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Abstract: Visual object tracking is still considered a challenging task in computer vision research
society. The object of interest undergoes significant appearance changes because of illumination
variation, deformation, motion blur, background clutter, and occlusion. Kernelized correlation filter-
(KCF) based tracking schemes have shown good performance in recent years. The accuracy and
robustness of these trackers can be further enhanced by incorporating multiple cues from the response
map. Response map computation is the complementary step in KCF-based tracking schemes, and
it contains a bundle of information. The majority of the tracking methods based on KCF estimate
the target location by fetching a single cue-like peak correlation value from the response map. This
paper proposes to mine the response map in-depth to fetch multiple cues about the target model.
Furthermore, a new criterion based on the hybridization of multiple cues i.e., average peak correlation
energy (APCE) and confidence of squared response map (CSRM), is presented to enhance the tracking
efficiency. We update the following tracking modules based on hybridized criterion: (i) occlusion
detection, (ii) adaptive learning rate adjustment, (iii) drift handling using adaptive learning rate,
(iv) handling, and (v) scale estimation. We integrate all these modules to propose a new tracking
scheme. The proposed tracker is evaluated on challenging videos selected from three standard
datasets, i.e., OTB-50, OTB-100, and TC-128. A comparison of the proposed tracking scheme with
other state-of-the-art methods is also presented in this paper. Our method improved considerably
by achieving a center location error of 16.06, distance precision of 0.889, and overlap success rate
of 0.824.

Keywords: artificial intelligence; computer vision; visual object tracking; occlusion

1. Introduction

The vision-based object tracking problem lies in the field of computer vision. It is
one of the hot topics of this field because of its large number of applications. In the past
decade, the computer vision community has conducted significant work on correlation
filter-based tracking algorithms. These algorithms have shown superiority in terms of
computational cost. Another advantage of correlation filter-based visual object tracking is
its online learning process, which allows updating the template/model in every frame of a
video [1,2].
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Although a lot of work has been completed on this topic, it is still demanding the
attention of the computer vision research community because of associated unwanted
factors that ultimately degrade any tracking algorithm’s performance. These factors are
deformation, partial/full occlusion, out-of-plane rotation of the object, in-plane rotation of
the object, the fast and abrupt motion of the object, scale variations, and finally, illumination
changes in a video.

Tracking methods may be characterized into two main categories, i.e., (i) deep feature-
based methods and (ii) simple hand-crafted feature-based tracking methods. Deep feature-
based tracking methods have gained the attention of the tracking community because
of their higher accuracy [3,4]. The major issue with these types of tracking methods is
the requirement of a higher processing unit and computational cost. Hence for practical
scenarios in real-time, a simple hand-crafted feature-based tracking scheme is a better
choice [5].

In a broader sense, hand-crafted feature-based tracking schemes consist of two main
branches, i.e., generative and discriminative [6]. In generative visual object tracking
schemes, the appearance of the target model is represented by learning a model, and
then object appearance most closely related to the target model is searched, e.g., [7–9]. In
contrast, discriminative approaches are designed to discriminate the target object from its
background. As per the literature, discriminative methods are superior in terms of accuracy
and computational cost. Some of the examples of these trackers are given in [1,10–12].

In this study, we propose a kernelized correlation filter-based tracking scheme to
enhance the tracking efficiency in difficult scenarios. Our method detects the occlusion
by considering multiple cues from the correlation response maps. Furthermore, we also
use these cues to handle the occlusion. Adaptive learning rate strategy based on average
peak correlation energy (APCE) is incorporated in the proposed tracking scheme to prevent
the corrupted model, which ultimately handles the drift problem. Furthermore, this
APCE is used in the scale search strategy to handle the scale variations in the incoming
video frames.

The further organization of the paper is as follows. Section 2 describes the closely
related work to the proposed methodology. Section 3 explains the proposed methodology.
Section 4 consists of the experimental setup for the proposed methodology. Furthermore,
this section also explains the performance measures used to evaluate the tracker, whereas
Section 5 contains the analysis of results. At last, Section 6 concludes the study.

2. Related Work

Many tracking schemes have been proposed to address the challenges such as de-
formation, occlusion, scale variation, illumination changes, etc. [13–15], but correlation
filter-based tracking is still a better choice because of its efficiency and less computation
cost [5].

A correlation filter (CF) generates the 2-D response map of the region of interest.
Maps having higher correlation values are most likely to contain the target of interest.
The initial correlation filter-based tracking proposed in [16] became very famous. This
tracker is based on the minimum output sum of squared error (MOSSE). It contributed
to providing an adaptive online training strategy for appearance changes in the target, as
there is always a tradeoff between performance and computational cost. The requirement
of a large number of samples for training makes the correlation filter tracking method
computationally expensive. A novel method called kernelized correlation filter (KCF) was
proposed in [17] to address this issue. In this method, all the input image/patch circularly
shifted versions are used as training data. Interestingly, a single image is quiet enough to
provide dense sampling to train the model in this method. Furthermore, the data matrix
becomes circulant when we take the cyclically shifted versions as samples. Using the kernel
trick over this data significantly decreases the computational cost. This method also gained
the research community’s attention because of its exceptional performance in terms of
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accuracy and computational cost. In subsequent years, many improvements in KCF were
proposed to address the challenging issues associated with real-time videos.

In [18], the author proposed adaptive multi-scale correlation filter-based tracking to
address the scale variation problem, which exists in the original KCF scheme. Another
variant of the KCF-based tracker was presented in [19] to address the partial occlusion
problem. This tracker uses multiple correlation filters for different parts of the object. Long-
term correlation tracking was proposed in [20,21] to address the target re-detection issue.
These trackers use two different correlation filters for translation and scale estimation. They
also handle the occlusion by redetecting the target after disappearance using the support
vector machine (SVM) classifier. Recently, a kernelized correlation filter-based tracking
scheme for large-scale variation was proposed in [22]. This tracker uses a part-based scheme
and divides the target into four parts. A motion-aware correlation filter tracking scheme
is presented in [23]. The author tried to incorporate the Kalman filter-based prediction
algorithm in the discriminative correlation filter tracking method to prevent the model drift
during challenging scenarios.

Scale-invariant feature transform is proposed in [6]. It uses average peak correlation
energy to update the scale of the target model. Due to wrong scale estimation, trackers start
drifting from the actual target, and tracking failure occurs. Recent literature shows that
researchers are continuously trying to handle tracking failure and redetecting the target
after failure. Notable articles relevant to tracking failure detection and avoidance occlusion
handling are presented in [5,24] and [25,26], respectively. Discriminative correlation filter
trackers also suffer from boundary effects. To address this issue, a spatially regularized
correlation filter-based tracking approach (SRDCF) is presented in [27]. This approach
shows promising results but at the cost of excess computational time, as it uses more images
for training. In order to decrease the computational cost while keeping the promising
performance, a spatial–temporal regularized correlation filter tracking scheme (STRCF) is
proposed in [28]. Another variant of SRDCF [28] with multiple kernels is presented in [29].
Collaboration of fractional Kalman with KCF is presented in [30]. Similarly, a feature-based
detector module in collaboration with the KCF tracker is proposed in [31]. Researchers also
applied KCF-based tracking schemes to non-RGB images. A KCF-based tracking scheme
for infrared images is presented in [32].

Despite a lot of successful research on discriminative correlation filter tracking, these
trackers still need improvement to enhance their robustness under challenging scenarios.
This study proposes a tracking scheme based on the kernelized correlation filter (KCF)
method, which performs favorably under challenging scenarios. Our main contributions
are listed below.

I. A design of an occlusion detection module based on the hybridization of average
peak correlation energy (APCE) and confidence of squared response map (CSRM)
is presented in this study.

II. It is shown that the peak correlation score alone is not good enough to detect
heavy occlusion, motion blur, scale variation, background clutter, out-of-plane
rotation, and deformation. We computed multiple cues from a single response map,
including peak correlation, average peak correlation energy, peak-to-sidelobe ratio,
and the confidence of the squared response map. Each cue gives different insights
about the target of interest, which in turn helps in accurate occlusion detection and
recovery of the target. Furthermore, an efficient scale handling strategy based on
multiple cues for the state-of-the-art algorithm kernelized correlation filter is also
presented in this study.

III. To prevent the target model from being perverted, we adjusted the learning rate as
per the value of CSRM, i.e., we update the target model with a high learning rate
when the CSRM is high and with a low learning rate when the CSRM value is low
thus solving the drift problem in tracking.
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IV. Comprehensive evaluation and analysis of proposed algorithms with state-of-the-
art methods on accepted datasets i.e., OTB-50 [33], OTB-100 [34], TC-128 [35], is
carried out.

3. The Proposed Tracking Framework
3.1. Kernelized Correlation Filter (KCF)

The tracking algorithm presented in [1] builds on the MOSSE filter concept [2] by
extending the filter to non-linear correlation. Linear correlation between a CF template and
a test image is the inner product of the template w with a test sample z for every possible
shift of the test sample z. Instead of computing the linear kernel function wTz at every
shift of z, KCF computes some non-linear kernel κ(w, z) = ϕT(w)ϕ(z) where κ represents
a kernel function that is equivalent to mapping w and z into a non-linear space with the
lifting function φ(·).

In one sense, KCF can be viewed as a change away from linear correlation filters, but
it can also be seen as an efficient way of solving and testing with kernel ridge regression
when the training and testing data is structured in a particular way (i.e., a circulant matrix).

KCF module is presented at the top left corner of Figure 1. Henriques et al. derive KCF
from the standard solution of kernelized ridge regression. For learning w, we assume the
training data X = [x0.x1, . . . ., xd−1] is a d × d matrix where xk contains the same elements
as x0 shifted by k elements. The solution to kernelized ridge regression is given by [3] as
per Equation (1).

α = (K + λI)−1g, (1)

where K is the kernel matrix such that Kij = k
(
xi, xj

)
; I is the identity matrix; λ is the

regularization parameter; g is the desired correlation output; and α is the dual-space
coefficient vector. The dual-space coefficients allow us to rewrite the original template w in
high-dimensional dual space as given in Equation (2).

w =
N

∑
i=1

αi ϕ(xi) (2)

where in terms of the dot product, the kernel function ϕT(x )ϕ(x ′) = κ(x , x ′) treats all
data elements equally, and kernel K and the coefficients α can be computed efficiently in
the Fourier domain as follows:

α̂∗ =
ĝ

k̂xx′ + λ′
, (3)

where k̂xx′ represents the first row of the kernel matrix K, which contains the kernel function
computation of x0 with all possible shifts of another data sample denoted x′: either x0 in
the training phase, or some test sample z in the testing phase, and where hat ˆ denotes the
DFT of the vector.
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Figure 1. Graphical abstract of proposed tracking scheme. The baseline tracker is shown in the
rectangle at the top left corner. The tracking failure detection (in case of occurrence of occlusion or
any other issue in a frame) module is shown in the left-most rectangle, whereas the adaptive learning
rate strategy is shown at the bottom of the figure. Scale handling mechanism based on multiple cues
is shown below the KCF module. Furthermore, multiple cues from the response map are fed the
failure detection module, and the learning rate is adjusted accordingly.

3.2. Occlusion Handling Mechanism

The correlation response map gives multiple cues about the target in visual object
tracking. For example, it contains the single distinguished peak in the case of simple
sequences, while, in challenging sequences, like a blur in a video sequence or/and occlusion,
the map contains multiple peaks nearly equal in height, i.e., peak value decreases whereas
its adjacent values increase. Hence, target tracking failure can be predicted using this cue
from the response map.

Consider the response map ht(p,q), of size m× n, for p = 0, 1, 2 . . . n− 1, q = 0, 1, 2 . . .
m− 1, at tth frame. The average correlation value of the 5× 5 surrounding region around
(i, j) is given by Equation (4).

St(i,j) =
1

24

((
∑i+2

p=i−2 ∑j+2
q=j−2 ht(p,q)

)
− ht(i,j)

)
, (4)

APCE tells about the degree of fluctuation of the response map. If the object undergoes
fast motion, the value of APCE will be low. APCE is calculated using Equation (5).

APCE =
|hmax − hmin| 2

mean
(
∑r,c(hr,c − hmin)

) , (5)

where, hmax and hmin denote the maximum and minimum values of the response map,
respectively. hr,c denotes the rth row and cth column element of response map. Now from the
response map

(
i, j
)

is the coordinate where the APCE value is highest, as per Equation (6).(
i, j
)
= arg max

ti,j

APCEti,j , (6)
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Coordinates with the highest APCE are obtained by searching for the response map.
Different from [5], which take the coordinates of peak correlation for further development,
we use the coordinates with the highest APCE value, calculating the average and peak
correlation values as ht(i,j) and st(i,j), respectively. By taking the mean over previous z
frames, we can write it in the form of Equation (7).

hmean =
1
z ∑t

k=t−z+1 hk(i,j), (7)

whereas the mean of the surrounding region over previous z frames is given by Equation (8).

smean =
1
z ∑t

k=t−Z+1 sk(i,j), (8)

These two values give insight into the tracking failure, i.e., if there is a distinct gap
between the peak value and surrounding peaks, this means that tracking is correct, whereas,
if there is a sharp drop in peak value and an increase in surrounding peaks simultaneously,
this shows that it is difficult for the tracking algorithm to find the exact target, and most
probably, tracking failure will occur. Mathematically, it is shown by a conditional expression,
as given in Equation (9). ( crt(i,j)

hmean

)
or
( crt(i,j)

smean

)
< Th, (9)

where Th is set to be 0.6 [4].

3.3. Adaptive Scale Handling Mechanism

A multi-resolution translation filter scheme is implemented for scale handling. Most
algorithms, such as SAMF, use Maximum response value for scale searching. In turn, this
degrades the performance of the overall tracking scheme when the video sequence contains
one or more challenging factors, such as scale variation, occlusion, motion blur, etc. [5]. We
use Equation (5) along with Equation (10) for scale handling. Thus, incorporating multiple
cues to address the issue more effectively, i.e., for any scaled sample if CSRM & APCE > Th,
only that scale is selected as the true scale of the target.

The fluctuation and peak value of the response map define the tracking reliability,
i.e., the ideal response map contains the one sharp peak at the location of the target of
interest and is nearly equal to zero at other locations. A sharper peak as compared to other
values of the response map ensures higher localization accuracy. On the other side, when
the video contains several challenging factors such as occlusion, motion blur, and scale
variation, response map values will start fluctuating, and the APCE measure will decrease.
Pictorial representation of scale handling strategy is shown in Figure 2.
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Figure 2. Scale handling mechanism. Multiple sub-windows around the estimated location are
sampled. These windows are obtained by multiplying the previous target window with different
scale factors. Sub window with highest APCE and CSRM value is considered as correct scale
estimation of object.

We trained a simple two-dimensional KCF filter for translation estimation. Instead of
using a naïve maximum response value, we use a robust APCE measure to find the true
object position. The correlation response map with the highest APCE using Equation (6) is
considered to be true object location. Then the multiple sub-windows around the estimated
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location are sampled. These windows are obtained by multiplying the previous target
window with different scale factors. The sub-window with the highest APCE value is
considered the correct scale estimation of the object. Fine-tuning is applied to the previous
translation estimation after getting the exact scale of the object.

3.4. Adaptive Learning Rate

Maximum response value has been used widely as a reliability measure in tracking
algorithms. During occlusion, motion blur, etc., the response map changes drastically. So,
using only the maximum response value as a reliability measure to detect the occlusion
is not good enough. Another measure, i.e., average peak correlation energy (APCE), is
presented in [6] given Equation (5).

It has been shown practically that if the target apparently appears in the detection
scope, there will be a sharper peak in the response map, and the value of APCE will be
smaller. However, if the target is occluded, the peak in the response map will be smoother,
and the relative value of APCE becomes larger [7]. This problem is solved by squaring the
response map and then finding the confidence of the squared response map [7]. The peak
of the response map is represented in the nominator of Equation (10). At the same time, the
denominator represents the mean square value of the response map. It is shown in Figure 1
that the input to the adaptive learning rate block is coming from the response map, i.e.,
we are adjusting the learning rate by fetching multiple cues from the response map. The
confidence of squared response map is given by Equation (10).

CSRM =

∣∣Rmax
2 − Rmin

2
∣∣2

1
MN ∑M

r=1 ∑N
c=1|Rr,c2 − Rmin

2|2
, (10)

where Rmax and Rmin denote the maximum and minimum values of the response map,
respectively. Rr,c denotes the rth row and cth column element of the response map. M∗N is
the dimension of the response map.

We increased the robustness of the reliability measure by considering both APCE and
CSRM. First, we calculated the response using the robust APCE measure different from
the MKCF [5] algorithm, which selects the response using a naïve maximum correlation
value. After selecting the response with correct scale estimation, CSRM is employed to
adjust the learning rate. The conditional expression given by Equation (11) is used to adjust
the learning rate. 

tri =
CSRMi
CSRM0

ηi = η0, tri > tr0
ηi = η0.tri, others

, (11)

where CSRMi, is the value of squared response map in ith frame while CSRM0 is the values
of the most confident result, i.e., the result of the first frame, ηi, is the learning rate for
ith frame.

4. Experiments

The proposed tracker is evaluated using both qualitative and quantitative results.
A large number of experiments are performed on selected videos. Twenty-three videos
were selected from three standard datasets, i.e., OTB-50 [8], OTB-100 [9], and Temple
Colour-128 [10]. Visual challenges such as occlusion, out-of-plane rotation, cluttering, scale
changing, deformation, fast motion and motion blur, etc. associated with these videos are
presented in Table 1.
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Table 1. Challenges associated with selected videos.

Sequence OPR IPR OCC LR SV BC MB IV DEF FM OV

Ball_ce3 yes yes yes
Bike_ce1 yes yes yes yes
Boat_ce2

Carchasing_ce1 yes yes yes yes yes
Cardark 50 yes yes

Dudek yes yes yes yes yes yes yes
Electricalbike_ce yes yes

Guitar_ce2 yes yes yes yes
Gym 100, 128 yes yes yes yes
Hurdle_ce1 yes yes yes

Man 100 yes
Mhyang 100 yes yes yes yes

Michealjakson_ce yes yes yes yes yes
Motorbike_ce 128 yes yes yes
Mountainbike 100 yes yes yes
Railwatstation_ce yes yes yes

Redteam yes yes yes yes yes
Subway 100 yes yes yes
Suitcase_ce yes yes yes

Sunshade 128 yes
Suv 100 yes yes yes

Tiger1 100 yes yes yes yes yes yes yes
Trellis 50 yes yes yes yes yes

Evaluation Criteria

A comprehensive comparison of the proposed tracker with other latest state-of-the-
art algorithms is based on three evaluation criterions, i.e., distance precision (DP), mean
center location error (CLE), and overlap success rate (OSR) [11], is presented in this paper.
Distance precision is defined as the distance in terms of pixels between the ground truth
and estimated position. As a standard practice, it is calculated at a threshold of 20 pixels,
whereas CLE is defined as the Euclidean distance calculated between the tracker and the
ground truth of the target. Mathematically, CLE is given by Equation (12).

CLE =

√
(xi − x )2 + (yi − y )2, (12)

where (xi,, yi) are positions calculated by tracking algorithm, and (x, y) are ground truth
values. The overlap success rate is defined as the area between the ground truth box and
the estimated position box. Equation (13) shows the overlapping area between two boxes.

AuC =
area

(
Ae ∩ Ag

)
area

(
Ae ∪ Ag

) , (13)

where Ae is the area of the estimated bounding box, and Ag is the area of the ground truth
bounding box. The numerator of Equation (13) is the intersection of two areas, whereas the
denominator is the union of two bounding boxes. This overlap success rate is calculated at
a threshold of 0.5. The number of frames having an overlap area greater than the threshold
of 0.5 divided by the total number of frames gives an overlap success rate.

The proposed method is implemented in MATLAB (2019) on an Intel Core i7,
7th generation, 2.80 GHz processor, RAM 16 GB, a machine with a 64-bit Windows 10
operating system.

5. Results

Our proposed tracking scheme is compared and evaluated on a number of videos
from three different benchmark datasets, i.e., OTB-50 [32], OTB100 [33], and TC-128 [34].
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OTB 50 contains 50 videos. OTB-100 [33] contains 100 different challenging videos. Each
video has one or more visual challenges, such as clutter, deformation, out-of-plane rotation,
occlusion, motion blur, etc., associated with it. TC-128 [34] contains 128 challenging videos.
Out of these 128 videos, 78 videos are new, and others are repeated in other datasets. We
have selected 23 mixed sequences from these three datasets. Selected videos have eleven
challenging attributes, namely (i) occlusion, (ii) scale variation, (iii) motion blur, (iv) fast
motion, (v) out-of-plane rotation, (vi) deformation, (vii) background, (viii) in-plane rotation,
(ix) intensity variation, (x) low resolution, and (xi) out-of-view movement to support and
evaluate our proposed tracker. An explanation of each attribute is given in Table 2.

Table 2. Explanation of challenges associated with video sequences.

Attribute Name Abbreviation Explanation

Occlusion Occ Target is hidden behind another object
Scale variation SV Bounding boxes ratio of initial frame and present frame is out of range
Low resolution LR When the resolution becomes lower in subsequent frames

Out-of-plane rotation OPR Rotation of target object out of image plane
Motion blur MB Blurring of target region

Intensity variation IV Change in intensity
Fast motion FM Ground truth motion is greater than 20 pixels

Background clutter BC Target object background having similar color or texture as that of target
In-plane-rotation IPR Rotation of the object in the plane of image

Out-of-view movement OV Movement of out of the view
Deformation DEF Non-rigid object deformation

5.1. Quantitative Analysis

To evaluate the performance of the proposed tracker quantitatively, three performance
measures were used, i.e., distance precision, overlap threshold, and center error loca-
tion. Comparison based on distance precision is given in Table 3. A center location error
comparison is given in Table 4, whereas an overlap success rate comparison is given in
Table 5. Let us discuss the performance of the proposed tracker in comparison with other
selected state-of-the-art algorithms based on each performance measure. Table 3 shows the
mean distance precision at the threshold of 20 pixels of the proposed method, LCT [21],
MACF [23], MKCF [5], and STRCF [28]. The proposed tracking scheme outperforms the
other state-of-the-art algorithms by achieving the highest mean of 0.889. The second-best
in terms of distance precision is MKCF [5], with a mean value of 0.855, whereas the third
best is MACF [23], having a mean value of 0.804. A complete distance precision plot for
each video is also given in Figure 3. The three most complex challenges, i.e., out-of-view
movement, scale variation, and fast motion, are associated with Ball_ce3 video, and our
proposed tracker achieved the highest distance precision value of 0.93 on this video se-
quence. A similarly proposed tracker also shows better performance for an on-suite case
and gym 1 video sequences. It can be seen from Figure 3 that videos have fewer associated
challenges; all the tackers have equal performance in terms of distance precision.

This paragraph explains the overlap success rate comparison. This comparison is
given in Table 5. The last row shows the mean overlap success rate of 23 selected video
sequences. Our proposed tracker achieved the highest mean overlap success rate of 0.824.
In contrast, MACF [23] is second-best with a small difference of 0.002, while the remaining
three trackers, i.e., STRCF [28], LCT [21], and MKCF [5], have a mean overlap success rate
of 0.799, 0.717, and 0.645, respectively. It is noted that video sequences charchasing_ce1,
Dudek, and electricalbike_ce contain severe occlusions. Our proposed tracker showed
considerable performance on these sequences as per Table 5.
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Table 3. Distance precision of five trackers for twenty-three video sequences at threshold of 20 pixels.

Sequence Our Method LCT MACF MKCF STRCF

Ball_ce3 0.930 0.590 0.586 0.626 0.570
Gym1 0.966 0.940 0.955 0.953 0.940

Microbike_ce 0.998 0.238 0.238 0.966 0.238
Suitcase_ce 0.908 0.793 0.847 0.900 0.391

Railwatstation_ce 0.814 0.036 0.036 0.816 0.136
Bike_ce1 1.000 1.000 1.000 1.000 1.000
Boat_ce2 0.700 0.697 0.740 0.672 0.700

Carchasing_ce1 0.764 0.289 0.285 0.890 0.283
Cardark 1.000 1.000 1.000 1.000 1.000
Dudek 0.852 0.905 0.848 0.870 0.870

Electricalbike_ce 1.000 1.000 1.000 1.000 1.000
Guitar_ce2 0.505 0.000 0.524 0.505 0.543

Tiger1 0.780 0.890 0.974 0.147 0.990
Hurdle_ce1 0.710 0.700 0.983 0.720 0.967

Man 1.000 1.000 1.000 1.000 1.000
Mhyang 1.000 1.000 1.000 1.000 1.000

Michealjakson_ce 0.537 0.455 0.496 0.618 0.430
Mountainbike 1.000 0.996 1.000 1.000 0.978

Redteam 1.000 1.000 1.000 1.000 1.000
Subway 1.000 1.000 1.000 1.000 1.000

Sunshade 1.000 1.000 1.000 1.000 1.000
Suv 0.979 0.980 0.978 0.978 0.970

Trellis 1.000 1.000 1.000 1.000 1.000
Mean 0.889 0.761 0.804 0.855 0.784

Table 4. Center location error of proposed method, LCT, MACF, MKCF, and STRCF.

Sequence Our Method LCT MACF MKCF STRCF

Ball_ce3 9.1665 95.2300 94.9000 71.0300 94.0000
Microbike_ce 6.2500 377.0000 253.6500 354.0000 203.0000

Michealjakson_ce 38.9436 180.0000 24.0500 351.4100 35.3300
Suitcase_ce 7.2129 32.0000 16.900 7.2300 77.3700
Sunshade 4.5964 4.5800 4.1900 4.5400 4.2800
Mhyang 2.6102 4.1200 2.3600 3.9200 2.3700

Railwatstation_ce 12.4448 328.4100 654.8900 12.4500 414.0000
Trellis 2.6922 8.7700 2.8600 7.7600 2.5000

Cardark 2.8163 2.9100 1.8300 6.0500 1.1300
Gym1 8.5791 8.1200 9.1300 7.8000 7.5100
Dudek 11.5036 15.00 10.4400 193.0000 10.9100

Bike_ce1 4.2268 4.9300 3.8600 4.1700 3.6600
Boat_ce2 42.5323 44.7300 41.4000 27.3800 45.4300

Carchasing_ce1 43.6496 60.6900 63.4700 9.4600 73.2600
Electricalbike_ce 4.8738 5.2800 5.5500 4.8000 4.6900

Guitar_ce2 58.8593 399.9100 19.0600 387.3600 18.9600
Hurdle_ce1 62.6116 23.2300 5.7200 98.6900 6.2500

Mountainbike 8.1366 9.3700 8.1000 7.6600 10.4200
Tiger1 24.3871 10.3500 7.2800 194.5800 7.2100

Redteam 3.0600 4.3800 2.7000 3.8100 2.0200
Subway 3.01400 3.1500 3.2800 2.9700 2.6500

Man 2.6466 2.2000 1.7300 2.2600 1.3100
Suv 4.6600 3.9700 3.3400 3.6500 4.1300

Mean 16.0600 70.7970 53.9400 76.7820 44.8900
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Table 5. Overlap success rate comparison of proposed tracking scheme with four other tracking
algorithms.

Sequence Our Method LCT MACF MKCF STRCF

Ball_ce3 0.696 0.530 0.553 0.520 0.540
Cardark 1.000 0.990 1.000 0.690 1.000

Microbike_ce 1.000 0.140 0.238 0.020 0.240
Railwatstation_ce 0.800 0.030 0.033 0.800 0.130

Dudek 0.9712 0.880 1.000 0.060 0.970
Mhyang 1.000 0.990 1.000 1.000 1.000

Man 1.000 1.000 1.000 1.000 1.000
Carchasing_ce1 0.710 0.290 0.283 0.730 0.280

Suitcase_ce 0.875 0.780 0.782 0.880 0.390
Subway 1.000 1.000 1.000 1.000 1.000

Electricalbike_ce 0.980 0.990 1.000 0.970 1.000
Guitar_ce2 0.524 0.000 0.980 0.030 0.970

Gym1 0.796 0.850 0.738 0.810 0.880
Hurdle_ce1 0.687 0.680 0.830 0.690 0.870

Michealjakson_ce 0.667 0.250 0.908 0.080 0.550
Bike_ce1 0.783 1.000 1.000 0.780 1.000

Mountainbike 0.990 0.990 1.000 0.990 0.950
Boat_ce2 0.517 0.610 0.660 0.460 0.630
Redteam 0.400 0.700 0.982 0.380 1.000
Sunshade 0.980 0.970 0.990 0.980 0.990

Suv 0.980 0.980 0.985 0.980 0.990
Tiger1 0.790 0.930 0.985 0.150 1.000
Trellis 0.838 0.920 0.964 0.840 0.990
Mean 0.824 0.717 0.822 0.645 0.799

This paragraph will discuss the center location error comparison of the proposed
tracker with the other four state-of-the-art algorithms. The last row of Table 4 shows
the mean center location error of the proposed tracker, LCT [21], MACF [23], MKCF [5],
and STRCF [28]. Our proposed tracker outperformed by achieving a mean error of 16.06.
Furthermore, there is a huge gap between the second-best and our proposed tracker. The
STRCF [28] scheme achieved the mean center location error of 44.89, whereas the third-best,
i.e., MACF [23], achieved the mean error of 53.94 pixels. LCT [21] and MKCF [5] showed
similar performance in terms of center location error by achieving 70.797 and 79.782 values,
respectively. The Center location error plot of each video is also given in Figure 4. To avoid
the overcrowding of plots in the paper, only six videos were selected for plots, but the error
of each of the 23 videos is available in Table 4.

5.2. Qualitative Analysis

To evaluate and support our proposed tracker, the qualitative analysis is given in
this section. For the qualitative analysis, the results of five trackers, i.e., our proposed,
MKCF [5], MACF [23], STRCF [28], and LCT [21], over five video sequences are presented
in Figure 5. Three frames of each video are shown in Figure 5. The top to bottom rows of
Figure 5 contains the ball_ce3, car1, microbike_ce, railwaystation_ce, and suitcase_ce video
sequences. In the first row of Figure 5, all the trackers successfully track the target until
frame number 137. In frame number 174, the object of interest i.e., the ball is out of view of
the tracker; hence, all the trackers have a bounding box at some wrong position. In frame
number 256, the object again came back into view. In this frame, the proposed tracker is
the only one to track the ball correctly. The green bounding box can be seen in the third
column of the first row of Figure 5.



Electronics 2022, 11, 345 12 of 17

Electronics 2022, 11, x FOR PEER REVIEW 12 of 17 
 

 

Figure 5. Three frames of each video are shown in Figure 5. The top to bottom rows of 
Figure 5 contains the ball_ce3, car1, microbike_ce, railwaystation_ce, and suitcase_ce 
video sequences. In the first row of Figure 5, all the trackers successfully track the target 
until frame number 137. In frame number 174, the object of interest i.e., the ball is out of 
view of the tracker; hence, all the trackers have a bounding box at some wrong position. 
In frame number 256, the object again came back into view. In this frame, the proposed 
tracker is the only one to track the ball correctly. The green bounding box can be seen in 
the third column of the first row of Figure 5. 

  
(a) Ball_ce3 (b) Car1 

  
(c) Suitcase_ce (d) Railwaystation_ce 

Pr
ec

is
io

n

Pr
ec

is
io

n

Pr
ec

is
io

n

Pr
ec

is
io

n

Electronics 2022, 11, x FOR PEER REVIEW 13 of 17 
 

 

  
(e) Motorbike_ce (f) Gym1 

Figure 3. Quantitative analysis: comparison based on distance precision over a threshold of 20 pix-
els. Six videos selected from OTB-50, OTB-100, and Colour-128 datasets. 

  
(a) Ball_ce3 (b) Car1 

  
(c) Suitcase_ce (d) Railwaystation_ce 

0 5 10 15 20 25 30 35 40 45 50

Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LCT
MACF
MKCF
STRCF
OUR

0 5 10 15 20 25 30 35 40 45 50

Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LCT
MACF
MKCF
STRCF
OUR

Pi
xe

ls

Pi
xe

ls

0 20 40 60 80 100 120 140 160 180 200

Frame Number

0

50

100

150

200

250

Pi
xe

ls

LCT
MACF
MKCF
STRCF
OUR

Pi
xe

ls

Figure 3. Quantitative analysis: comparison based on distance precision over a threshold of 20 pixels.
Six videos selected from OTB-50, OTB-100, and Colour-128 datasets.
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This is a very challenging issue, for the object-tracking community to track an object
when it comes back into view after out-of-view movement. Our proposed tracker success-
fully handled this situation. In the second row of Figure 5, the car1 sequence is shown. All
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the trackers successfully track the target up until frame number 20. LCT [21] lost the target
in frame number 500, whereas MKCF [5] lost the target in frame number 999.

Our proposed tracker, along with MACF [23] and STRCF [28], tracks the target suc-
cessfully until the end of the video sequence. The third row of Figure 5 represents the
microbike_ce video sequence.

In this sequence, LCT [21] fails at the start of the video sequence, which can be seen
in frame number 50. While STRCF [28] and MACF [23] fail to track the object in frame
number 500, our proposed tracker tracks the target correctly until the end of the video
sequence. The fourth row of Figure 5 shows the railwaystation_ce video sequence. This
sequence contains the clutter background, in-plane rotation, and occlusion. Our proposed
tracker successfully handles the challenges associated with this video sequence and tracks
the object successfully, as shown in frames number 5250 and 405. MKCF [5] also shows
similar performance on this sequence, whereas all other tracker schemes fail to track
the object.

The last row shows the suitcase_ce sequence from the Colour-128 dataset. The object
to track in this sequence is a suitcase held in the hand of the girl. This sequence contains the
clutter background, intensity variation, and occlusion. In this sequence, again the proposed
tracker achieves a better result by tracking the target successfully even after the occlusion.
MKCF [5] showed a similar performance to our proposed algorithm on this sequence,
whereas MACF [23], STRCF [28], and LCT [21] were unable to track the correct object.

6. Conclusions

Most of the tracking algorithms use a single cue fetched from the response map for
the training and detection phase of the filter. Like other tracking methods, our baseline
tracker KCF also uses a single cue from the response map, such as peak correlation or peak
to sidelobe ratio. This single cue could not give much insight into the tracking result, which
causes the algorithm to suffer in challenging scenarios such as scale variation, occlusion,
illumination variation, and motion blur. Similarly, simple KCF cannot detect the reliability
of tracking results, which causes a drift problem. In the proposed tracking methodology,
different cues such as average peak correlation energy, the confidence of squared response
map, peak correlation value, and, last but not least, novel differences of peak correlation
from single response map are used to handle the challenging issues of video sequences.

A comparison of the proposed scheme with four other state-of-the-art algorithms is
presented. For a fair comparison, twenty-three different video sequences are selected from
three standard visual object tracking datasets, i.e., OTB-50, OTB-100, and TC-128. The
proposed tracking scheme shows favorable quantitative as well as qualitative results. For
all three performance measures, our method achieved the highest accuracy.

Response map computation is a mandatory step for correlation filter-based tracking
schemes. Tracking efficiency may be further enhanced without a significant increase in
computation cost with the help of multiple cues mined from the response map. Furthermore,
multiple cues also give better insight into the target/tracking result.

Author Contributions: Conceptualization, B.K., A.J. and A.A.; methodology, B.K., A.J. and A.A.;
software, B.K., K.M. and K.M.C.; validation, K.M., K.M.C. and M.M.; formal analysis, B.K., K.M.
and K.M.C.; investigation, B.K., K.M.C. and M.M.; resources, K.A., A.M.E.-S. and K.M.C.; writing—
original draft preparation, B.K. and K.M.C.; writing—review and editing, K.M. and M.M.; visualiza-
tion, H.T., A.J., A.A. and K.M.C.; supervision, A.J. and A.A.; project administration, K.A., A.M.E.-S.,
K.M.C. and H.T.; funding acquisition, K.A., A.M.E.-S., H.T. and K.M.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Electronics 2022, 11, 345 16 of 17

Acknowledgments: The authors extend their appreciation to King Saud University for funding this
work through the Researcher Support Project number (RSP-2021/133), King Saud University, Riyadh,
Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. Exploiting the circulant structure of tracking-by-detection with kernels. In

Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics);
Springer: Berlin/Heidelberg, Germany, 2012; Volume 7575 LNCS, pp. 702–715. [CrossRef]

2. Kim, Y.; Park, H.; Paik, J. Robust Kernelized Correlation Filter using Adaptive Feature Weight TT. IEIE Trans. Smart Process.
Comput. 2018, 7, 433–439. [CrossRef]

3. Chen, K.; Tao, W. Once for All: A Two-Flow Convolutional Neural Network for Visual Tracking. IEEE Trans. Circuits Syst. Video
Technol. 2018, 28, 3377–3386. [CrossRef]

4. Hadfield, S.J.; Lebeda, K.; Bowden, R. The visual object tracking VOT2014 challenge results. In Proceedings of the European
Conference on Computer Vision (ECCV) Visual Object Tracking Challenge Workshop, Zurich, Switzerland, 6 September 2014.

5. Shin, J.; Kim, H.; Kim, D.; Paik, J. Fast and Robust Object Tracking Using Tracking Failure Detection in Kernelized Correlation
Filter. Appl. Sci. 2020, 10, 713. [CrossRef]

6. Ma, H.; Acton, S.T.; Lin, Z. SITUP: Scale Invariant Tracking Using Average Peak-to-Correlation Energy. IEEE Trans. Image Process.
2020, 29, 3546–3557. [CrossRef]

7. Ross, D.A.; Lim, J.; Lin, R.-S.; Yang, M.-H. Incremental Learning for Robust Visual Tracking. Int. J. Comput. Vis. 2008, 77, 125–141.
[CrossRef]

8. Zhou, S.K.; Chellappa, R.; Moghaddam, B. Visual tracking and recognition using appearance-adaptive models in particle filters.
IEEE Trans. Image Process. 2004, 13, 1491–1506. [CrossRef]

9. Mei, X.; Ling, H. Robust visual tracking using `1minimization. In Proceedings of the 2009 IEEE 12th International Conference on
Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 1436–1443. [CrossRef]

10. Possegger, H.; Mauthner, T.; Bischof, H. In defense of color-based model-free tracking. In Proceedings of the 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 2113–2120. [CrossRef]

11. Hare, S.; Saffari, A.; Torr, P.H.S. Struck: Structured output tracking with kernels. In Proceedings of the 2011 International
Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 263–270. [CrossRef]

12. Tang, M.; Yu, B.; Zhang, F.; Wang, J. High-speed tracking with multi-kernel correlation filters. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [CrossRef]

13. Babenko, B.; Yang, M.H.; Belongie, S. Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal.
Mach. Intell. 2011, 33, 1619–1632. [CrossRef]

14. Zhong, W.; Lu, H.; Yang, M.-H. Robust object tracking via sparsity-based collaborative model. In Proceedings of the 2012 IEEE
Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 1838–1845.

15. Zhang, T.; Jia, K.; Xu, C.; Ma, Y.; Ahuja, N. Partial occlusion handling for visual tracking via robust part matching. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1258–1265.

16. Bolme, D.S.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual object tracking using adaptive correlation filters. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp.
2544–2550. [CrossRef]

17. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-Speed Tracking with Kernelized Correlation Filters. IEEE Trans. Pattern
Anal. Mach. Intell. 2014, 37, 583–596. [CrossRef]

18. Danelljan, M.; Hager, G.; Khan, F.S.; Felsberg, M. Discriminative Scale Space Tracking. IEEE Trans. Pattern Anal. Mach. Intell. 2016,
39, 1561–1575. [CrossRef]

19. Liu, T.; Wang, G.; Yang, Q. Real-time part-based visual tracking via adaptive correlation filters. In Proceedings of the 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 4902–4912. [CrossRef]

20. Ma, C.; Yang, X.; Zhang, C.; Yang, M.H. Long-term correlation tracking. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5388–5396. [CrossRef]

21. Ma, C.; Huang, J.-B.; Yang, X.; Yang, M.-H. Adaptive Correlation Filters with Long-Term and Short-Term Memory for Object
Tracking. Int. J. Comput. Vis. 2018, 126, 771–796. [CrossRef]

22. Lian, G. A novel real-time object tracking based on kernelized correlation filter with self-adaptive scale computation in combina-
tion with color attribution. J. Ambient Intell. Humaniz. Comput. 2020, 1–9. [CrossRef]

23. Zhang, Y.; Yang, Y.; Zhou, W.; Shi, L.; Li, D. Motion-Aware Correlation Filters for Online Visual Tracking. Sensors 2018, 18, 3937.
[CrossRef] [PubMed]

24. Khan, B.; Ali, A.; Jalil, A.; Mehmood, K.; Murad, M.; Awan, H. AFAM-PEC: Adaptive Failure Avoidance Tracking Mechanism
Using Prediction-Estimation Collaboration. IEEE Access 2020, 8, 149077–149092. [CrossRef]

25. Mehmood, K.; Jalil, A.; Ali, A.; Khan, B.; Murad, M.; Khan, W.U.; He, Y. Context-Aware and Occlusion Handling Mechanism for
Online Visual Object Tracking. Electronics 2020, 10, 43. [CrossRef]

http://doi.org/10.1007/978-3-642-33765-9_50
http://doi.org/10.5573/IEIESPC.2018.7.6.433
http://doi.org/10.1109/TCSVT.2017.2757061
http://doi.org/10.3390/app10020713
http://doi.org/10.1109/TIP.2019.2962694
http://doi.org/10.1007/s11263-007-0075-7
http://doi.org/10.1109/TIP.2004.836152
http://doi.org/10.1109/ICCV.2009.5459292
http://doi.org/10.1109/CVPR.2015.7298823
http://doi.org/10.1109/ICCV.2011.6126251
http://doi.org/10.1109/CVPR.2018.00512
http://doi.org/10.1109/TPAMI.2010.226
http://doi.org/10.1109/CVPR.2010.5539960
http://doi.org/10.1109/TPAMI.2014.2345390
http://doi.org/10.1109/TPAMI.2016.2609928
http://doi.org/10.1109/CVPR.2015.7299124
http://doi.org/10.1109/CVPR.2015.7299177
http://doi.org/10.1007/s11263-018-1076-4
http://doi.org/10.1007/s12652-020-01872-9
http://doi.org/10.3390/s18113937
http://www.ncbi.nlm.nih.gov/pubmed/30441834
http://doi.org/10.1109/ACCESS.2020.3015580
http://doi.org/10.3390/electronics10010043


Electronics 2022, 11, 345 17 of 17

26. Mehmood, K.; Jalil, A.; Ali, A.; Khan, B.; Murad, M.; Cheema, K.; Milyani, A. Spatio-Temporal Context, Correlation Filter and
Measurement Estimation Collaboration Based Visual Object Tracking. Sensors 2021, 21, 2841. [CrossRef]

27. Gao, L.; Li, Y.; Ning, J. Improved kernelized correlation filter tracking by using spatial regularization. J. Vis. Commun. Image
Represent. 2018, 50, 74–82. [CrossRef]

28. Li, F.; Tian, C.; Zuo, W.; Zhang, L.; Yang, M.-H. Learning spatial-temporal regularized correlation filters for visual tracking. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.

29. Su, Z.; Li, J.; Chang, J.; Song, C.; Xiao, Y.; Wan, J. Learning spatial-temporally regularized complementary kernelized correlation
filters for visual tracking. Multimed. Tools Appl. 2020, 79, 25171–25188. [CrossRef]

30. Mehmood, K.; Ali, A.; Jalil, A.; Khan, B.; Cheema, K.M.; Murad, M.; Milyani, A.H. Efficient Online Object Tracking Scheme for
Challenging Scenarios. Sensors 2021, 21, 8481. [CrossRef]

31. Tseng, D.-C.; Chen, C.-H.; Chen, Y.-M. Autonomous Tracking by an Adaptable Scaled KCF Algorithm. Int. J. Mach. Learn. Comput.
2021, 11, 48–54. [CrossRef]

32. Yang, X.; Li, S.; Yu, J.; Zhang, K.; Yang, J.; Yan, J. GF-KCF: Aerial infrared target tracking algorithm based on kernel correlation
filters under complex interference environment. Infrared Phys. Technol. 2021, 119, 103958. [CrossRef]

33. Wu, Y.; Lim, J.; Yang, M.-H. Online object tracking: A benchmark. In Proceedings of the 2013 IEEE Conference on Computer
Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 2411–2418.

34. Wu, Y.; Lim, J.; Yang, M.-H. Object Tracking Benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1834–1848. [CrossRef]
[PubMed]

35. Liang, P.; Blasch, E.; Ling, H. Encoding Color Information for Visual Tracking: Algorithms and Benchmark. IEEE Trans. Image
Process. 2015, 24, 5630–5644. [CrossRef] [PubMed]

http://doi.org/10.3390/s21082841
http://doi.org/10.1016/j.jvcir.2017.11.008
http://doi.org/10.1007/s11042-020-09028-9
http://doi.org/10.3390/s21248481
http://doi.org/10.18178/ijmlc.2021.11.1.1013
http://doi.org/10.1016/j.infrared.2021.103958
http://doi.org/10.1109/TPAMI.2014.2388226
http://www.ncbi.nlm.nih.gov/pubmed/26353130
http://doi.org/10.1109/TIP.2015.2482905
http://www.ncbi.nlm.nih.gov/pubmed/26415202

	Introduction 
	Related Work 
	The Proposed Tracking Framework 
	Kernelized Correlation Filter (KCF) 
	Occlusion Handling Mechanism 
	Adaptive Scale Handling Mechanism 
	Adaptive Learning Rate 

	Experiments 
	Results 
	Quantitative Analysis 
	Qualitative Analysis 

	Conclusions 
	References

