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Abstract: Due to the limited ability of a single unmanned aerial vehicle (UAV), group unmanned
aerial vehicles (UAVs) have attracted more attention in communication and radar fields. The use
of an integrated sensing and communication (ISAC) system can make communication and radar
modules share a radar module’s resources, coupled with efficient resource allocation methods. It can
effectively solve the problem of inadequate UAV resources and the low utilization rate of resources.
In this paper, the resource allocation problem is addressed for group UAVs to achieve a trade-
off between the detection and communication performance, where the ISAC system is equipped
in group UAVs. The resource allocation problem is described by an optimization problem, but
with group UAVs, the problem is complex and cannot be solved efficiently. Compared with the
traditional resource allocation scheme, which needs a lot of calculation or sample set problems, a
novel reinforcement-learning-based method is proposed. We formulate a new reward function by
combining mutual information (MI) and the communication rate (CR). The MI describes the radar
detection performance, and the CR is for wireless communication. Simulation results show that
compared with the traditional Kuhn Munkres (KM) or the deep neural network (DNN) methods, this
method has better performance with the increase in problem complexity. Additionally, the execution
time of this scheme is close to that of the DNN scheme, and it is better than the KM algorithm.

Keywords: group UAVs; resources allocation; reinforcement learning; integrated sensing and
communication (ISAC) system

1. Introduction

In recent years, due to the ability limitation of a single unmanned aerial vehicle
(UAV), group UAVs have been proposed for complex applications. With the increasing
popularity of modernization and intelligence, the intelligence of UAVs has attracted more
attention. Group UAVs have prominent advantages such as high autonomy, multiple
functions, timeliness, strong anti-damage ability and low cost. Their applications include
logistics distribution, agricultural plant protection, reconnaissance and raids, electronic
countermeasures, communication and navigation [1–6]. Group UAVs mainly use public
resources to perform these tasks at present, which causes information leakage and com-
munication interference between UAVs. With the exponential growth of the number of
UAVs, expanding resources and improving the utilization rate of resources have become an
urgent demand. Additionally, Group UAVs are supposed to have the abilities of detection,
localization and communication according to their tasks. However, the weight and cost of
equipment for UAVs limit the available resources of communication and detection. For the
above consideration, an integrated sensing and communication (ISAC) system with the
characteristics of low-cost, lightweight and a high level of integration has been proposed
by using the same hardware [7].

The ISAC protocol, system architecture design [8], signal-sharing [8–13], time-sharing [14],
array-sharing [15], spectrum-sharing [16] and power-sharing [17] have been studied to
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realize the ISAC system. In signal-sharing, due to no significant difference between radar
and communication in the time and spatial domains, both the radar detection and the
wireless communication use the same waveform [8–13]. However, the interference between
radar and communication is relatively large. Time-sharing means that different tasks are
allocated at different time slots, and either the communication task or the detection task is
performed in one time slot [14]. Array-sharing is used in array system, where the different
functions are realized in different sub-arrays [15]. Recently, a distributed dual-function
radar-communication (DFRC), multiple input and multiple output (MIMO) system was
proposed using both signal and power sharing [17]. Integrating cognitive radio (CR-o) and
cognitive radar (CR-r) paradigms, as spectrum-sharing paradigms, achieve the intelligent
utilization of spectrum resources [18]. Additionally, power-sharing is based on game the-
ory [19]. However, existing resource allocation methods are for a single type of resource or
a single system, so it cannot be applied to group UAVs directly.

Information sharing and target detection among group UAVs greatly expand the
applications. Improving the stability and reliability of the communication and the accuracy
of target detection among UAVs is important. Due to resource limitations and the task
importance, both communication and detection tasks need a trade-off in the allocation of
resources. With the development of artificial intelligence in the fields of communication
and radar, reinforcement learning algorithms can be introduced. In the fields of radar
and communication, modulation identification, signal detection, radar target identifica-
tion [20–24], cluster cooperative control [25–30] and resource allocation [31–33] are included.
Additionally, policy-based reinforcement learning and action-critical deep deterministic
policy gradient algorithms are used to allocate the energy resources of cellular network
reasonably [34], and the resource allocation method for radar detection [35] is given.

In recent years, there have been many studies on resource optimization by reinforce-
ment learning in vehicle-mounted networks. Ref. [36] proposed a vehicle to vehicle (V2V)
distributed resource allocation mechanism based on deep reinforcement learning, which
can make power and channel allocation decisions without global network information.
Ref. [37] studied the vehicle spectrum sharing problem based on multi-agent reinforcement
learning to solve the spectrum and power distribution problem in the scene where the
channel conditions in vehicle-mounted network change rapidly and CSI cannot be accu-
rately obtained. Ref. [38] proposed a communication resource allocation method based
on deep reinforcement learning to ensure the reliability and delay constraint of ultra-high
reliability and low delay communication service on the internet of vehicles. However, the
above research focuses on communication resource allocation, not radar. The reinforcement
learning they adopt is mainly Q-learning and DQN. Given the low complexity of Q-learning
and whether the convergence rate of DQN can be further optimized, this paper proposes
an improved DQN model: Dueling DQN.

In this paper, with the limited ability of a single UAV, group UAVs has attracted more
attention in communication and radar fields. Under the condition of limited group UAVs
resources, the resource allocation problem is addressed for the group UAVs to achieve a
trade-off between the detection and communication performance, where ISAC is equipped
in group UAVs. Due to the group UAVs, the resource allocation problem is complex and
cannot be solved efficiently. A novel reinforcement-learning-based method is proposed,
including the Q-Learning, state action reward state action (SARSA), deep Q network (DQN)
and dueling deep Q network (Dueling DQN) reinforcement learning algorithms. We
formulate a new reward function by combining both the mutual information (MI) and the
communication rate (CR), where the MI is used to describe the performance of the radar
detection and the CR is for that of the wireless communication. The contributions of this
paper are given as follows:

• A novel low-cost, weight-light, and integration-high degree group UAV system is
proposed. The ISAC system is mounted on UAVs, and the radar resources are used
for communication and target detection together. It not only broadens the use of
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UAV resources but also improves the anti-jamming ability of UAVs from the common
frequency ban.

• A novel reinforcement-learning-based method is proposed to solve the complex prob-
lem, where we formulate a new reward function by combining both the MI and the
CR. The MI describes the radar detection performance, and the CR is for wireless
communication.

The rest of this paper is organized as follows: In Section 2, the system model is
formulated. In Section 3, the design of the algorithms is introduced. In Section 4, the
analysis and discussion of simulation results of different algorithms in different group
UAVs under different environments are given. The conclusions are presented in Section 5.

Notations: lower-case boldface letters denote vectors. ξ{·} is the nomination operation.

2. Groups UAVs Resource Allocation Model for ISAC System

Consider the ISAC system for group UAVs as shown in Figure 1, where group UAVs
in number K are sharing information among each other and detecting targets. Three kinds
of resources such as the beam in number X, the power in number Y and the channel in
number Z are allocated among group UAVs to achieve a trade-off between the wireless
communication and the target detection. According to these resources, due to its low cost,
light weight and high integration characteristics, the ISAC system is employed in each UAV.
In the case of limited resources, how to allocate resources usage reasonably can optimize
the balancing of the two tasks.

K

Group UAVs Targets

Channel resource

Beam resource

Power resource

Channel1

Channel2

ChannelZ

…Power1
Power2

…
Powerx

Beam1

Beam2

…
BeamY

UAV1

UAV2

…

UAVK

Resource Block

Figure 1. Resource allocation diagram for the ISAC system with group UAVs.

The problem model can be described to find the maximum of the reward of the ISAC
system for group UAVs R(b, c, p) by allocating resources usage reasonably:

max
b,c,p

R(b, c, p), (1)

where b, c and p represent the set of beam values, channel values and power values,
respectively, for the corresponding n-th task and k-th UAV. The definitions of b, c and p are
given as:

b :=
{

bn,k|n = 1, 2; k = 1, 2, · · ·, K
}

, (2)

c :=
{

cn,k|n = 1, 2; k = 1, 2, · · ·, K
}

, (3)

p :=
{

pn,k|n = 1, 2; k = 1, 2, · · ·, K
}

, (4)

where we use n = 1 and n = 2 to represent the information communication task and the
radar detection task for the individuals of group UAVs, respectively. bn,k, cn,k and pn,k
represent the beam, the channel and the power of the k-th UAV performing the n-th task,
respectively.
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The domain values of b,c and p are defined as follows:

b1,k 6= b2,k (5)

which shows that the k-th UAV perform different tasks at different beam.

∑
n

∑
k

cn,k ≤ δ1

∑
n

cn,k ≤ δ2

cn,k 6= cn′ ,k′

(6)

δ1 and δ2 represents the all bandwidth of UAVs and the k-th UAV, respectively. cn,k 6= cn′ ,k′

shows that the k-th UAV perform different tasks at different channels.

∑
n

∑
k

pn,k ≤ δ3

∑
n

pn,k ≤ δ4
(7)

δ3 and delta4 represent the power of all UAVs and the k-th UAV, respectively.
The definition of R(b, c, p) is given as:

R(b, c, p)

:= ∑
n=1,k

R1,k(b1,k, c1,k, p1,k) + ∑
n=2,k

R2,k(b2,k, c2,k, p2,k), (8)

where R1,k(b1,k, c1,k, p1,k) represents the reward of the ISAC system for the k-th UAV
which performs the 1-th task. It can be represented by the reward of the communica-
tion system [18]. The communication reward is the communication rate. R2,k(b2,k, c2,k, p2,k)
represents the reward of the radar communication integrated system for the k-th UAV
which performs the 2nd task. It can be represented by the reward of the radar system.
The radar reward is mutual information. Specific equations about R1,k(b1,k, c1,k, p1,k) and
R2,k(b2,k, c2,k, p2,k) will be seen as follows.

The communication rate is taken as the reward of communication performance. The
communication rate can represent the performance of the communication link and is
defined as:

R1,k(b1,k, c1,k, p1,k)

= (1− λ)ξ

{
c1,k log2(1 +

ζ2
k p1,k

γk + κT̄c1,k
)

}
,

(9)

where λ is the parameter to achieve a trade-off between the communication and detection
performance. ξ{·} is the nomination operation. ζk represents the channel loss of the k-th
UAV of group UAVs. γk represents the communication interference caused to the individual
of group UAVs when group UAVs share information. κ is the Boltzmann constant, and T̄
represents the system noise temperature.

On the basis of information theory, target detection can be regarded as a non-cooperative
communication problem, which means that the detected target is reluctant to transmit
information to the radar. Mutual information is proposed to measure the ability of radar to
acquire target information and is defined as:

R2,k(b2,k, c2,k, p2,k)

= λξ

{
Tk

∫
c2,k

ln

(
1 +

2
∣∣√p2,ksk( f )

∣∣2σ2( f )
(wk( f ) + υk)Tk

)
d f

}
.

(10)
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where Tk is the pulse duration, sk( f ) denotes the normalized baseband signal in the fre-
quency domain, σ( f ) denotes the frequency response of the target corresponding to trans-
mitted signal, wk( f ) is the noise power in the frequency domain and υk is the interference
caused by other UAVs.

3. Reinforcement-Learning-Based UAVs Resource Allocation Method

To optimize the resources among UAVs for the ISAC system, a reinforcement learning-
based method is proposed. As shown in Figure 2, at each time t, the group UAVs, as the
agents, observe the state E [t] from the state space S and take an action A[t], selecting the
beam, channel and transmission power from the action space a[t]m according to the current
environment E [t]. Based on the action taken by the agent, the environment transforms
to a new state, E [t+1], and the agent receives a reward, r[t], from the environment. The
overall algorithm design is mainly composed of an environment state, anagent action, a
reward given by the environment and the corresponding reinforcement learning algorithm
model design.

Agent

Environment
Resources allocation situation

UAV𝑘

Action 𝒜[𝑡]

State 𝜀[𝑡]

Reward 𝑟[𝑡]

𝑅 (𝒃, 𝒄 , 𝒑)

Figure 2. The flow chart of algorithms.

Due to the discrete characteristics, a resource allocation problem can be described as
the interaction between resource allocation and the environment, and the corresponding
resource allocation scheme can be described by the reward function. It is consistent with
reinforcement learning. Therefore, in order to solve problem (1), we propose a resource
allocation method based on reinforcement learning. As shown in Figure 2, according to
each group UAV’s perceived business request and available resource, the group UAVs take
the corresponding resource allocation. The reward value can be obtained according to the
strategy, so as to describe the performance of resource allocation. Different from traditional
resource allocation, reinforcement learning methods can effectively solve the problem of
high complexity and unrealization of UAVs’ resource allocation. Each section is described
in detail below:

1. Environment State
Since the state is the mapping and representation of the environment and also the
basis for agents to take agents, the design of the environment state is very meaningful.
During the t-th state, it is defined as the current resource allocation strategy and the
status of the UAVs, such as their locations u[t] and velocity v[t], the locations of targets
w[t], available energy b[t]

r , c[t]r , p[t]
r and last time reward l[t]:

E [t] ,
{

b[t], c[t], p[t], u[t], w[t], v[t], b[t]
r , c[t]r , p[t]

r , l[t],
}
∈ R9K+W+1, (11)

where R denotes the real number set. W denotes the number of targets.
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2. Agent Actions
Actions are the outputs of an agent and the inputs to the environment. Group UAVs
allocates resources reasonably according to group UAV task requests and the available
resource status of the system. Therefore, action A[t] can be defined as below:

A[t] =
{

a|a ∈ M[t]
}

M[t] ,
{

a[t]m : m = 1, 2, 3, . . . , M[t]
}

.
(12)

where all the possible resource allocation strategies during the t-th state from an
action set is M[t], the number of actions is M[t] and the m-th action is defined as:
a[t]m = {b[t]

m , c[t]m , p[t]
m }. b[t]

m , c[t]m and p[t]
m denote the channel and power allocation strategy

in the m-th action, respectively. Notably, considering the channel interference, once a
channel is used, it cannot be selected the next time.

3. Reward
Reward refers to the feedback after the agent taking action according to certain
environmental states. The reasonability is closely related to the income that can
be obtained by the agent and the performance of the dynamic resource allocation
algorithm. In the ISAC system for group UAVs with dynamic resource allocation, it
is necessary to give certain rewards to learn the optimal resource allocation strategy.
According to the current allocation strategy E [t], the reward r[t] is defined as below:

r[t] =

{
R(b[t], c[t], p[t]), E [t] = Eterminal

0, otherwise
(13)

Eterminal denotes that resources have been allocated for this episode. Set the reward to
0 when the resource allocation has not ended and to R(b[t], c[t], p[t]) when the resource
allocation has ended. Finally, we try to maximize the reward r[t].

According to the above definition of environment state, action and reward, four
reinforcement learning algorithms including Q-Learning, SARSA, DQN and Dueling DQN
are used to realize the RL-based resource allocation strategy. Q-Learning, SARSA, DQN
and Dueling DQN are value-based and model-free reinforcement learning algorithms.
DQN and Dueling DQN have changes relative to Q-Learning and SARSA, mainly in three
aspects [39,40]:

(1) DQN and Dueling-DQN use convolutional neural networks (CNN) to approximate
value functions. The reinforcement learning has entered the stage of deep reinforce-
ment learning.

(2) DQN and Dueling-DQN use replay buffer training to strengthen the learning process.
(3) DQN and Dueling-DQN set up the target network independently to deal with the

deviation in timing difference separately.

DQN and Dueling-DQN can break out the fact that state space and action space are
discrete and cannot be too large from Q-Learning and SARSA.

The differences of Q-Learning and SARSA are as follows. The purpose of Q-Learning
is to learn the value of a specific action in a specific state. Create a Q-table with state rows
and action columns, and update the Q-Table with rewards for each action. Q-Learning is
off-policy. A different strategy means that the action strategy and the evaluation strategy
are not the same strategy. In Q-Learning, the action strategy is ε-greedy, and the strategy to
update the Q-table is greedy.

SARSA stands for state-action-reward-state-action. The Q-table is also used to store
the action value function. Moreover, the decision-making part is the same as Q-Learning,
which also adopts the ε-greedy strategy. The differences are as follows:

1. SARSA is an update of on-policy, and its action strategy and evaluation strategy are
ε-greedy.
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2. SARSA takes action first and updates later:

Q(s, a) = Q(s, a) + α[r + γQ(s
′
, a
′
)−Q(s, a)] (14)

Q(s, a) = Q(s, a) + α[r + γ max
a′

Q(s
′
, a
′
)−Q(s, a)] (15)

As can be seen above, Q(s, a) and Q(s
′
, a
′
) denote the Q-value at the current moment

and the next moment, respectively. α indicates the learning rate. Formula (14) is the updated
formula of the SARSA Q-value, which performs the action using the ε-greedy strategy, then
updates the value function based on the action being performed. The Formula (15) is the
updated formula of the Q-Learning Q-value, which assumes the next step to select the
maximum reward action and update the value function. Then, the action is selected using
the ε-greedy strategy.

To compare DQN and Dueling-DQN, the algorithm flow is shown the Figure 3. Firstly,
based on the greedy strategy, the main network generates action a[t] according to the
corresponding environment E [t]. Then, with the action, the reward R(b[t], c[t], p[t]) can be
obtained, and the environment is updated as E [t+1].

Environment

Experience 

reply …
…

…

…
…

…

…
…

…

Input 

layer:

10

Hidden 

layer:

20

Output 

layer:

26

𝜀[𝑡]

Greedy strategy

(𝜀[𝑡],𝑎[𝑡], R(𝑐[𝑡],𝑝[𝑡]), 𝜀[𝑡+1])

Input:

𝜀[𝑡+1] (500,10)

Input:

𝜀[𝑡]

(500,10)

Output:

𝑄(𝜀 𝑡 , 𝑎[𝑡]; 𝜃)
(500)

Output:

y= max𝑎[𝑡+1]𝑄 𝜀 𝑡+1 , 𝑎[𝑡+1]; 𝜃−

(500)

Gradient 

descent of loss

𝑓𝐿oss =𝔼[ r+γ × 𝑦−𝑄(𝜀 𝑡 , 𝑎[𝑡]; 𝜃)
2
]

…

Input 

layer:

10

Hidden 

layer:

20

Output1 

layer:

26

Output2 

layer:

1

Main Network

Target Network

3000, 500

Copy parameters 𝑓𝐿oss

Figure 3. The process structure of DQN and dueling-DQN.

The trajectory (E [t], a[t], R(b[t], c[t], p[t]), E [t+1]) is stored in the experience replay with
the maximum size being 3000. The network begins to learn when the quantity of storage
reaches 500. Thus, 500 experiences are used as the input of the main network, with the
input layer being 10, the hidden layer being 20 and the output layer being 26. The target
network has the same network structure as the main network.

To train the network, the loss function is defined as:

fLoss = E
{

R(c[t], c[t], p[t]) + γ× y−Q(E [t], a[t]; θ)
}

, (16)

y = max
a[t+1]

Q(E [t+1], a[t+1]; θ−). (17)
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The main network generates the Q-value as Q(E [t], a[t]; θ) during the state E [t] with
performing action a[t]. Additionally, the target network generates the max Q-value as y
with performing a different action a[t+1].

4. Simulation Results

The simulation results of the ISAC system for group UAVs under different resource
methods are carried out in a personal computer with 16 GByte DDR4 Intel Core i7-8750H,
6 GByte Nvidia GeForce GTX 1060 with Max-Q Design and stated in this chapter. Specific
simulation parameters are shown in Table 1. With a direct component in the channel, the
received signal is the superposition of complex Gaussian signals and direct components, so
the channel fading model adopted in this paper is the rice channel fading model. As given
in Table 1, we use 5 UAVs to form a group and 24 channels, 3 beams and 6 power grades to
develop resource block resources allocation.

Table 1. Simulation parameters.

Parameter Value

Number of UAVs 5
Total number of available channels 24

Total number of beams 3
Total number of power grades 6

Communication transmitting power 100 W
Radar transmitting power 100 KW
System noise temperature 290 K

Boltzmann constant 1.38× 10−23

The wavelength 0.1 m

First, we show the system performance with different reinforcement learning algo-
rithms, where the system performance is measured by the reward defined as R(b, c, p),
which is a combination of MI and CR and has been used in many papers. Specific simu-
lation parameters are shown in Table 2 for Q-Learning, SARSA, DQN and Dueling DQN
used in resource allocation. The DQN and Dueling DQN algorithms belong to deep re-
inforcement learning algorithms. They contain a neural network framework structure,
including a neural network input layer, hidden layer and output layer. Linear stands for
Linear functions at the input and output levels. Relu is the activation function that breaks
linearity. The size of the input layer is the dimension of state S, and the dimension of
the hidden layer is 20. The output layer of the former is the corresponding dimension of
behavior A, while the output layer of the latter mainly corresponds to dimensions one
and A.

Table 2. Specific parameters of reinforcement learning algorithms.

Parameter Q-Learning SARSA DQN Dueling DQN

Learning rate 0.01 0.1 0.001 0.1
εinit 0.7 0.7 0.7 0.7
εgap 5× 10−5 5× 10−5 5× 10−5 5× 10−5

εend 0.999 0.9 0.9 0.999
γ 0.9 0.9 0.9 0.9

Input layer - - Linear, |S| Linear, |S|
Hidden layer - - ReLU, 20 ReLU, 20

Output layer 1 - - Linear, |A| state function layer:Linear, |A|
Output layer 2 - - - advantage function layer:Linear, 1

In this paper, the convergence performance of each reinforcement learning algorithm
is verified by simulation. It is shown in Figure 4 that group UAVs’ resource allocation is
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simulated in a joint PyCharm and Matlab platform, where λ is 0.1, which means the gravity
of target detection task, and the gravity of the information sharing task is 0.9. At this point,
the normalized value of CR is 1000 Mbit/s, and the normalized value of MI is 5000 bit/s.
The CR is the specific gravity times communication the normalized value times the total
reward. MI is the specific gravity times the target detection normalized value times the
total reward.
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Figure 4. Comparison of convergence under different kinds of algorithms: (a) Dueling DQN; (b) DQN;
(c) Q-Learning; (d) SARSA.

As can be seen from Figure 4, in the process of group UAVs learning, the four reinforce-
ment learning algorithms have a relatively small number of learning iterations and low
total reward values in the early stage, which is because group UAVs have little awareness
of the environment in the early stage of learning and are in the exploratory stage. With
the increase in environmental awareness, group UAVs gradually learn the optimal strat-
egy, which makes the total reward tend to be stable. As shown in the data fitting curves,
Q-Learning and SARSA converged at round 5000 and 7000, respectively, while DQN and
Dueling DQN converged at round 500. Compared with the Q-Learning and SARSA al-
gorithms, DQN and Dueling-DQN are modified in three aspects based on Q-Learning:
using the DL approximation function, using experience reply to train the learning process
of reinforcement learning and independently establishing target networks to deal with
TD deviation in the time difference algorithm. This dramatically solves the problem of
too much moving space and breaks the correlation between experiences. The number of
episodes has also been significantly reduced. Additionally, due to too much moving, the
system performance of DQN and Dueling DQN is more excellent than Q-Learning and
SARSA algorithms.

Figure 5 shows comparison of loss under DQN and Dueling DQN with the same
learning rate. With the increase in episodes, the loss of Dueling DQN tended to be 0,
while that of DQN tended to be 1.5. Obviously, Dueling DQN had lower loss than DQN.
Additionally, the curve of Dueling DQN fluctuates wildly while that of DQN tended to
be flat. Dueling DQN had better performance on convergence than DQN. As shown in
Figure 6, under the condition of the same learning rate, Dueling DQN requires fewer
episodes than DQN, although the complexity of the problem they solved is increasing.
Therefore, the overall performance of Dueling DQN is better than DQN.

Second, we show the system performance under different methods. The proposed
method is compared with two benchmark methods:
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• KM method [41]: The traditional Kuhn Munkres (KM) iterative optimization method
is used for resource allocation by iterating over each resource to optimize allocation.

• DNN method [42]: The Deep Neural Network(DNN) method based on supervised
learning is used for resource allocation by fitting initial data sets.
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Figure 5. Comparison of loss under different kinds of algorithms: (a) DQN; (b)Dueling DQN.
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Figure 6. Comparison of episodes of algorithms.

As shown in Figures 7–11, there are four resource allocation methods: DQN, Dueling
DQN, KM and the DNN allocation algorithm. The four figures show the system perfor-
mance of the four methods in different environments. As shown in Figure 7, a reasonable
distribution of resources is carried out under different channel numbers. Channel values
range from 21 to 33. As the number of channels increases, the total reward performance
curves of three algorithms also gradually improve, which is caused by the gradual increase
in the system channel resources. It can be further seen from the figure that under the same
number of channels, when the number of channels is small, the performance of Dueling
DQN and DQN approaches the KM algorithm and is better than the DNN algorithm.
However, with the increase in the channel number, the performance of Dueling DQN and
DQN is obviously better than that of the KM algorithm and the DNN algorithm. This is
mainly because the KM algorithm is based on multiple resource iteration. Compared with
the DNN algorithm, it mainly depends on its fitting data set.
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As shown in Figure 8, the proper allocation of resources is carried out under other
power grades numbers. Power grades range from 6 to 18. As the number of power levels
increases, the total reward performance curves of three algorithms gradually increase
because it is highly likely to approach the optimal power as the number of power levels
increases. It can be further seen from the figure that under the same number of power levels,
the KM algorithm will perform better than the Dueling DQN and DQN algorithms when
the number of levels is small. However, the performance of the KM algorithm grows slowly
with the increase in the number of power levels, while the performance of the Dueling
DQN and DQN algorithms is better. The DNN algorithm has inferior performance to the
Dueling DQN and DQN algorithms from beginning to end.
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Figure 7. Comparison of the return values of different methods under different channels number.
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Figure 8. Comparison of the return values of different methods under different power grades.

As shown in Figure 9, proper allocation of resources is carried out under different
beam number. Beam values range from 3 to 7. With the increase of beam number, the total
reward performance curves of four algorithms gradually improve. This is mainly due to
the increase of beam resources. It can be further seen from the figure that the performance
of Dueling DQN algorithm and DQN algorithm are significantly better than that of KM
algorithm and DNN algorithm with the increase of beam number.

As shown in Figure 10, proper allocation of resources is carried out under other UAVs
numbers. UAVs numbers range from 5 to 25. As the number of users increases, so does the
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number of channels. The total reward performance curves of four algorithms gradually
increase. However, it can be clearly seen from the figure that when the number of users
and channels is small, the performance of KM algorithm is slightly higher than that of
Dueling DQN algorithm and DQN algorithm and the performance of DNN algorithm is
the lowest. However, the performance of Dueling DQN algorithm and DQN algorithm
show a rapid growth with the increase of the number of users while the KM algorithm and
DNN algorithm grow slowly. In addition, Dueling DQN algorithm and DQN algorithm
have the best performance.
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Figure 9. Comparison of the return values of different methods under different beam numbers.
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Figure 10. Comparison of the return values of different methods under different UAV numbers.

As shown in Figure 11, a reasonable distribution of resources is carried out under
different λ. λ ranges from 0.1 to 0.9. As can be seen from the figure, it is changing lambda
to compare the performance of the four algorithms under the condition that the resource
situation remains unchanged. The DNN algorithm has the worst performance. the Dueling
DQN algorithm and the DQN algorithm have the best performance. The KM algorithm
is average. It can be seen from the figures that the DQN and Dueling DQN resource
allocation algorithms are superior to the KM and DNN allocation algorithms with the
increase in environment complexity.

To show the computational complexity clearly, the computational time is given in
Figure 12. The computational time of the proposed method is shorter than KM and close to
DNN with the increase in environment complexity. When the environment becomes more
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and more complex, the time consumption of the KM algorithm increases obviously while
those of the Dueling DQN, DQN and DNN algorithms increase slowly.
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Figure 11. Comparison of the return values of different methods under different λ.
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Figure 12. The computational time of the different methods.

5. Summary and Prospect

For the flexible mobilization of the ISAC system, the traditional fixed resource allo-
cation can no longer satisfy the effective allocation of resources according to the real-time
situation, resulting in the low utilization of resources. In order to solve this problem,
this paper has firstly summarized and analyzed the resource allocation technology of the
ISAC system and then introduced the related resource allocation technology. Secondly,
with the considering of complexity for the resource allocation problem, reinforcement-
learning-based methods including Q-Learning, SARSA, DQN and Dueling DQN have
been proposed under a novel reward combining both the MI and the CR, and the reasons
for its combination have been analyzed. Finally, the allocation of resources under differ-
ent environments has been introduced. Simulation results show that compared with the
KM method, the resource allocation method based on reinforcement learning has better
performance and lower time complexity with the increase in environment complexity.
Compared with the DNN method, this method does not require prior data set preparation.
Additionally, when the time complexity of both methods is almost the same, the system
performance of this method is better. The resource allocation problem for the ISAC system
is studied based on the reinforcement learning method and the simulation results are used
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to show the advantages of the proposed method. In future work, we will realize a hardware
system to test the proposed method.
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