.1% 62.8%
YOLOv3 Darknet53 512 33.7 84.5% 55.6% 19.4% 39.8% 61.1%

YOLOv3-SPP Darknet53 512 33.1 91.1% 64.4% 31.0% 43.6% 74.6%
YOLOv4 CSPDarknet53 512 41.1 98.2% 78.3% 35.3% 54.2% 86.0%
CSP-ized
YOLOv4 CSPDarknet53 512 51.2 99.7% 94.0% 55.5% 83.0% 94.3%

Table 2. Evaluation of one-stage object detection algorithms on the variant mAR score.

Model mARmax=1 mARmax=10 mARmax=100 mARsmall mARmedium mARlarge

SSD 39.8% 69.4% 65.8% 48.5% 69.8% 77.9%
RetinaNet 74.9% 68.0% 54.2% 41.0% 63.6% 54.7%
EFGRNet 83.9% 71.1% 68.6% 52.1% 80.4% 74.8%
YOLOv3 86.3% 79.6% 75.1% 50.4% 94.2% 89.1%

YOLOv3-SPP 89.0% 88.4% 86.1% 59.0% 94.0% 93.6%
YOLOv4 94.0% 97.2% 95.3% 69.2% 97.7% 97.8%
CSP-ized
YOLOv4 96.1% 99.4% 98.0% 73.6% 98.8% 99.5%

Figure 7. The graphic depiction of CSP-ized YOLOv4 convergence over GIoU, objectness, classifica-
tion, precision, recall, and mAP score.

Table 3. Quantitative evaluation of the DepTSol model, where THud represents the threshold distance
in cm, THpd is the threshold distance in pixels, UD shows the predicted unit distance at each CFD level,
AUD is the actual unit distance, AE is the absolute error, and V represents the number of violations
per frame.

Frame CFD Dpx Dpx + (Epx × c) THud THpd k UD
(cm)

AUD
(cm)

Error
(cm) FP TN V

CFD − near 308.2 - 180 308.2 0.5842 180 180 0
(a) CFD − far 255.2 308.2 - - - 180 180 0 0 0 0

CFDR 203.1 309.1 - - - 180.54 180 0.54
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Table 3. Cont.

Frame CFD Dpx Dpx + (Epx × c) THud THpd k UD
(cm)

AUD
(cm)

Error
(cm) FP TN V

MAE = 0.18 cm

CFD − near 310.0 - - - 0.5842 181.1 180 1.1
(b) CFD − far 151.2 204.2 - - - 119.27 120 −0.73 0 0 1

MAE = 0.92 cm

(c) CFD − near 312.3 - - - 0.5842 182.41 180 2.41
CFD − far 122.1 175.1 - - 96.43 100 −3.57 0 0 1

MAE = 2.99 cm

CFD − near 209.0 - - - 0.5842 122.0 120 2.0
(d) CFD − far 115.4 168.4 - - - 98.36 100 −1.64 0 0 3

CFDR 67.1 173.1 - - - 101.11 100 1.11

MAE = 1.58 cm

CFD − near 177.3 - - - 0.5842 103.56 100 3.56
(e) CFD − far 296.7 349.7 - - - 204.20 200 4.2 0 0 1

MAE = 3.88 cm

CFD − near 437.0 - - - 0.5842 255.25 250 5.25
(f) CFD − far 156.0 209.0 - - - 122.07 120 2.07 0 0 1

MAE = 3.66 cm

CFD − near 436.1 - - - 0.5842 254.70 250 4.7
(g) CFD − far 159.0 212.0 - - - 123.8 120 3.8 0 0 1

CFDR 319.0 425.0 - - - 248.24 250 −1.76

MAE = 3.42 cm

CFD − near 518.1 - - - 0.5842 302.62 300 2.62
(h) CFD − far 222.0 275.0 - - - 160.63 160 0.63 0 0 2

CFDR 125.11 231.11 - - - 129.1 130 −0.9

MAE = 1.38 cm

(i) CFD − near 246.3 - - - 0.5842 143.86 140 3.86 0 0 1

MAE = 3.86 cm

(j) CFD − near 314.3 - - - 0.5842 183.58 180 3.58
CFD − far 168.3 221.3 - - - 129.26 130 −0.8 0 0 1

MAE = 2.19 cm

CFD − near 312.1 - - - 0.5842 182.29 180 2.29
(k) CFD − far 259.1 312.1 - - - 182.29 180 2.29 0 0 0

CFDR 244.5 350.5 - - - 204.72 200 4.72

MAE = 3.1 cm

(l) CFD − near 410.4 - - - 0.5842 239.71 240 -0.29
CFD − far 197.78 250.78 - - 146.48 150 −3.52 0 0 0

MAE = 1.90 cm

(m) CFD − near 322.4 - - - 0.5842 188.31 190 −1.69 0 0 0

MAE = 1.69 cm

CFD − near 202.2 - - - 0.5842 118.10 120 −1.9
(n) CFDR 240.0 346.0 - - 0.5842 202.13 200 2.13 0 0 1

MAE = 2.01 cm

(o) CFD − near 322.4 - - - 0.5842 188.31 190 −1.69 0 0 0

MAE = 1.69 cm



Electronics 2022, 11, 458 17 of 23

Figure 8. Qualitative evaluation of the DepTSol model. SubFig (a–o) represents frames whose
quantitative evaluation is depicted in Table 3.

Figure 9. Qualitative visualisations of the DepTSol model on some testing dataset seeds under
different low-light conditions.
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6. Limitations and Discussion

Low-light environments play a vital role in the spread of disease. The prvision of
effective social distance monitoring approaches is required to serve that motive. The
detection of people in low-light environments is itself a challenging task. The application
of image processing techniques for the enhancement of dark images and the subsequent
application of object detection algorithms results in a slow response time and requires
high-power machines to execute multiple tasks. To make the system highly responsive,
we directly applied object detection algorithms in low-light scenarios and evaluated the
performance. We tested seven different one-stage object detection algorithms on the
ExDARK dataset and evaluated the models both in terms of accuracy and speed. From
the obtained results, Figures 10 and 11 depict the empirical results of the performed
experiments. To summarise the compared models’ performance, we explored the testing
results of each model by COCO evaluation metrics on a Tesla T4 GPU with a network size of
512× 512. The CSP-ized YOLOv4 achieved the best performance results as compared to the
six other one-stage detectors. Based on COCO evaluation, the CSP-ized YOLOv4 obtained
an fps value of 51.2 and an mAP[0.5] of 99.7%. Due to its high performance as compared to
other one-stage object detectors, we utilised it for our social distance monitoring task to
control FP and TN and to support real-time monitoring.

Figure 10. The graphic depiction of the best testing performance by COCO evaluation metrics at
varying mAP and mAR scores.

Analysis shows that the direct application of object detection algorithms in low-light
environments for human detection and monitoring purposes is very effective. Additionally,
the direct application of deep-learning-based object detection algorithms on low-light
datasets promotes the acquisition of effective results at a very low cost. We can save the
cost incurred on powerful devices to perform image cleansing and visibility enhancement.
Furthermore, the fps score of the models can be further enhanced by utilising the GPUs
such as Tesla V100, Volta, and Titan Volta, whereas the training of the models on a higher
network size results in a higher mAP score.
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Figure 11. The best speed trade-off in terms of fps score.

The proposed CSP-ized YOLOv4 and ToF-based real-time social distance monitoring
approach has shown effective results with an overall MAE of 2.23 cm. Figure 12 presents
visualisations of UD and AUD. The approach considers individual’s privacy concerns.
Instead of targeting people individually, we use general voice warnings that alert all people
present at the location. The proposed general warning system is highly feasible in outdoor
environments, such as night outdoor gatherings. Moreover, for indoor environments
such as offices, homes, libraries, and hospitals, we can use non-intrusive audiovisual cues
that only target and notify certain people in the environment without distracting others
in the surrounding area. The proposed camera calibration technique has addressed the
limitations of the previous study of monitoring people at a fixed camera distance CD in a
given environment by dividing the scene into multiple safety threshold distance values
(e.g., CFD − near and CFD − far, up to the maximum specified camera range CFDR). The
proposed approach can effectively monitor people at multiple camera distances in a given
environment and generate voice warnings. Moreover, in contrast to the previous study,
in the DepTSol model, we improved the mAP score by 1.86%, while no single FP or FN
was detected. Besides these numerous improvements, the approach is limited in giving
feasible results at CFD values that lie behind multiple safety thresholds (e.g., if we start the
monitoring process 180 cm away from the camera and initialise a CFD − near of 180 cm and
then a CFD − far of 360 cm, monitoring can be done. The approach does not yield correct
results for people between a CFD of 180 cm and 360 cm). Furthermore, in the proposed
camera calibration approach to start the monitoring process, we have to place four target
objects in a real-world environment. In addition, the installation of the system in a given
environment is dependent on the extrinsic camera parameters (i.e., FL and FoV), which
means the pixel threshold value THpd relevant to the unit threshold value THud needs to
be calculated every time a change in these parameters is encountered. These limitations
can be tackled by introducing a new camera calibration approach that can monitor people
apart from specific CFD values.
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Figure 12. The graphic depiction of DepTSol performance in terms of UD and AUD.

7. Conclusions and Future Directions

Social distancing is a highly recommended personal preventive strategy for mitigating
the effects of COVID-19. We propose an approach named DepTSol where we mainly
focus on low-light scenarios, as such scenarios can play a vital role in the escalation of
death and infection rates. We propose a smart implementation of SIoT utilising computer
vision and deep learning algorithms with the collaboration of ToF technology and present
a cost-efficient and fast, automated social distance monitoring solution. We use a ToF
camera to capture people in a real-world environment. People in the images are detected
by CSP- ized YOLOv4. In the proposed approach, we calculate the Euclidean distance
between the centroids of bounding boxes detected across people and convert distance
in cm. Based on the achieved unit distance, we highlight violations, and a general voice
warning is generated to those present in the environment. We evaluated the technique both
quantitatively and qualitatively, performed a comparative analysis between different one-
stage object detectors, and found that CSP-ized YOLOv4 outperformed all other techniques.
Furthermore, the proposed technique achieves outstanding performance in terms of both
speed and accuracy, with 51.2 fps and a 99.7% mAP score. The speed and accuracy obtained
by DepTSol is higher than those obtained by Adina et al. [8] in their research work, which
was 46.2 fps and a 97.84% mAP score, respectively.

In the future, we aim to introduce a new camera calibration technique to resolve
the limitations of this study. Furthermore, we aim to extend this approach by adding a
facemask detection feature to identify people who are not wearing a mask or who are not
wearing a mask correctly at night. Besides this, we will monitor people inside cars and on
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motorbikes. We will monitor whether the windows of cars are closed or whether people
are wearing a facemask, and for bikers, we will ensure that they are wearing a facemask or
helmet. In underdeveloped cities, where congested streets similarly play a vital role in the
spread of disease, congested roads with minimal distance between traffic can also boost the
infection rate.
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