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Paleologu, C.; Benesty, J. Cascaded

RLS Adaptive Filters Based on a

Kronecker Product Decomposition.

Electronics 2022, 11, 409. https://

doi.org/10.3390/electronics11030409

Academic Editor: Manohar Das

Received: 10 December 2021

Accepted: 27 January 2022

Published: 29 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Cascaded RLS Adaptive Filters Based on a Kronecker
Product Decomposition
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Abstract: The multilinear system framework allows for the exploitation of the system identification
problem from different perspectives in the context of various applications, such as nonlinear acoustic
echo cancellation, multi-party audio conferencing, and video conferencing, in which the system could
be modeled through parallel or cascaded filters. In this paper, we introduce different memoryless and
memory structures that are described from a bilinear perspective. Following the memory structures,
we develop the multilinear recursive least-squares algorithm by considering the Kronecker product
decomposition concept. We have performed a set of simulations in the context of echo cancellation,
aiming both long length impulse responses and the reverberation effect.

Keywords: recursive least-squares (RLS) algorithm; adaptive filters; Kronecker product decomposition;
system identification; echo cancellation

1. Introduction

In the field of system identification, many applications involve adaptive filtering
algorithms [1,2]. One of them is the echo cancellation problem, which has raised many
challenges over the years [3,4]. Based on the input-output relation, a dynamic system
should be determined (i.e., the echo path), considering various parameters and external
factors that must be estimated. These dynamic systems are modeled linearly through an
adaptive filter with a finite-impulse-response (FIR) structure [5,6]. The main performance
bottlenecks, in terms of computational complexity, tracking, and convergence rate, arise
when the length of the impulse response reaches hundreds/thousands of coefficients. The
literature presents many approaches to improve the overall performance, also taking into
account the fact that the echo paths are sparse in nature [7–13]. Recently, in our previous
work [14], we introduced a new approach of splitting a long length impulse response
into several impulse responses of shorter lengths, aiming to reduce the computational
complexity by maintaining the overall performance. Another challenge arises when the
echo path produces multiple reflections, and this effect is called reverberation. From a
mathematical point of view, this effect could be described (to some extent) by using the
Kronecker product decomposition of the impulse response [15,16].

In this paper, we extend our study on cascaded adaptive filters, aiming to reduce
the computational complexity considering both long length impulse responses and the
reverberation effect. Our approach is based on multilinear structures and the Kronecker
product decomposition. The main goal is to outline the features of this development and
its potential.

The rest of the paper is organized as follows. Section 2 presents the background for
different bilinear structures without memory, while Section 3 introduces bilinear structures
with memory. In Section 4, the new development is combined with the recursive least-
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squares (RLS) algorithm, thus resulting in a practical solution based on adaptive filtering.
We perform an experimental study in Section 5 and conclude the paper in Section 6.

2. Bilinear Structures without Memory

In order to introduce the bilinear structures with memory and the development based
on the Kronecker product decomposition, let us start by presenting the bilinear structure
without memory [14,17,18], defined as

y(n) = hT
1 X(n)h2 =

L1

∑
l1=1

L2

∑
l2=1

xl1l2(n)h1,l1 h2,l2 , (1)

where X(n) is the multiple input data matrix of size L1 × L2, with

X(n) =
[

x1(n) · · · xl2(n) · · · xL2(n)
]
, (2)

and

xl2(n) =
[

xl2,1(n) · · · xl2,l1(n) · · · xl2,L1(n)
]T , l2 = 1, 2, . . . , L2 (3)

is an input signal vector containing the L1 most recent data at the discrete-time index n,
while the superscript T is the transpose operator. The two impulse responses h1 and h2
have L1 and L2 coefficients, respectively. In other words, the input-output equation in (1)
describes a system with L1L2 inputs and a single output. In order to facilitate the graphical
representation, let us rewrite (1) as

y(n) =
L1

∑
l1=1

h1,l1

L2

∑
l2=1

h2,l2 xl1l2(n) =
L2

∑
l2=1

h2,l2

L1

∑
l1=1

h1,l1 xl1l2(n)

=
L2

∑
l2=1

h2,l2 s1,l2(n),

(4)

where

s1,l2(n) =
L1

∑
l1=1

h1,l1 xl1l2(n) (5)

is the output of a memoryless weighted adder with L1 inputs at the discrete-time index n.
We can transpose (5) in a graphical representation as shown in Figure 1.

Figure 1. (a) The structure of s1,l2 (n) [see (5)] and (b) the symbolic representation of the s1,l2 (n)
memoryless weighted adder.
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Based on (4) and Figure 1, we can introduce the graphical respresentation of the
multiple-input single-output (MISO) system as shown in Figure 2. Overall, this structure
consists of two levels of combiners.

Figure 2. The two combiner levels structure (i.e., a MISO system).

3. Bilinear Structures with Memory

By introducing a delay line, the s1,l2(n) structure described by L1 inputs and a single
output can be transformed in a single-input single-output (SISO) structure. Therefore,
the following input signal vector results

xl2(n) =
[

xl2(n) · · · xl2(n− l1 + 1) · · · xl2(n− L1 + 1)
]T , l2 = 1, 2, . . . , L2. (6)

Thus, the input data matrix has the following structure:

X(n) =


x1(n) · · · xl2(n) · · · xL2(n)

x1(n− 1) · · · xl2(n− 1) · · · xL2(n− 1)
...

. . .
...

. . .
...

x1(n− L1 + 1) · · · xl2(n− L1 + 1) · · · xL2(n− L1 + 1)

.

Hence,

s1,l2(n) =
L1

∑
l1=1

h1,l1 xl2(n− l1 + 1) (7)

is a structure associated to a transversal filter, with the weighted function h1, having as input
the vector xl2(n). The graph representation of the new s1,l2(n) structure is shown in Figure 3.
Also, Figure 4 outlines the two combiner level structures based on the transversal filters.

In terms of the z-transform, (7) is defined as

S1,l2(z) =
∞

∑
n=−∞

s1,l2(n)z
−n =

L1

∑
l1=1

h1,l1

∞

∑
n=−∞

xl2(n− l1 + 1)z−n

= Xl2(z)
L1

∑
l1=1

h1,l1 z−l1+1

= Xl2(z)H1(z),

(8)
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where

H1(z) =
L1

∑
l1=1

h1,l1 z−l1+1. (9)

Figure 3. (a) The structure of s1,l2 (n) with delay line and (b) its symbolic representation.

Figure 4. The two combiner levels structure based on transversal filters.

A more efficient form in terms of correlation between the columns of the input matrix
X(n) can be obtained if we consider successive data related to the columns, and is defined as

X(n) =


x1(n) · · · x1(n− (l2 − 1)L1) · · · x1(n− (L2 − 1)L1)

x1(n− 1) · · · x1(n− (l2 − 1)L1 − 1) · · · x1(n− (L2 − 1)L1 − 1)
...

. . .
...

. . .
...

x1(n− L1 + 1) · · · x1(n− (l2 − 1)L1 − L1 + 1) · · · x1(n− (L2 − 1)L1 − L1 + 1)

.

The input signal vector becomes a sequence of L1L2 successive data applied to a FIR
filter of length L1L2, so that

x(n) = vec[X(n)], (10)

where vec(·) denotes the vectorization operation and

s1,l2(n) =
L1

∑
l1=1

h1,l1 x1(n− l1L2), (11)

with x1(n) = x1(n− L1), . . . , xl2(n) = x1(n− l1L2), . . . , xL2(n) = x1(n− L1L2). In terms
of the z-transform, we can write (11) as
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S1,l2(z) =
L1

∑
l1=1

X1(z)z−l1L2 h1,l1

= X1(z)
L1

∑
l1=1

z−l1L2 h1,l1 = X1(z)H1

(
zL2
)

.

(12)

Forwards, the output of the global system in the z-transform domain is

Y(z) = S1,l2(z)H2(z) = X1(z)H1

(
zL2
)

H2(z) = X1(z)H(z), (13)

where

H(z) = H1

(
zL2
)

H2(z). (14)

Equation (12) describes a SISO structure of two cascaded filters as shown in Figure 5.
The first filter H1

(
zL2
)

is obtained through interpolation with zeroes by L2 factor of the
H1(z) function and its length is L2(L1 − 1) + 1. Indeed, it has only L1 non-zero coefficients,
from the total of L2(L1 − 1) + 1, (hence a certain degree of sparsity), according to its
impulse response

h
′
1(n) =

{
h1(

n
L1
), for n mod L1 = 0, n = 1, 2, . . . , L2(L1 − 1) + 1

0, otherwise
, (15)

where h
′
1(n) is the impulse response of H1

(
zL2
)

and mod denotes the modulo operation.
The second filter, H2(z), is of length L2. Afterwards, the total length of the H(z) filter is
L2(L1 − 1) + 1 + L2 − 1 = L1L2.

Figure 5. SISO system in cascaded configuration.

Based on this configuration, let us consider the two vectors:

h1 =



h1,1
h1,2

...
h1,l1

...
h1,L1


, h2 =



h2,1
h2,2

...
h2,l2

...
h2,L2


,

and the Kronecker product:

h = h1 ⊗ h2 =



h1,1h2
h1,2h2

...
h1,l1 h2

...
h1,L1 h2


.
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Having as coefficients the elements of this vector, the polynomial form is developed as

H(z) =
L1L2−1

∑
r=0

hrz−r (16)

and can be factored in the form described in (14). While the position of an element for the
l1, l2 indexes is r = (l1 − 1)L2 + l2 − 1, we have

H1

(
zL2
)

H2(z) =
L1

∑
l1=1

h1,l1 z−(l1−1)L2
L2

∑
l2=1

h2,l2 z−(l2−1)

=
L1

∑
l1=1

L2

∑
l2=1

h1,l1 h2,l2 z−(l1−1)L2−(l2−1)

=
L1L2−1

∑
r=0

hrz−r.

(17)

4. Cascaded Multilinear RLS Algorithm Using Kronecker Product Decomposition

Based on the development from Section 3, we introduce the set of equations for the RLS
algorithm in a multilinear manner, following the Kronecker product decomposition [14,19].
Our approach is determined considering the system identification framework. In this
context, the output of the MISO system is

y(n) = X (n)×1 hT
1 ×2 hT

2 ×i · · · ×N hT
N , (18)

where N denotes the multilinear degree and ×i represents the multiplication operation by
the dimension i = 1, 2, . . . , N. The input data are described in a N degree tensorial form as
[X (n)]l1l2 ...lN with the real-values xl1l2 ...lN , li = 1, 2, . . . , Li, i = 1, 2, . . . , N. The vector hi of
length Li, stores the impulse response for the i cascaded filter, i = 1, 2, . . . , N. Based on the
hi (i = 1, 2, . . . , N) impulse responses of the MISO system, the rank-1 tensor of dimension
L1 × L2 × · · · × LN is

H = h1 ◦ h2 ◦ · · · ◦ hN , (19)

where ◦ denotes the outer product. Usually, in the context of system identification, the
desired signal results from the output signal corrupted by an additive noise, w(n), which
in our development is a zero-mean Gaussian signal, so that

d(n) = y(n) + w(n). (20)

Consequently, the output signal described by (18) results in

y(n) = vecT [X (n)]vec(H), (21)

where

vec[X (n)] =


vec[X::···:L1(n)]
vec[X::···:L2(n)]

...
vec[X::···:LN (n)]

 , x̃(n)

and

vec(H) =


vec(H::···:L1)
vec(H::···:L2)

...
vec(H::···:LN )

 = hN ⊗ · · · ⊗ h2 ⊗ h1 , h,
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with X::···:li (n) ∈ RL1×L2×···×LN−1 and H::···:li (n) ∈ RL1×L2×···×LN−1 representing the frontal
slices of X (n) and H(n), respectively. The two new vectors x̃(n) and h consist of L1L2 · · · LN
elements. Also, the output of the system can be rewritten as

y(n) = x̃T(n)h. (22)

Then, the a priori error signal is computed as

e(n) = d(n)− ŷ(n), (23)

where ŷ(n) represents an estimate of the output signal. Following the least-squares (LS)
error criterion, we can introduce the cost functions:

J [ĥ1(n)] =
n

∑
k=1

λn−k
1 [d(n)− ĥT

1 (n)x̃ĥ2ĥ3···ĥN
(n)]2,

J [ĥ2(n)] =
n

∑
k=1

λn−k
2 [d(n)− ĥT

2 (n)x̃ĥ1ĥ3···ĥN
(n)]2,

...

J [ĥN(n)] =
n

∑
k=1

λn−k
N [d(n)− ĥT

N(n)x̃ĥ1ĥ2···ĥN−1
(n)]2,

(24)

where 0 < λi ≤ 1, i = 1, 2, . . . , N, represent the forgetting factors and

x̃ĥ2ĥ3···ĥN
(n) = [ĥN(n− 1)⊗ · · · ⊗ ĥ2(n− 1)⊗ IL1 ]

T x̃(n),

x̃ĥ1ĥ3···ĥN
(n) = [ĥN(n− 1)⊗ · · · ⊗ IL2 ⊗ ĥ1(n− 1)]T x̃(n),

...

x̃ĥ1ĥ2···ĥN−1
(n) = [ILN ⊗ · · · ⊗ ĥ2(n− 1)⊗ ĥ1(n− 1)]T x̃(n),

(25)

with ILi denoting the identity matrix of size Li × Li, i = 1, 2, . . . , N. Following the mini-
mization of the cost functions J [ĥ1(n)], J [ĥ2(n)],. . ., J [ĥN(n)], the update equations of
the RLS algorithm in the multilinear approach result:

ĥ1(n) = ĥ1(n− 1) + sĥ2ĥ3···ĥN
(n)eĥ2ĥ3···ĥN

(n),

ĥ2(n) = ĥ2(n− 1) + sĥ1ĥ3···ĥN
(n)eĥ1ĥ3···ĥN

(n),

...

ĥN(n) = ĥN(n− 1) + sĥ1ĥ2···ĥN−1
(n)eĥ1ĥ2···ĥN−1

(n),

(26)

where the a priori errors are defined as

eĥ2ĥ3···ĥN
(n) = d(n)− ĥT

1 (n− 1)x̃ĥ2ĥ3···ĥN
(n),

eĥ1ĥ3···ĥN
(n) = d(n)− ĥT

2 (n− 1)x̃ĥ1ĥ3···ĥN
(n),

...

eĥ1ĥ2···ĥN−1
(n) = d(n)− ĥT

N(n− 1)x̃ĥ1ĥ2···ĥN−1
(n),

(27)

with
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sĥ2ĥ3···ĥN
(n) = Pĥ1

(n− 1)x̃ĥ2ĥ3···ĥN
(n)[λ1 + x̃T

ĥ2ĥ3···ĥN
(n)Pĥ1

(n− 1)x̃ĥ2ĥ3···ĥN
(n)]−1,

sĥ1ĥ3···ĥN
(n) = Pĥ2

(n− 1)x̃ĥ1ĥ3···ĥN
(n)[λ2 + x̃T

ĥ1ĥ3···ĥN
(n)Pĥ2

(n− 1)x̃ĥ1ĥ3···ĥN
(n)]−1,

...

sĥ1ĥ2···ĥN−1
(n) = PĥN

(n− 1)x̃ĥ1ĥ2···ĥN−1
(n)

× [λN + x̃T
ĥ1ĥ2···ĥN−1

(n)PĥN
(n− 1)x̃ĥ1ĥ2···ĥN−1

(n)]−1

(28)

and
Pĥ1

(n) = λ−1
1 Pĥ1

(n− 1)− λ−1
1 sĥ2ĥ3···ĥN

(n)x̃T
ĥ2ĥ3···ĥN

(n)Pĥ1
(n− 1),

Pĥ2
(n) = λ−1

2 Pĥ2
(n− 1)− λ−1

2 sĥ1ĥ3···ĥN
(n)x̃T

ĥ1ĥ3···ĥN
(n)Pĥ2

(n− 1),

...

PĥN
(n) = λ−1

N PĥN
(n− 1)− λ−1

N sĥ1ĥ2···ĥN−1
(n)x̃T

ĥ1ĥ2···ĥN−1
(n)PĥN

(n− 1).

(29)

In fact, the equations from (26) represent a multilinear optimization strategy, where
N − 1 impulse responses are considered fixed during the optimization of the remaining
one [20]. In other words, in each of the cost functions from Equation (24), for the opti-
mization of ĥi(n), we consider that the other ĥj(n), with i 6= j, are fixed. The initialization
of the RLS-based algorithms is influenced by the initialization of the matrix P(n), which
represents a recursive estimate of the inverse of the covariance matrix of the input sig-
nal [21]. In fact, this is the initialization factor that controls the initial convergence of the
algorithm. Usually, this initialization is P(0) = δ−1IL, where δ is the so-called regulariza-
tion parameter and IL is the identity matrix of size L× L. This regularization parameter
depends on the length of the filter and the power of the input signal. In the case of the
RLS-CKD algorithm, the matrices from (29) should be initialized in a similar manner. How-
ever, even if the initialization of the conventional RLS and RLS-CKD algorithms could
be different from this point of view, the regularization parameters do not bias the overall
performance, since their influence (for n large enough) is negligible due to the forgetting
factors (i.e., λ for the conventional RLS and λi for the RLS-CKD algorithm), which are
positive constants smaller than 1. Finally, the cascaded multilinear RLS algorithm based
on the Kronecker product decomposition (RLS-CKD) is defined by Equations (26)–(29).
While the classical RLS algorithm involves matrices of size L× L, the RLS-CKD algorithm
solves the system identification problem by splitting the long length impulse response in
shorter length impulse responses, so that it implies matrices of sizes Li × Li, i = 1, 2, . . . , N,
where L = L1L2 · · · LN . The classical RLS algorithm involves a computational complexity
of O(L2). In the case of the RLS-CKD algorithm, the computation complexity results as
a sum of O(L2

i ). Following the presented approach, the computational complexity of the
RLS-CKD is reduced to O(L2

1) + O(L2
2) + · · ·+ O(L2

N) + O(NL), with N � L. The extra
O(NL) computational amount is due to the Kronecker product operations. At this point,
we can observe a drastic reduction in computational complexity for the RLS-CKD algorithm
as compared to that of the classical RLS algorithm, especially for impulse responses of long
length (as in echo cancellation).

5. Simulation Results

In order to simulate the RLS-CKD algorithm, we have chosen two different multilinear
degrees, N = 2 (bilinear) and N = 3 (trilinear), considering the echo cancellation frame-
work. As input signals, we have used white Gaussian noise (i.e., a random process with
standard normal distribution, zero mean, and unit variance), an AR(1) process produced
by filtering a white Gaussian noise through a first-order system 1/(1− 0.9z−1), and a
speech sequence, at a sample rate of 8 kHz. For the purpose of these simulations, we have
considered that the output of the target system (i.e., the echo signal) is corrupted by white
Gaussian noise [i.e., w(n)], considering an echo-to-noise ratio (ENR) of 20 dB when the
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input signal is a white Gaussian noise or an AR(1) process, and 30 dB when the input signal
is a speech sequence. In order to measure the performance, we have used the normalized
misalignment in dB, defined as

NM[h, ĥ(n)] = 20log10

[
||h− ĥ(n)||2
||h||2

]
, (30)

where || · ||2 denotes the Euclidean norm and

ĥ(n) = ĥN(n)⊗ · · · ⊗ ĥ2(n)⊗ ĥ1(n). (31)

As initialization we have used ĥ1(0) = [1 0T
L1−1]

T (i.e., the first coefficient is equal
to one, which is followed by L1 − 1 zeros), while the other impulse responses ĥj(0), with
j = 2, 3, . . . , N are initialized as

ĥj(0) =
1
Lj

1Lj , (32)

where 1Lj denotes a column vector with all its Lj elements equal to one. The conventional
all-zeros initialization specific to most of the adaptive filtering algorithms cannot be used
in the case of tensor-based algorithms, due to connection between the individual filters, as
shown in Equation (25). In this case, the initialization ĥi(0) = 0Li (i = 1, 2, . . . , N) would
stall the algorithm.

For the first set of simulations that implies the bilinear approach, we have considered
the impulse responses depicted in Figure 6. In the first plot, Figure 6a, the first impulse re-
sponse h1 from the G168 Recommendation [22] is represented (i.e., a 64 coefficients cluster).
Next, Figure 6b depicts the second impulse response h2, evaluated as h2l2 = 0.5l2−1, with
l2 = 1, 2, . . . , L2, where L2 = 8. The third impulse response is the target that must be deter-
mined and is obtained as the Kronecker product between the first two impulse responses,
i.e., h = h2 ⊗ h1. This impulse response is similar to the echo produced by an acoustic
environment characterized by a reverberation effect and its length is L = L1L2 = 512 coeffi-
cients. Here, we consider the case of a linearly separable system, which is the benchmark
of our approach, and show how it can be efficiently exploited in the framework of sys-
tem identification problems. The impulse response from Figure 6c could correspond to
a channel with echoes. This repetitive (but not periodic) structure could also result if a
certain impulse response is followed by its reflections, e.g., as in wireless transmissions.
The method allows temporal localization and magnitude estimation of the reflections, con-
sidering a temporal grid, without any restrictions of periodicity. However, the tensor-based
adaptive algorithms can efficiently model the separable part of the system. The forgetting
factor used for the RLS algorithm is computed as λ = 1− 1/(KL), with K = 10 in the
bilinear context and K = 1 in the trilinear context, while for the RLS-CKD algorithm is
computed as λi = 1− 1/(MKLi), i = 1, 2, with K = 10 and M = 1, 3, 5.

In the first simulation represented in Figure 7, we analyze the performance of the
RLS-CKD algorithm with that of the classical RLS algorithm. The echo path changes after
4 s of simulation by changing the impulse response h2 with a random impulse response
of the same length, with samples between 0 and 0.5. In the first part of the plot, we can
remark that the RLS-CKD algorithm achieves a convergence rate similar to that of the
classical RLS algorithm. Regarding the tracking capability, when the echo path changes, the
RLS-CKD algorithm outperforms the RLS algorithm. The RLS-CKD achieves a normalized
misalignment of −30 dB in less than 200 ms. We can remark that the constant value M only
affects the normalized misalignment level when the echo path changes.
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Figure 6. Impulse responses for the bilinear setup: (a) h1, first impulse from the G168 Recommen-
dation [22]; (b) h2, exponential generated impulse response; and (c) impulse response of the target
system, h = h2 ⊗ h1.

Figure 7. Normalized misalignment of the classical RLS (L = 512) and RLS-CKD (L1 = 64, L2 = 8)
algorithms. The input signal is white Gaussian noise and the impulse response changes after 4 s
of simulation.

Next, in Figure 8, we analyze the behavior of the RLS-CKD algorithm in a scenario
where the input signal is an AR(1) process. The echo path changes in the same manner
as in the previous scenario. In this case, the RLS-CKD algorithm achieves an even lower
normalized misalignment of almost 10 dB (e.g., when M = 5) compared to the RLS
algorithm. When the echo path changes, the values of M do not impact the RLC-CKD
algorithm too much. This time, the RLS-CKD achieves a normalized misalignment of
−40 dB in less than 500 ms, while the RLS algorithm requires at least 3 s to achieve a
comparable level.
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Figure 8. Normalized misalignment of the classical RLS (L = 512) and RLS-CKD (L1 = 64, L2 = 8)
algorithms. The input signal is an AR(1) process and the impulse response changes after 4 s
of simulation.

We conclude the first set of simulations with the scenario depicted in Figure 9, where
the input signal is a speech sequence and the echo path changes in the middle of the
simulation in the same manner.

Figure 9. Normalized misalignment of the classical RLS (L = 512) and RLS-CKD (L1 = 64, L2 = 8)
algorithms. The input signal is a speech sequence and the impulse response changes in the middle of
the simulation.

As we can notice in Figure 9, the steady-state misalignment of the conventional RLS
algorithm (the blue curve) is similar to the misalignment of the RLS-CKD algorithm using
M = 1, while the initial convergence rate and tracking of the proposed algorithm are much
better. A larger value of M influences only the initial convergence rate of the RLS-CKD
algorithm, but keeps the same fast tracking reaction. On the other hand, the steady-state
misalignment of the RLS-CKD is improving for a larger value of M (i.e., for larger values of
the forgetting factors λi, closer to 1).

Furthermore, we continue the simulations with the trilinear approach, based on the
impulse responses from Figure 10. In this case, we have considered an even longer echo
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path of thousands of coefficients. The echo path of the system that must be identified is
obtained as h = h3⊗ h2⊗ h1, of size L = L1L2L3 = 2048, with h1 (L1 = 64) from Figure 6a,
h2 (L2 = 8) from Figure 10a, and h3 (L3 = 4) from Figure 10b. The second impulse response
(i.e., h2) is randomly generated, with samples between 0 and 0.5, while the third impulse
response (i.e., h3) is obtained as h3l3 = 0.5l3−1, with l3 = 1, 2, . . . , L3, where L3 = 4.

Figure 10. Impulse responses for the trilinear setup: (a) h2, random generated impulse response;
(b) h3, exponential generated impulse response; and (c) Impulse response of the target system,
h = h3 ⊗ h2 ⊗ h1.

In Figure 11, the first simulation in the trilinear scenario is represented. The input
signal is a white Gaussian noise and the echo path changes by generating h3 as a random
impulse response after 4 s, so this impacts the whole system. It is worth noting that the
RLS-CKD algorithm presents a slightly faster converge rate compared to that of the RLS
algorithm and a lower normalized misalignment for M = 5 of at least 10 dB. In terms of
tracking, the RLS-CKD algorithm succeeds in re-estimating the new echo path and we can
see that the smaller the forgetting factor is (i.e., M = 1), the faster the tracking.

Figure 11. Normalized misalignment of the classical RLS (L = 2048) and RLS-CKD (L1 = 64, L2 = 8,
L3 = 4) algorithms. The input signal is white Gaussian noise and the impulse response changes after
4 s.
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In the scenario represented in Figure 12, the input signal is an AR(1) process and
the echo path changes by regenerating h3 after 4 s. The RLS-CKD algorithm outperforms
the classical RLS algorithm in terms of convergence rate, normalized misalignment, and
tracking capability, with a much lower computational complexity. Finally, in Figure 13, we
conclude the set of simulations with a scenario where the input signal is a speech sequence.
Again, the echo path changes by regenerating h3 after 6 s of simulation. While the classical
RLS algorithm requires more than 3 s to achieve a reasonable normalized misalignment
level, the RLS-CKD algorithm succeeds at estimating the target system, presenting a good
tracking capability even when the echo path changes. However, for a faster convergence
rate, the RLS-CKD algorithm requires a much lower forgetting factor (e.g., M = 1). Also,
the steady-state misalignment of the conventional RLS algorithm (after the change of the
system) is similar to the misalignment of the RLS-CKD algorithm using M = 1.

Figure 12. Normalized misalignment of the classical RLS (L = 2048) and RLS-CKD (L1 = 64, L2 = 8,
L3 = 4) algorithms. The input signal is an AR(1) process and the impulse response changes after 4 s.

Figure 13. Normalized misalignment of the classical RLS (L = 2048) and RLS-CKD (L1 = 64, L2 = 8,
L3 = 4) algorithms. The input signal is a speech sequence and the impulse response changes after 6 s.
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6. Conclusions

In this paper, we have introduced various memoryless and memory structures de-
scribed by a bilinear input-output relation. Based on this approach, we have obtained a
SISO system from a MISO system, which is a cascade of shorter length filters. We then
developed the multilinear RLS algorithm considering the Kronecker product decomposi-
tion and outlining the reduction in terms of computational complexity. Finally, we have
presented a set of simulations as a comparison between the newly developed RLS-CKD
algorithm and the classical RLS algorithm. Simulations proved that the RLS-CKD algo-
rithm outperforms the classical RLS algorithm in terms of convergence rate, normalized
misalignment, and tracking capability. We can conclude that the RLS-CKD algorithm is a
good candidate for real-time applications, which implies long length impulse responses
and systems characterized by reverberation.
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9. Deng, H.; Doroslovački, M. Proportionate adaptive algorithms for network echo cancellation. IEEE Trans. Signal Process. 2006, 54,

1794–1803. [CrossRef]
10. Loganathan, P.; Khong, A.W.; Naylor, P. A class of sparseness-controlled algorithms for echo cancellation. IEEE Trans. Audio

Speech Lang. Process. 2009, 17, 1591–1601. [CrossRef]
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