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Abstract: Chronic wounds are a heavy burden on medical facilities, so any help in treating them is
most welcome. Current research focuses on wound analysis, especially wound tissue classification,
wound measurement, and wound healing prediction to assist medical personnel in wound treatment,
with the main goal of reducing wound healing time. The first phase of wound analysis is wound
segmentation, where the task is to extract wounds from the healthy tissue and image background.
In this work, a standard feedforward neural network was developed for the purpose of wound
segmentation using data from the MICCAI 2021 Foot Ulcer Segmentation (FUSeg) Challenge. It
proved to be a simple yet efficient method for extracting wounds from images. The proposed
algorithm is part of a compact system that analyzes chronic wounds using a robotic manipulator,
RGB-D camera and 3D scanner. The feedforward neural network consists of only five fully connected
layers, the first four with Rectified Linear Unit (ReLU) activation functions and the last with sigmoid
activation functions. Three separate models were trained and tested using images provided as
part of the challenge. The predicted images were post-processed and merged to improve the final
segmentation performance.The accuracy metrics observed during model training and selection were
Precision, Recall and F1 score. The experimental results of the proposed network provided a recall
value of 0.77, precision value of 0.72, and an F1 score (Dice score) of 0.74.

Keywords: chronic wounds; wound detection; wound segmentation; feedforward neural network;
robot

1. Introduction

Chronic wounds are defined as wounds that do not heal properly and therefore require
special treatment. Such wounds may be the result of diabetes, venous ulcers, foot ulcers,
burns, etc. Due to the complexity of wounds, patients must stay in medical centers for a
long period of time, so the cost of treating such patients can be extremely high. Wound
analysis is usually done manually with rulers or by visual inspection, which depends on the
expertise of a doctor or other medical personnel. With the rapid development of technology,
devices such as mobile phones and high-precision cameras have motivated the research
community to explore the possibilities of such devices. In order to accelerate the wound
healing process and facilitate treatment, researchers are using image processing for wound
analysis, among other approaches [1]. Deep-learning methods using images of wounds as
input data can be used to analyze the wound and calculate the healing process based on
the tissue representation and values of wound metrics. The first stage of wound analysis
is segmentation, where the wound is separated from the healthy tissue and background.
The accuracy of the segmentation is important because all other subsequent steps are
based on the extracted wound tissue. The next steps in wound analysis include tissue
classification (the three main classes are granulation, fibrin and necrosis), 3D reconstruction,
wound measurement and healing prediction. Often, to achieve better results, researchers
use preprocessing methods such as the conversion of color spaces, noise removal, color
correction, etc., before the first stage of wound tissue separation [2].
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The model proposed in this paper is developed using data from the Foot Ulcer Seg-
mentation Challenge [3] whose goal was to perform wound detection from images pho-
tographed in medical centers. The dataset provided has more than 1000 images collected in
medical centers under natural conditions.

Wound detection with a pixel-level instance segmentation model presented in this
paper is part of a more complex system, which is currently being developed and which will
conduct a complete analysis of the wound, i.e., wound detection, 3D reconstruction, tissue
classification, and wound measurement. The system consists of a 7 DoF robot arm with an
attached RGB-D camera and a high-precision 3D scanner as shown in Figure 1. The first
two stages of the wound-analysis system have currently been developed: the first stage
being wound detection, which is described in this paper, and the second stage being wound
reconstruction, which has been developed using the newly proposed NBV algorithm that
allows medical personnel to inspect the wound from any angle [4]. Wound detection as
the initial phase is crucial for the overall system’s precision and efficiency. The input to the
wound-detection stage is an image of the patient, and the output is the same image with all
detected wounds marked using bounding boxes. The largest wound detected, determined
by the largest bounding box, is specifically marked and all the proceeding steps of the
wound-analysis system are performed on this detected wound unless otherwise specified
by the user of the system. Wound detection must be precise, but moreover, it must always
detect all wounds on the image, so the most important metric used in this stage is the recall
metric value since it is imperative that all wounds on the image are detected, i.e., there
should not be false negatives.

Figure 1. The figure shows an automated system for wound analysis consisting of a 7 DoF (Degrees of
Freedom) robot arm, Kinova RGB-D camera, and a high-precision 3D scanner used for the recording
of chronic wounds in the medical center.

The wound-detection algorithm in this paper is developed as a simple feedforward
neural network with four fully connected hidden ReLU layers and one fully connected
output layer with a sigmoid activation function. We propose that since wounds are highly
irregular and can be of any shape or texture, simple feedforward neural networks should
suffice for wound detection and there is no need for more complicated neural networks.
Since the main idea of the paper is to the analyze the feasibility of creating a suitable wound
detector using a standard feedforward neural network which is as simple as possible
in terms of network structure, the ReLu activation function is used in the hidden layers.
Additionally, the choice of four hidden layers is relatively arbitrary, as it is the desire to have
a neural network classifier complex enough to capture the possible nonlinear relationship
between the output and the corresponding input data.
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A standard fixed-size overlapping sliding-window procedure is used to generate input
data to the feedforward neural network classifier. The output image, obtained after the
whole input image is processed using this sliding-window procedure, is a probability map.
This map is the same size as the input image and indicates the probability of each pixel
being a wound pixel.

Post-processing, involving thresholding, noise removal, and region filling, is then per-
formed on this probability map to obtain a binary image of the same size as the input image,
where pixels marked True indicate wound pixels, while False indicates non-wound pixels.

The main contribution of this paper is a novel method for wound detection based
on a sliding-window procedure and a simple feedforward neural network classifier that
can detect and segment the wound area from the image with satisfactory efficiency and
speed. With only five network layers, the method shows relatively high robustness to all
wound shapes, positions, and types of tissues. Due to the simple network architecture,
the training time of each epoch is shorter than the time required to train deep neural
networks. An effective way of post-processing of the predicted images is conducted in a
significantly short time.

The rest of the paper is organized as follows. Section 2 presents related research of
chronic wound segmentation, Section 3 describes the proposed method, and the experi-
mental results of the paper are provided in Section 4. The obtained results are discussed in
Section 5 and, finally, the main conclusions are presented in Section 6.

2. Related Research

The task of wound segmentation is to separate image pixels into two classes, wound
and not-wound, i.e., to extract the wound area from surrounding healthy tissue or image
background. Segmentation precision is crucial for further wound-analysis tasks such as
tissue classification, 3D reconstruction, wound measurement, and wound healing evalu-
ation. Since the wound area usually has a different color to the healthy skin, extracted
color features from each pixel are decisive in the extraction of the wound. Biswas et al. [5]
performed wound segmentation in two stages using a support vector machine (SVM) algo-
rithm trained on a combination of color and texture features. In the first stage, the wound
is separated into two classes, background and skin class, while in the second stage the
resulting skin class from the first stage is separated into two more classes, healthy skin
and wound class. Wound area segmentation was performed with an accuracy of 71.98%
on ten images. The author’s next work described in [6] is based on a superpixel region
growing algorithm and formed a 4D probability map which achieved an accuracy of 79.2%
on 30 images. Dhane et al. [7] used only the S channel from the HSV color space where
they converted the image into data points, and with the aid of the Gaussian similarity
function, calculated a similarity graph. K-means algorithm was used to cluster the data
and, based on 105 images, an accuracy of 86.71% was achieved. In a newer paper from
the same authors [8], a similar workflow was used, where the calculation of the similarity
matrix was performed using Gray-based fuzzy similarity measure. Li et al. [9] developed a
neural network based on modified MobileNet architecture to perform wound segmentation.
A high-precision value of 94.69% was obtained on 950 images. The authors continued
their work [10] on MobileNet architecture but with a different number of channels and
compared it with the VGG16 deep neural network. Both networks produced admirable
results, e.g., MobileNet achieved an accuracy of 98.18%. In their subsequent research [11],
one convolutional layer was added as the first layer in MobileNet architecture, which
consisted of a convolutional kernel enhanced with location information. The achieved
precision of the adapted neural network was 95.02%.

Filko et al. [12] proposed a system based on an RGB-D sensor for the detection,
segmentation and 3D reconstruction of chronic wounds. Wound detection was based
on color histograms and kNN algorithm. Based on the same algorithms, the authors
improved upon the system in [13], where the wound contour was extracted by the wound-
segmentation procedure using geometrical and visual information of the wound surface.
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Gholami et al. [14] analyzed and compared seven machine-learning algorithms on
wound segmentation: region-based methods (region growing and active contour without
edges), edge-based methods (edge and morphological operations, level set method pre-
serving the distance function, livewire, and parametric active contour models or snakes)
and texture-based methods (Houhou–Thiran–Bresson model). Livewire method produced
results with the highest score but with the longest calculation time.

Wang et al. [15] proposed a method for wound segmentation based on a deep convo-
lutional neural network on the MobileNetV2 architecture. The dataset used for training
and testing of the network consisted of 1010 images collected at the AZH Wound and
Vascular Center. The dataset was preprocessed and augmented to satisfy the neural net-
works necessity for a large training set. Before training, the network was pre-trained on the
Pascal VOC segmentation dataset. The output of the generated model was a segmented
grayscale image of the wound where each pixel denoted the likelihood of being a wound.
The image was thresholded using a post-processing step and the final wound area was
marked. The achieved recall value was 89.97%, precision 91.01%, and F1 score 90.47%.
They also compared their model to four other models, namely VGG16, SegNet, U-Net and
Mask-RCNN using the Medetec dataset, and showed their model to be superior to the other
models. The same authors continued their research in [16] and performed a systematic
review of 115 papers covering image-based AI in wound assessment. They concluded
that with different approaches used, each one has some limitations so no method could be
pointed out as a method preferable to others.

Mahbod et al. [17] proposed a segmentation method that consists of two encoder–
decoder convolutional neural networks, U-Net and LinkNet. Both networks were pre-
trained on the Medetec database [18] on 152 images and afterwards, the model was trained
on the chronic wound dataset shared by the MICCAI 2021 Foot Ulcer Segmentation Chal-
lenge containing 1010 annotated images. The results of training are two separate models
generated by each network. The test image is evaluated by both models and combined into
the final result. The obtained data-based F1 score was 88.8%, which represents the current
state of the art.

3. Method
3.1. Dataset

Researchers in the field of wound detection/segmentation are often limited by the
number of labeled images for machine-learning algorithms and methods. Most researchers
use the Medetec database [18] as one of the larger annotated bases for chronic wound
analysis. The proposed algorithm of wound segmentation in this paper is conducted as a
pixel-based method on the dataset provided by the MICCAI 2021 Foot Ulcer Segmentation
Challenge (FUSeg) [3]. The images were taken at clinical visits and photographed under
natural conditions. They vary in shape, size, closeness, and background. The dataset
contains 1210 total images—1010 labeled images, and 200 non-labeled images used for final
testing purposes only. Labeled images are divided into 810 for training with validation and
200 for testing. Ground truth of labeled images are provided as grayscale images, where
higher values denote the probability of a pixel being wound. For the method proposed
in this paper, all images were resized to 224 × 224. The rational for resizing was only to
decrease the total amount of input data. Figure 2 shows examples of wound images with
corresponding annotations from the aforementioned dataset.

3.2. Data Generation

As mentioned in Section 1, a sliding-window procedure is used to generate data from
the input image to the feedforward neural network. Let wsize denote the width or height
of the sliding window, and wstep the step size of the sliding window i.e., the number of
pixels the window shifts during one step of the sliding procedure. The term sub-image is
used to describe the image region of interest (ROI) defined by the current position of the
sliding window. During the training phase, a wsize × wsize sliding window is moved with
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step size, wstep, across the input image and the corresponding labeled ground-truth image
simultaneously, therefore generating input sub-images and corresponding ground-truth sub-
images, as shown in Figure 3. An input sub-image is marked entirely as wound if the total
percentage of wound pixels in the corresponding ground-truth sub-image is greater than a
given threshold, wound_pixels%, otherwise the input sub-image is marked as not-wound.
As a result, a given number of sub-images are generated per input image, and each input
sub-image is classified as wound or not-wound. Since a standard feedforward neural network
is used as a classifier, each input sub-image is transformed into a 1-dimensional input vector
by simply transforming each channel of the considered color space of the sub-image into a
vector and then concatenating all three channels. In this paper, only the RGB color space was
considered and wsize = {5, 7, 9}, wstep = 1 and wound_pixels% = {25%, 50%}. Training data
were generated using the aforementioned procedure on all 810 labeled training images from
the MICCAI 2021 Foot Ulcer Segmentation Challenge dataset.

Figure 2. Examples of original images (top row) and corresponding ground-truth images (bottom
row) from the FUSeg dataset.

3.3. Network Training and Testing

A standard feedforward neural network is trained as a classifier using the data gener-
ated by the procedure described in the previous subsection. The structure of the network
considered was as follows: one input layer, four hidden layers with ReLU activation func-
tion, and one output layer with a sigmoid activation function. The number of neurons in the
input layer depends on the length of the input vector, which in turn depends on the value
of wsize. Based on the explanation provided in the previous section, the total number of
neurons in the input layer is wsize × wsize × 3. The first hidden layer has the same number
of neurons as the input layer, and each subsequent hidden layer has half the number of
neurons as the previous layer (round down to the nearest integer where necessary). Finally,
the output layer has only one neuron since only one value needs to be provided, i.e., the
probability of the input vector (input sub-image) being a wound. The structure of the neural
network model used as a classifier with wsize = 9 is provided in Figure 4.
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(a) Original image (b) Ground truth image

Figure 3. (a) Input sub-image (marked by red square) defined by the current position of the slid-
ing window on the original image (b) Corresponding ground-truth sub-image (also marked by
red square).

Figure 4. Four ReLU layers and one final layer with sigmoid function form the architecture of the
proposed simple feedforward neural network. The image shows the number of neurons used in
every layer for the training of the model with 9 × 9 input window size.

Binary cross-entropy was used as a loss function and the Adam optimizer algorithm
(with corresponding default parameters defined in Keras) was used to update the network
parameters. In all scenarios, 80% of the training dataset was used for model training and
20% for model validation. During model training, the precision (1), recall (2) and F1 score
(3) were observed.

Precision = TP/(TP + FP) (1)

Recall = TP/(TP + FN) (2)

F1 = 2 ∗ (Precision ∗ Recall)/(Precision + Recall) (3)

where:
TP = true positive (a pixel marked as wound in the predicted image and wound in the

ground-truth image)
FP = false positive (a pixel marked as wound in the predicted image and not-wound in

the ground-truth image)
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FN = false negative (a pixel marked as not-wound in the predicted image and wound in
the ground-truth image).

Model training was set to a maximum of 2000 epochs with a batch size of 3000 due to
the large generated training data. Training of each epoch took about 68 s. Early stopping
was set to monitor the validation F1 score for 200 epochs, i.e., if the score did not increase
for 200 epochs, the model training was aborted. Early stopping keeps the model from
overfitting and saves model training time.

The trained model is used to predict wound areas on test images. Prediction of wound
areas on test images is performed as a pixel-based method. Depending on the trained model,
a sliding window of appropriate window size, wsize, and wstep = 1 is used to generate test
sub-images which are passed as input to the feedforward classifier. The classifier outputs a
probability value between 0 and 1 based on the input sub-image. This value is assigned as
the probability of the mid-pixel of the current sub-image being a wound pixel. The output
image obtained after the whole input image is processed is a probability map, of the same
size as the input image, indicating the probability of each pixel being a wound pixel. This
probability map can then be multiplied by 255 to form a grayscale image. Figure 5 shows
an example of the original image, the ground-truth grayscale image, and the predicted
grayscale image obtained using a trained model classifier.

(a) (b) (c)

Figure 5. Prediction image of classifier obtained by training a feedforward neural network model
using data generated with wsize = 9. (a) Original image; (b) Ground-truth image; (c) Predicted image
generated by the trained model.

3.4. Post-Processing

For a given test image, the output of a given neural network classifier or predicted
image is a probability map showing the probability of each pixel of the input image being a
wound pixel. Post-processing is performed on the predicted images to obtain a binary image
marking each pixel as either wound or not-wound. First, the predicted image or probability
map is thresholded, so that the pixel values above a given threshold value are marked as
wound and those below as not-wound. The value of the selected threshold influences the
accuracy of the predicted binary image when compared to the given ground-truth image.
This accuracy can further be improved by performing morphological operations such as
opening and closing. Morphological opening first erodes the image then dilates it. It does
this using the same structuring element or kernel for both operations. Morphological
opening is useful for removing small objects, in this case wound pixels, while preserving
the shape and size of larger objects or wounds. Morphological closing is the opposite of
opening, i.e., it first dilates and then erodes the image, therefore filling small holes (filling
non-wound pixels surrounded by wound pixels) while preserving the shape and size of
larger objects or wounds. Thus, the post-processing of the probability map proposed in
this paper has three stages that are performed sequentially:

(i) Thresholding—a suitable threshold value (τ) needs to be detected
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(ii) Morphological closing—a suitable kernel value kc (i.e., kernel dimension kc × kc)
for dilation and erosion needs to be determined

(iii) Morphological opening—a suitable kernel value ko (i.e., kernel dimension ko × ko)
for erosion and dilation needs to be determined

Figure 6 shows an original image with the prediction result provided by the feedfor-
ward neural network, alongside the post-processed image.

(a) Original test image (b) Predicted wound image (c) Post-processed image

Figure 6. An example of results obtained for the two stages of the wound-prediction process on a
sample test image.

3.5. Ensemble of Feedforward Neural Network Classifiers

As mentioned in Section 3.3, the feedforward neural network model structure is deter-
mined by the value of wsize. In this paper, three different values of wsize were considered,
i.e., wsize = 5, 7, 9. Hence, three different classifier models were trained and tested, namely
Model5, Model7 and Model9 for wsize = 5, 7 and 9, respectively. What we propose is to
use an ensemble of these classifiers to obtain more accurate results. Figure 7 displays the
workflow of the proposal.

An input image is processed by each of the three models separately, resulting in
three post-processed images. These binary post-processed images are then combined
using the AND logical operator on each corresponding pixel therefore providing a final
prediction image. The rational for using the AND operator is to ensure that only pixels
classified as wound on all binary post-processed images are taken into consideration in
the final prediction image. Since these three post-processed images are obtained using
different window sizes, the final result can be considered to be a combination of results
obtained by performing analysis at different scales. The final binary prediction image also
undergoes a post-processing procedure involving only morphological closing followed by
morphological opening.
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Figure 7. Workflow of the proposed algorithm for ensemble of feedforward neural network classifiers.
Models used window sizes of 5 × 5, 7 × 7 and 9 × 9 respectively.

4. Experimental Setup

All experiments were performed on a PC with 16 GB of RAM, NVIDIA GeForce RTX
6 GB GPU, and AMD Ryzen 5 processor with six cores. All programming was done using
Python programming language, specifically with Tensorflow [19] and Keras [20] libraries.
Only RGB color space of the images were considered. Three different classifier models were
trained and tested, namely Model5, Model7 and Model9 for wsize = 5, 7, and 9, respectively.
Training data were generated using wstep = 1.

For the training data generated, wound_pixels%, i.e., the threshold for a given input sub-
image to be marked as wound, was 50% for Model5 and Model7 while wound_pixels% = 25%
for Model9. 80% (648) of the 810 labeled training images from the MICCAI 2021 Foot
Ulcer Segmentation Challenge dataset were selected at random and used in neural network
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training, while 20% (162) were used for validation. Details of the feedforward neural
network models and corresponding training data generated are provided in Table 1.

Table 1. Details of the feedforward neural network models and corresponding training data generated.

Model Name Wound_Pixels% wSize Neural Network Model Structure Number of Sub-Images
Generated Per Input Image

Model5 50% 5 75-75-37-18-9-1 48,400
Model7 50% 7 147-147-73-36-18-1 47,524
Model9 25% 9 243-243-121-60-30-1 46,656

The metrics: precision (1), recall (2) and F1-score (3) were analyzed at pixel level and
observed during model training and evaluation. During model training, the binary cross-
entropy loss function was used together with the Adam optimizer (with corresponding
default parameters). Additionally, the maximum number of epochs was set to 2000 with
a batch size of 3000. Early stopping was set to monitor F1-score on the validation data
for 200 epochs. For a given test image, the output of each model is a probability map. To
obtain a binary output image, post-processing needs to be performed. However, the post-
processing stage involves the selection of suitable values of the parameters that influence
the accuracy of the post-processed image compared to the ground-truth image. The three
parameters that need to be determined are threshold value (τ), kernel value for morpho-
logical closing (kc) and kernel value for morphological opening (ko). Selection of suitable
parameter values was performed using the 162 validation images. For a given set of param-
eters, the obtained post-processed image is evaluated using the Intersection over Union
(IoU) metric (4).

IoU = TP/(TP + FP + FN) (4)

Details of the procedure for determining suitable values of post-processing parameters
are provided in Algorithm 1.

Analyzing Algorithm 1, it can be seen that for a given combination of (kc, ko), the IoU
is determined for all validation images for a given threshold τ, and then the average value
of all IoU values obtained for all thresholds is calculated. This average IoU is used to
represent the quality of the post-processed image for a given kernel combination (kc, ko).
The kernel parameters that provide the maximum average IoU value are chosen as the
best post-processing kernels for a specific model. Using the best processing kernel pair,
the precision–recall–F1 curve is created for the given model for all thresholds. The best
threshold value is then determined based on the obtained maximum F1-score.

For a given model, kc and ko were determined from the set of possible values
{3,5,7,9,11,13,15} with the set of threshold values τ = {0, 1, 2, . . . , 254}

Figures 8–10 display the results obtained when determining the best post-processing
parameters for Model5, Model7, and Model9, respectively. The obtained results are also
summarized in Table 2.

Table 2. The best post-processing parameters obtained for the feedforward neural network classifiers.

Model Name Maximum
Average IoU

Best Kernel Pair
Values (kc, ko)

Maximum
F1-Score

Max. Recall
(for Max. F1-Score)

Threshold Value
(τ) (for Max. Recall)

Precision
(for Selected τ)

Model5 0.41 (7,3) 0.76 0.78 136 0.74
Model7 0.48 (5,3) 0.81 0.82 120 0.8
Model9 0.55 (5,5) 0.84 0.91 133 0.78

Analyzing Figure 8. for Model5, a maximum average IoU of 0.41 was obtained for
kc = 7 and ko = 3 (Figure 8a). Using this kernel pair, and based on Figure 8b, the threshold
value of τ = 136 was selected, since the maximum recall value of 0.78 was obtained for the
maximum F1-score of 0.76.
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Algorithm 1 Algorithm for determining suitable values of post-processing parameters (kc,
ko) for a given model.

1: max_IOU← 0
2: params← ∅
3: kernel_values = {3,5,7,9,11,13,15}
4: threshold_values = {0,1,2,...,254}
5: for kc in kernel_values do
6: for ko in kernel_values do
7: avg_IOU← 0
8: for τ in threshold_values do
9: TP← 0

10: FP← 0
11: FN← 0
12: for each validation_image do
13: probability_map←Model.Predict(validation_image)
14: post_process1← Threshold(probability_map, τ)
15: post_process2←MorphologicalClosing(post_process1, kc)
16: post_process3←MorphologicalOpening(post_process2, ko)
17: TP← TP + True_Positives(post_process3, groundtruth_image)
18: FP← FP + False_Positives(post_process3, groundtruth_image)
19: FN← FN + False_Negatives(post_process3, groundtruth_image)
20: IOU← TP/(TP+FP+FN)
21: avg_IOU← avg_IOU + IOU
22: avg_IOU← avg_IOU/255
23: if avg_IOU > max_IOU then
24: max_IOU← avg_IOU
25: params← {kc,ko}

(a) Average IoU values (b) Precision-recall-F1 curve

Figure 8. Results obtained for Model5 (a) Average IoU values for all kernel combinations and
(b) Precision-Recall-F1 curve for the best kernel combination.

Performing a similar analysis for Model7 (Figure 9), a maximum average IoU of 0.48
was obtained for kc = 5 and ko = 3 (Figure 9a). Using this kernel pair, and based on Figure 9b,
the threshold value of τ = 120 was selected, since the maximum recall value of 0.82 was
obtained for the maximum F1-score of 0.81.
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(a) Average IoU values (b) Precision-recall-F1 curve

Figure 9. Results obtained for Model7 (a) Average IoU values for all kernel combinations and
(b) Precision-Recall-F1 curve for the best kernel combination.

The best kernel pair for Model9 was obtained for kc = 5 and ko = 5 (Figure 10a)
with corresponding maximum average IoU of 0.55. Using this kernel pair, and based on
Figure 10b, the threshold value of τ = 133 was selected, since the maximum recall value of
0.91 was obtained for the maximum F1-score of 0.84.

(a) Average IoU values (b) Precision-recall-F1 curve

Figure 10. Results obtained for Model9 (a) Average IoU values for all kernel combinations and
(b) Precision-Recall-F1 curve for the best kernel combination.

After the three models were completely defined, the ensemble of feedforward net-
work classifier approach was analyzed. Two slightly different ensemble classifiers were
implemented. The first ensemble model, referred to herein as ModelEn_1, involves using
the previously three defined models (with corresponding best kernel values and threshold
value) to generate three binary post-processed images for the same input image. These
binary post-processed images are then combined using the AND logical operator to create
a final binary prediction image which also undergoes a final post-processing step (see
Section 3.5 and Figure 7). Thus, an additional kernel pair (kc, ko) needs to be determined.
For a given kernel pair, the average IoU was determined on all validation images. The best
kernel pair values were selected based on the maximum average IoU. The results of this
experiment are displayed in Figure 11. The best kernel pair for the final post-processing
procedure for ModelEn_1 was kc = 15 and ko = 3 with a maximum average IoU value of 0.60.
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Figure 11. Average IoU values. Results obtained for ModelEn_1 average IoU values for all kernel com-
binations.

The second ensemble model, referred to herein as ModelEn_2, involves using the
three previously defined models (with corresponding best kernel values and without their
previously determined threshold values). For this model, the additional kernel pair (kc,
ko) needs to be determined for the final post-processing step, as well a threshold that
is the same for all the three previously defined models. This was done similarly to the
previously described procedures. For a given kernel pair, the average IoU was determined
for all validation images and for all threshold values. The best kernel pair values were
selected based on the maximum average IoU. The results of this experiment are displayed
in Figure 12. The best kernel pair for ModelEn_2 was kc = 15 and ko = 3 with a maximum
average IoU value of 0.49 (Figure 12a). Using this kernel pair, and based on Figure 12b,
the threshold value of τ = 82 was selected, since the maximum recall value of 0.87 was
obtained for the maximum F1-score of 0.84.

(a) Average IoU values (b) Precision-recall-F1 curve

Figure 12. Results obtained for ModelEn_2 (a) Average IoU values for all kernel combinations and
(b) Precision-Recall-F1 curve for the best kernel combination.

An overview of the ensemble classifiers is provided in Table 3.



Electronics 2022, 11, 329 14 of 18

Table 3. The best post-processing parameters obtained for the feedforward neural network classifiers.

Ensemble
Model
Name

Parameters
Neural Network Classifiers Used Maximum

Average IoU

Best Kernel
Pair Values

(kc, ko)
(Final Post-
Processing)

F1-Score Recall Precision
Model5 Model7 Model9

ModelEn_1

Kernel pair
(kc, ko) (7,3) (5,3) (5,5) 0.60 (15,3) 0.83 0.77 0.89

Threshold
(τ) 136 120 133

ModelEn_2

Kernel pair
(kc, ko) (7,3) (5,3) (5,5) 0.49 (15,3) 0.84 0.87 0.81

Threshold
(τ) 82

As pointed out in the Introduction, the wound-detection method proposed in this
paper is the first phase of a more complex system being developed, and it is imperative that
all wounds are detected. Hence the number of false negative pixels should be minimum,
implying the recall should be maximum. Thus, the main criterion for selecting the most
suitable classifier is based on the recall value on the validation set. Analyzing the data in
Tables 2 and 3, Model9 (recall = 0.91) is selected as the most suitable single neural network
classifier, with ModelEn_2 (recall = 0.87) being the most suitable ensemble classifier.

All five models were evaluated and compared using the test dataset. The results
obtained are given in Table 4.

Table 4. Classification results on the test dataset.

Model Name F1-Score Precision Recall IoU

Model5 0.69 0.67 0.70 0.52
Model7 0.71 0.69 0.72 0.55
Model9 0.71 0.68 0.74 0.55

ModelEn_1 0.73 0.80 0.67 0.57
ModelEn_2 0.74 0.72 0.77 0.59

It can be noticed in Table 4 that Model9 is the best single neural network classifier, since
the highest values among the single neural network classifiers were obtained for F1-score
(0.71), recall (0.74) and IoU (0.55). ModelEn_2 classifier is the best ensemble classifier as well
as the overall best classifier, since the highest values were obtained for F1-score (0.74), recall
(0.77) and IoU (0.59).

ModelEn_2 was compared to the segmentation model proposed in [15]. The authors
in [15], Wang et al., compared their proposed model to four other models, namely VGG16,
SegNet, U-Net and Mask-RCNN, using the Medetec dataset and showed their model to
be superior. The method proposed by [15] was implemented using the code provided by
the authors. Their deep neural network was trained using the settings (threshold = 130)
and post-processing method described in the [15]. Training was performed using the same
training dataset used in this paper. The results obtained are displayed in Table 5, together
with those obtained by ModelEn_2.
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Table 5. Comparison of Wang et al. [15] model and proposed ensemble model using test dataset
(200 images) from FuSeg dataset.

F1-Score Precision Recall Total Time for 200 Test Images
(Prediction + Post-Processing)

Wang et. al. [15] 0.79 0.85 0.74 30.1 (3.5 + 26.6) s
ModelEn_2 0.74 0.72 0.77 69.9 (69.8 + 0.1) s

It can be noticed that even though the model proposed in [15] has a higher precision
and F1-score, the ensemble classifier proposed in this paper has a higher recall value.
Additionally, even though the total classification time of the ensemble model is about
2.3 times that proposed by [15], it is still fast enough (0.35 s per image) to be used in a
wound-detection system.

To test the robustness of the two models provided in Table 5 on image rotation, four
new test sets using the original 200 test images from the FuSeg dataset were generated:

(a) All original test images were flipped horizontally.
(b) All original test images were flipped vertically.
(c) All original test images were rotated by −45°.
(d) All original test images were rotated by +45°.

The two models are tested on these test sets, and the results are provided in Table 6.

Table 6. Comparison of model robustness to image rotation.

Test Set Model F1-Score Precision Recall
Percentage Change Compared to

Original Test Set (Table 5)

F1-Score Precision Recall

Original test images
flipped horizontally

Wang et al. [15] 0.71 0.82 0.62 −10.1 −3.5 −16.2
ModelEn_2 0.71 0.68 0.75 −4.1 −5.6 −2.6

Original test images
flipped vertically

Wang et al. [15] 0.75 0.81 0.69 −5.1 −4.7 −6.8
ModelEn_2 0.73 0.70 0.77 −1.4 −2.8 0.0

Original test images
rotated by −45°

Wang et al. [15] 0.61 0.82 0.49 −22.8 −3.5 −33.8
ModelEn_2 0.69 0.75 0.64 −6.8 +4.2 −16.9

Original test images
rotated by +45°

Wang et al. [15] 0.60 0.84 0.47 −24.1 −1.2 −36.5
ModelEn_2 0.69 0.75 0.64 −6.8 +4.2 −16.9

When comparing the F1-score and recall values of the proposed ensemble model
obtained on the new test sets to those obtained on the original test set, there is a slight
percentage decrease in values for test images flipped either vertically or horizontally.
The percentage decrease is a bit greater for test images rotated by either +45° or−45°. On the
other hand, the percentage decrease in values for the model proposed by Wang et al. [15] is
much greater compared to the proposed ensemble model.

The ensemble classifier proposed in this paper is used as a wound detector. Thus,
all predicted or detected wound clusters are marked using bounding boxes. Figure 13
shows several images with detected wounds marked with bounding boxes. The predicted
wound is marked with a blue bounding box. If there are several predicted wounds on the
same image, all the predicted wounds are then marked with red bounding boxes, while the
largest predicted wound is marked with a blue bounding box. Ground-truth wounds are
marked using green bounding boxes.
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Figure 13. Detected wound areas marked on test images with bounding boxes. Blue color represents
the largest detected wound, red bounding boxes mark other wounds detected on the image while
green bounding boxes are generated from ground-truth image.

5. Discussion

Analyzing the feedforward neural network classifiers (Table 2), increasingly better
results in terms of F1-score, IoU, recall and precision are obtained with increasing values
of wsize. This can be attributed to the fact that the larger the window size, the more
information is provided to the classifier, therefore predicting wound pixels with a greater
accuracy. Using an ensemble of classifiers also increases the accuracy of the predictions,
especially if the AND logical operator is used in combining the predictions of all the sub-
classifiers of the ensemble. The proposed ensemble model is also much more robust to
image rotations compared to the model proposed by Wang et al. [15]. The network structure
of convolutional neural networks is such that they mainly take into account the spatial
structure of data, while simple feedforward neural networks rely more on the information
content of data. Since wounds are highly irregular and can be of any shape and/or texture,
this robustness might be explained by the fact spatial structure of data is not as important
as the information content, implying that the sub-images created by the sliding window
contain enough information for classification to be performed by simple feedforward
networks. However, further experiments need to be performed for this statement to be
corroborated.

6. Conclusions

The wound-detection method proposed in this paper is based on a simple five-layered
feedforward neural network. A standard fixed-size overlapping sliding-window procedure
is used to generate input data for the neural network classifier. Three different sliding-
window sizes were considered. As a result, three different neural network classifiers
were created and trained. The predicted outputs of the neural network classifiers were
further processed using three steps: thresholding, morphological closing and morpho-
logical opening. This was performed to increase the accuracy of the predicted images.
The proposed image post-processing procedure was shown to be robust and fast. Better
prediction capabilities were noticed for neural network models created and trained with
data generated by bigger sliding-window sizes. This can be explained using the fact that
the larger the window size, the more information is provided to the classifier, therefore
predicting wound pixels with a greater accuracy. An ensemble of neural network classifiers
formed using the trained three feedforward neural network classifiers is also proposed
in this paper. The binary post-processed images obtained as output predictions of the
three neural networks are combined using the AND logical operator. Better prediction
results were obtained using ensemble classifiers compared to the three single feedforward
neural network classifiers. The ensemble classifier proposed in this paper gives satisfactory
results in terms of recall and processing time, is relatively robust to image rotations, and
is implemented as a wound detector as part of a larger system for wound analysis. Even
though wounds are highly irregular and can be of any shape or texture, the results obtained
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in this paper indicate that simple feedforward neural networks are suitable for wound
detection and there is no need for more complicated neural networks. Future research will
focus on detecting the right neural network structures, i.e., the selection of the optimal
number of layers and neurons, as well as suitable activation functions, in order to improve
upon the current results obtained. Possible preprocessing steps, such as conversion to other
color spaces and color correction, will also be considered. The effect of data augmentation
of the training set on classification performance, especially with respect to image rotation
and flipping, will also be analyzed.
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