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Abstract: This paper investigates the flux intensifying (FI) feature of permanent magnet assisted
synchronous reluctance motor (PMa-SynRM) in order to achieve high torque density with a small
amount of permanent magnet (PM). This motor is thus denoted “FI-PMa-SynRM”. The performance
of the developed FI-PMa-SynRM is compared with that of two other counterparts, i.e., an inset surface
permanent magnet synchronous motor (SPMSM) and a synchronous reluctance motor (SynRM) to
highlight the strengths of the FI-PMa-SynRM. In addition, an analysis on partial demagnetization
and torque density of the developed FI-PMa-SynRM is conducted to demonstrate its advantages. The
finite element method (FEM) is employed for the analysis in terms of flux linkage and inductances
so that the effectiveness of the FI characteristics is validated. The analysis shows that a high torque
density (24.79 Nm/L or even greater) can be achieved with a small amount of PM (0.72% motor
volume). The ability of anti-demagnetization is also fulfilled. Furthermore, experimental results are
provided to validate the analysis findings.

Keywords: PMa-SynRM; flux intensifying; permanent magnet motor; torque density; FEM

1. Introduction

Permanent magnet (PM) synchronous motor (PMSM) [1,2] and PM assisted syn-
chronous reluctance motor (PMa-SynRM) [3,4] are currently interesting options in many
applications such as electric vehicles (EVs) for their high efficiency and high torque/power
densities. They can be efficiently driven by traction inverters used in EVs. However, because
of the high cost of rare-earth PM, the objective to achieve high torque density by minimizing
rare-earth materials and acceptable anti-demagnetization ability has been a critical concern.
Many types of motors have been studied for this purpose [5–10]. Kim et al. [5] compared
interior PMSMs with different PM shapes and dimensions to evaluate torque density. The
factors of high torque density and low torque ripple were both considered by using embed-
ded sinusoidal plus third harmonic shaped surface PM [6]. Multi-phases PM motors, e.g.,
a six-phase interior PMSM (IPMSM) [7] and a nine-phase consequent pole PMSM [8] were
proposed with higher torque density compared to three-phase PM motors. Barcaro et al. [9]
optimized PM volume for two PMa-SynRMs (i.e., one with rare-earth PM and the other with
ferrite PM) to achieve a torque per stack length of 40 Nm/m and 15 Nm/m for low and high
speed, respectively. Bonthu et al. [10] proposed and compared external-rotor PMa-SynRMs
between rare-earth-free and rare-earth cases to satisfy the high torque and power density
requirements. Moreover, a summary comparing the torque densities of some developed
motors was shown and discussed in [11]. In this paper, a brief survey of some motor
models in terms of volumetric torque density and PM-to-motor-volume ratio is presented
in Appendix A for reference.
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On the other hand, the irreversible demagnetization of PM in PMSM and PMa-SynRM
has been a specific concern owing to the flux weakening/weakened (FW) feature of these
motors [12–17]. Jeong and Hur compared PM demagnetization between two hybrid PMSMs
with rare-earth and ferrite PMs [12]. Kim et al. analyzed partial PM demagnetization in
PMSM [13]. The effect of concentrated and distributed windings on anti-demagnetization
ability in rare-earth-less PMa-SynRM [14] and PM demagnetization on a wide speed
range of PMa-SynRM [15] was investigated and evaluated. Bianchi and Mahmoud [16]
presented an analytical approach to design PMa-SynRMs toward enhancement of anti-
demagnetization ability. In addition, the demagnetization fault indexes of PMSM were
overviewed [17]. As a potential option, the flux intensifying (FI) rotor configuration has
been of recent interest as an alternative to conventional PMSMs which usually adopt the FW
feature. This implies that the conventional PMSMs (mostly interior PMSMs) can possibly
be transformed to FI-PMSMs with various PM shapes (e.g., flat PM shape [18,19], curved
PM shape [20], and spoke type PM [21]) and with an equal or slightly lower amount of PM
needed for better anti-demagnetization ability.

Generally, most of the above studies were carried out on motors with a large amount
of rare-earth PM for obtaining high torque and good anti-demagnetization. To achieve
a relatively high torque density by employing a small rare-earth PM amount or non-
rare-earth PM and avoiding irreversible demagnetization are not easy tasks. To decrease
the amount of the rare-earth PM, the FI configuration was attempted on a motor that is
essentially a reluctance motor and this leads to the creation of the FI-PMa-SynRM [22].
This configuration (PM placed along d-axis) differs from common PMa-SynRM (PM placed
along q-axis) so that PM flux linkage is intensified by part of the armature flux linkage.
However, this previous work [22] mainly concentered on enchanting torque characteristics
by optimizing flux barrier (FB) dimensions and the relative position between FB and PM.
Moreover, the individual impact of FB and PM on motor performance (in particular, the
ability to achieve high torque density) was not considered.

Therefore, this paper seeks for a new approach with a logical methodology, e.g., by
comparing the difference between the developed FI-PMa-SynRM and its two counterparts
(an inset surface PMSM (SPMSM) model and a SynRM model) to highlight the strength of
the FI-PMa-SynRM. Then, further analysis of partial demagnetization is conducted to make
sure of a safe operation of PM with sufficient anti-demagnetization ability. The torque
density of the FI-PMa-SynRM is investigated and compared with another motor, aiming
at demonstrating the substantial improvement of torque density with a small amount
of PM by applying the FI feature. The prospective application of the designed FI-PMa-
SynRM can be EV or hybrid EV traction motors excited by high-efficiency power electronics
converters/inverters, that are controlled by electronic control units in vehicles.

The remaining parts of this manuscript are organized as follows. The investigated
motor models and the concept of torque production are discussed in Section 2. After that,
the performance difference and the effect of PM and FBs are analyzed and explained in
Section 3. The detailed analysis for the developed motor model is represented in Section 4,
followed by the experimental studies and related discussions in Section 5. Finally, the
conclusion is concisely shown in Section 6.

2. Investigated Models and Concept of Torque Production and Improvement
2.1. Investigated Models

From the viewpoint of motor construction, rotors of conventional PMa-SynRMs are
constructed by adding PM to the rotors of SynRM [15,23–25]. For a recently proposed FI-
PMSM, its rotor can be made by adding FBs on the q-axis of an IPMSM rotor [18,20]. These
rotors all have PMs embedded inside the core, so it is difficult to evaluate the individual
impact of PMs and FBs on motor characteristics. It is worth noting that both FBs and PMs
have a great influence on the performance and characteristics of synchronous machines
regardless of PM-based or reluctance-based machines [26].
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Conversely, the developed FI-PMa-SynRM [22] employs the surface-inset PM layout
to minimize the amount of PM used. This rotor configuration can be considered as the
suitable combination of a SynRM with multiple FBs and a surface PMSM (SPMSM) due to
the structural independence between PMs and main FBs (i.e., interior FB) [22]. Therefore,
the roles of FB and PM can be individually assessed, and their individual contributions can
be easily separately evaluated. In this paper, the two counterpart models are intentionally
constructed with the same rotor shapes for easy and direct comparison. The first one
is an Inset SPMSM model (only eliminating interior FBs as compared to the developed
FI-PMa-SynRM) that represents the flux weakened motor, while the second one is a SynRM
model (only removing PMs based on the FI-PMa-SynRM) with only reluctance torque, as
indicated in Figure 1. The specifications of the investigated models are given in Table 1.

Electronics 2022, 10, x FOR PEER REVIEW 3 of 17 
 

 

Conversely, the developed FI-PMa-SynRM [22] employs the surface-inset PM layout 
to minimize the amount of PM used. This rotor configuration can be considered as the 
suitable combination of a SynRM with multiple FBs and a surface PMSM (SPMSM) due 
to the structural independence between PMs and main FBs (i.e., interior FB) [22]. There-
fore, the roles of FB and PM can be individually assessed, and their individual contribu-
tions can be easily separately evaluated. In this paper, the two counterpart models are 
intentionally constructed with the same rotor shapes for easy and direct comparison. The 
first one is an Inset SPMSM model (only eliminating interior FBs as compared to the de-
veloped FI-PMa-SynRM) that represents the flux weakened motor, while the second one 
is a SynRM model (only removing PMs based on the FI-PMa-SynRM) with only reluctance 
torque, as indicated in Figure 1. The specifications of the investigated models are given in 
Table 1. 

 
Figure 1. Rotor layouts of investigated models. 

Table 1. Specifications of Target Motors. 

Parameter Unit Value 
Outer radius of stator mm 80 
Outer radius of rotor mm 47 

Length of stack mm 32 
PM span mm 24 

PM thickness mm 1.5 
Motor volume L 0.6434 

PM volume L 0.0046 
PM/motor volume ratio % 0.72 

2.2. Concept of Torque Production and Improvement 
Figure 2 represents the phasor diagrams of the FI-PMa-SynRM, Inset SPMSM, and 

SynRM, where it is assumed that the FI-PMa-SynRM and SynRM possess the same in-
ductances and current vectors. We can see that the only flux linkage of the SynRM is the 
armature one, while those of the FI-PMa-SynRM and Inset SPMSM have PM parts, i.e., 
PM flux linkage (λm). However, the correlation between the PM and armature flux link-
ages in these two motors with PM is opposite. The PM flux linkage lies against the part of 
armature flux linkage on the d-axis for the Inset SPMSM and in the same direction for the 
FI-PMa-SynRM. The “FI” feature illustrated in Figure 2a enhances the anti-demagnetiza-
tion ability. In contrast, the Inset SPMSM in Figure 2b is an FW motor, as the IPMSM and 

Figure 1. Rotor layouts of investigated models.

Table 1. Specifications of Target Motors.

Parameter Unit Value

Outer radius of stator mm 80
Outer radius of rotor mm 47

Length of stack mm 32
PM span mm 24

PM thickness mm 1.5
Motor volume L 0.6434

PM volume L 0.0046
PM/motor volume ratio % 0.72

2.2. Concept of Torque Production and Improvement

Figure 2 represents the phasor diagrams of the FI-PMa-SynRM, Inset SPMSM, and
SynRM, where it is assumed that the FI-PMa-SynRM and SynRM possess the same in-
ductances and current vectors. We can see that the only flux linkage of the SynRM is the
armature one, while those of the FI-PMa-SynRM and Inset SPMSM have PM parts, i.e., PM
flux linkage (λm). However, the correlation between the PM and armature flux linkages
in these two motors with PM is opposite. The PM flux linkage lies against the part of
armature flux linkage on the d-axis for the Inset SPMSM and in the same direction for the FI-
PMa-SynRM. The “FI” feature illustrated in Figure 2a enhances the anti-demagnetization
ability. In contrast, the Inset SPMSM in Figure 2b is an FW motor, as the IPMSM and
PMa-SynRM [26].
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The torque equations for these three types of motors are discussed as follows. For the
SynRM without embedded PM, the average torque can be expressed as:

T =
3
2

p
(

Ld Id Iq − Lq Iq Id
)
=

3
2

p
(

Ld − Lq
)

Id Iq (1)

where subscripts d and q represent the d- and q-axis respectively, Ld and Lq are the induc-
tances, Id and Iq are the motor currents, and p is the number of pole pairs.

For the FI-PMa-SynRM and Inset SPMSM with PM flux linkage, their average torque
can be determined by

T =
3
2

p
[
(λm + Ld Id)Iq − Lq Id Iq

]
=

3
2

p
[
λm Iq +

(
Ld − Lq

)
Id Iq

]
(2)

Theoretically, the Inset SPMSM (an FW motor) has the current vector that is located in
the second quadrant for maximum torque per ampere (MTPA) operation with a positive
current phase advance angle. In contrast, the FI-PMa-SynRM has the current vector that is
located in the first quadrant for MTPA or with a negative current phase advance angle [26].
Hence, despite the similar torque formulation, the electromagnetic mechanisms of the FI-
PMa-SynRM and Inset SPMSM are different. Furthermore, additional torque components
can be gained with the presence of PM flux linkage in the two types of motors. Nevertheless,
the difference in having interior FBs between the FI-PMa-SynRM and Inset SPMSM will
bring about the difference in torque production. The difference in inductances and saliency
of these motors should also be considered. All these will be discussed in the next section.
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3. Difference of Performance and Effect of Permanent Magnet and Flux Barriers

In this section, individual and coordinative effects of PM and FBs on the performance
of the developed FI-PMa-SynRM are investigated by comparing these factors to those of its
counterparts using the finite element method (FEM) in the JMAG package. The FEM mesh
details of all the investigated models are provided in Appendix B.

3.1. Magnetic Field

The difference between these motor models is closely related to the distribution of
magnetic fields. The no-load condition is first considered where the flux lines and flux
densities are illustrated in Figure 3, where the FI-PMa-SynRM and Inset SPMSM model are
considered. As presented in this figure, for the FI-PMa-SynRM, the flux density focuses
on the region between two adjacent interior FBs, while for the Inset SPMSM model, the
flux density focuses on the PMs. On the other hand, Figure 4 describes the comparison
of the PM flux linkage of these models. We can see that the PM flux linkage of the Inset
SPMSM is slightly higher than that of the FI-PMa-SynRM. These indicate that the FBs on
the rotor of the FI-PMa-SynRM affect flux linkage generated by the PM and can be used to
regulate flux density distributions of motors. Note that the no-load analysis can provide
an overview of the impact of FBs while the motor performance can be fully studied in the
presence of excitation current.

Then, Figure 5 shows the motor flux densities and distributions in the MTPA opera-
tions for the target synchronous motor models. Note that the FI-PMa-SynRM and SynRM
operate with negative current phase advance while the SynRM has a greater phase advance
(i.e., −39 and −25 degrees for the SynRM and FI-PMa-SynRM, respectively). This corre-
sponds to the phasor diagrams presented in Figure 2. It can also be seen in Figure 5 that
the flux density in the region between two adjacent interior FBs of the SynRM model is
much smaller than that of the FI-PMa-SynRM. This can be understood due to the presence
of PM where the PM greatly affects the magnetic distribution of these rotor layouts and
plays a significant role in the operation of the FI-PMa-SynRM. In contrast, the Inset SPMSM
operates with the positive current phase advance (i.e., 19 degrees), and the flux density
distribution is much better than that in the no-load condition.
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Finally, to describe the difference in the distribution of magnetic field between the
FI motor (i.e., FI-PMa-SynRM) and the FW motor (i.e., Inset SPMSM model), the flux
densities in PMs (representing the PM operating points) of the FI-PMa-SynRM and the
Inset PMSM model at a current phase advance of −25 degrees based on MTPA control
are shown in Figure 6a. The negative current phase advances indicate that these motor
models are intentionally operated in the FI model. As can be seen, the overall flux densities
in the PM seem to increase with applied current although part of the PMs may still suffer
lower operating points. However, when the Inset SPMSM model operates in the MTPA
condition, a positive current phase advance (19 degrees) is required, and the PM operating
points are much lower due to flux weakening, as presented in Figure 6b. On the other
hand, the lower PM operation points in the FI mode locate near air. For example, for the
Inset SPMSM model, low PM operating points occur near the stator slots, while for the
developed FI-PMa-SynRM, these are near stator slots and the end of FBs. This implies that
lower operating points in partial PM are an inherent problem of surface PM motors, which
will be considered in more detail in Section 4.
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3.2. Inductance Variation

The simulation for inductance variation against current amplitude with current ap-
plied on the d-axis is shown in Figure 7. It can be seen that the inductances of the Inset
SPMSM model (indicated by blue curves), Ld is slightly lower than Lq and they both de-
crease when the current magnitude increase so that the saliency is slightly lower than 1.
This could be due to the fact that the added surface-mounted PM on d-axis may decrease Ld
and thus bring Ld and Lq closer for conventional synchronous machines. For inductances of
both the FI-PMa-SynRM and SynRM (indicated by orange and green curves, respectively),
Ld is higher than Lq so that the saliency ratio, i.e., Ld/Lq of these models is higher than
1. On the other hand, it can be found that the trends of inductances (including Ld and
Lq) of the FI-PMa-SynRM and the Inset SPMSM are quite different. Nevertheless, for the
comparison between the FI-PMa-SynRM and the SynRM, their Lq is equivalent but Ld of
the SynRM is rapidly reduced with the current while that of the FI-PMa-SynRM maintains.
This indicates that the appearance of FBs greatly changes the properties of inductances
while the appearance of PM mainly affects the d-axis inductance when comparing the
developed FI-PMa-SynRM with its counterparts.
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3.3. Torque Variation

Figure 8 shows the torque versus current angle/phase advance of these models at
both the peak and rated current values (i.e., 120 A and 60 A, respectively). The MTPAs for
the FI-PMa-SynRM and the SynRM are achieved with negative current phase advances and
that for the Inset SPMSM model is with a positive phase advance. Moreover, with an added
PM amount of just 0.72% of the motor active volume, the FI-PMa-SynRM has 1.77 and
1.34 times torque production of that of the SynRM at the rated and peak current, respectively.
On the other hand, the FI-PMa-SynRM produces 1.4 and 1.73 times torque to that of the
Inset SPMSM at the rated and peak currents, respectively.
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In addition, Figure 9 shows the torque versus rotor positions corresponding to the
rated current of these models. As can be seen, the pulsations of torque of the FI-PMa-
SynRM and the SynRM are much lower than that of the Inset SPMSM. This indicates that
the interior FB plays an important role to mitigate torque pulsation for these models, which
were deliberately used in a previous design [22]. On the other hand, the torque pulsation
of the FI-PMa-SynRM seems slightly greater than that of the SynRM model. This reveals
that the appearance of surface PM not only affects the average torque but also the torque
pulsation of the developed FI-PMa-SynRM. This conforms to the characteristics of motors
using surface PM [6].
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3.4. Brief Summary

From the above analysis, it can be revealed that:

- The appearance of FBs in the developed FI-PMa-SynRM helps PM be better secured and
leads to the reversal of inductance properties (FI-PMa-SynRM vs Inset SPMSM model).

- The appearance of PM in the developed FI-PMa-SynRM leads to an enhancement of
the flux density in the cores and the significant change of d-axis inductance (FI-PMa-
SynRM vs SynRM model).

- The coordination of PM and FBs in the FI-PMa-SynRM helps it enhance the torque
production compared to those of its counterparts with a small added PM amount.

4. Further Analysis of Developed Motor

In the above analysis, the Inset SPMSM is made intentionally without interior FBs and
likewise, the SynRM is without PM and thus the individual impact of FBs and PMs on the
developed motor can be evaluated. In this section, the advantages of the FI feature on the
developed model will be further analyzed through the evaluation of the demagnetization
issue and torque density capability.

4.1. Partial Demagnetization

Five observed points are selected along the PM span as described in Figure 10a, while
the variation of flux density of these points is shown in Figure 10b. As can be seen, the flux
density at points A and B is lower compared to those of others, which indicates that the PM
region between points A and B would be more easily demagnetized. Besides, this region
is near a FB and this conforms to the prediction of partial demagnetization problem in
Section 3. However, it should be noted that these flux densities are not too low so that the
irreversible demagnetization is unlikely to occur for a small PM dimension (only 1.5 mm
thick). On the other hand, the advantage of this simple structure is such that alternative
designs can be easily applied with minor modifications, e.g., using a thicker PM to fully
avoid irreversible demagnetization for a similar design.
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4.2. Torque Density Capability

As previously discussed, the models compared in Section 2 (i.e., the Inset SPMSM
and SynRM models) are used to evaluate the role of FBs and PM in the developed FI-PMa-
SynRM. Nevertheless, different motors may have dissimilar design considerations, e.g., the
air-gap length of a SynRM could be smaller. To demonstrate the capability of achieving
high torque density with only a small amount of PM, the developed FI-PMa-SynRM will be
compared to another realistic model by extending the boundary of the rotor surface as well
as the end of FB so that the air gap and rotor ribs are the same as those of the developed
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model. This model is called the Modified SynRM as also illustrated in Figure 1 (i.e., the
right part), where the blue arrows indicate the boundary extension.

Figure 11 shows the comparison of torque density versus current amplitude and angle
(from −90 to 0 degrees) between the FI-PMa-SynRM and the Modified SynRM. As can
be seen, the FI-PMa-SynRM offers a better torque density. Moreover, the FI-PMa-SynRM
has a much broader high torque density zone (above 20 Nm/L) for the given current
magnitude and angle ranges. This can be explained by the fact that the FI-PMa-SynRM
is capable of effectively combining reluctance torque and PM torque in comparison with
other types of motors, with multiple FBs to gain high reluctance torque and a small amount
of surface-inset PM for an extra portion of torque. Most importantly, since the PM in
the FI-PMa-SynRM is not easily demagnetized, a higher current can be applied to gain
even higher torque output. However, this will be limited by the magnetic saturation, heat
dissipation, and possible partial PM demagnetization as mentioned above. As a result, this
motor can achieve high torque density, i.e., 13.45 Nm/L and 24.79 Nm/L at the rated and
peak conditions, respectively.
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5. Experiment Results

The experimental setup for evaluation, measured current waveforms of the devel-
oped FI-PMa-SynRM prototype, current harmonics, and torque comparison are shown in
Figures 12–15, respectively. In Figure 14, the fundamental frequency is 42 Hz. Because of
the limitation of the power source and measurement devices in our laboratories, the devel-
oped FI-PMa-SynRM is only measured up to 32.5 A, where the total harmonic distortion
(THD) of the motor current is around 13.04%. The torque production of the developed FI-
PMa-SynRM for the measurement and simulation are compared and presented in Figure 15.
As can be seen, the two cases agree well. On the other hand, the simulation results of the
modified SynRM are added to compare with the developed FI-PMa-SynRM. As depicted
in Figure 15, with a small current angle (about −55 degrees), the torque production of the
Modified SynRM is only slightly smaller than that of the FI-PMa-SynRM, while with a
higher current angle, the torque of the Modified SynRM decreases very quickly. The torque
of the Modified SynRM can become negative but that of FI-PMa-SynRM is still positive.
These results also conform to the theory mentioned above.
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In future research, to further evaluate the overall efficacy of the developed FI-PMa-
SynRM, the core loss properties and efficiency under the excitation of power electronics
inverters will be investigated in detail by simulation and experiment [27,28].
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6. Conclusions

In this paper, a thorough investigation of the FI feature on PMa-SynRM (denoted
FI-PMa-SynRM) to achieve a high torque density was shown. Firstly, through a comparison
of the developed FI-PMa-SynRM with its two counterparts which were obtained simply
by eliminating interior FB or PM, the role of these elements on the developed motor was
studied. Secondly, the partial demagnetization of the developed motor was analyzed,
and its torque density capability was investigated through a comparison with another
realistic motor. It was found that adopting the FI configuration leads to the difference in
the magnetic field patterns and current angle to achieve the MTPA operation. As a result, a
high torque density was demonstrated to be achievable with only a small amount of PM
while the ability to avoid PM irreversible demagnetization was validated by simulation
and experimental results. These have illustrated the feasibility of applying the FI feature
to PMa-SynRM. Moreover, the simple structure of the developed FI-PMa-SynRM can be
treated as an interesting and helpful design reference.
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d Direct axis
Id D-axis current
Iq Q-axis current
Ld D-axis stator inductance
Lq Q-axis stator inductance
p Number of pole pairs
q Quadrature axis
T Torque
VFI-PMa-SynRM Voltage of FI-PMa-SynRM
Vinset SPMSM Voltage of inset SPMSM
VSynRM Voltage of SynRM
λFI-PMa-SynRM Flux linkage of FI-PMa-SynRM
λinset SPMSM Flux linkage of inset SPMSM
λm PM flux linkage
λSynRM Flux linkage of SynRM
ω Electric angular speed
EV Electric vehicle
FB Flux barrier
FEM Finite element method
FI Flux intensifying
FI-PMa-SynRM Flux intensifying permanent magnet assisted synchronous reluctance motor
FI-PMSM Flux intensifying permanent magnet synchronous motor
FW Flux weakening/weakened
IPMSM Interior permanent magnet synchronous motor
MTPA Maximum torque per ampere
PM Permanent magnet
PMa-SynRM Permanent magnet assisted synchronous reluctance motor
PMSM Permanent magnet synchronous motor
SPMSM Surface permanent magnet synchronous motor
SynRM Synchronous reluctance motor
THD Total harmonic distortion

Appendix A. Brief Information of Motor Models

A survey of the volumetric torque density and PM-to-motor-volume ratio is provided
in Table A1. Note that the torque density of the individual motors would depend on the
design, current, current density, thermal condition, and so forth; thus, the comparison in
Table A1 is only used for reference but not an accurate indication of motor performance.

Table A1. Brief information of motor models.

Models Volumetric Torque
Density (Nm/L)

PM-to-Motor
Volume Ratio (%)

Peak Current
Density (A/mm2)

Anti-Demagnetization
Ability Prototype

FI-PMa-SynRM 24.79 0.72 15.35 Validated Done
Model in [6] 63.79 4.22 26.87 Validated Not yet
Model in [7] 52.82 N/A 25.1 N/A Done

Model in [10] 14.91 4.32 N/A Validated Done

Appendix B. Finite Element Mesh Information

The finite element software package utilized in this paper is JMAG from JOSL Corpo-
ration. The finite element models of the considered motors are constructed through the
standard meshing setup of JMAG. The detailed mesh information used in this study is
described in Table A2, and the meshing for the four models is illustrated in Figure A1.
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Table A2. Mesh information of considered four models.

Motor Models Number of Elements Number of Nodes

FI-PMa-SynRM 12,467 6712
Inset SPMSM 10,147 5553

SynRM 12,615 6786
Modified SynRM 11,845 6396
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