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Abstract: Warehousing is one of the most important activities in the supply chain, enabling competi-
tive advantage. Effective management of warehousing processes is, therefore, crucial for achieving
minimal costs, maximum efficiency, and overall customer satisfaction. Warehouse Management Sys-
tems (WMS) are the first steps towards organizing these processes; however, due to the human factor
involved, information on products, vehicles and workers may be missing, corrupt, or misleading. In
this paper, a cost-effective Indoor Positioning System (IPS) based on Bluetooth Low Energy (BLE)
technology is presented for use in Intralogistics that works automatically, and therefore minimizes
the possibility of acquiring incorrect data. The proposed IPS solution is intended to be used for
supervising order-picker movements, movement of packages between workstations, and tracking
other mobile devices in a manually operated warehouse. Only data that are accurate, reliable and
represent the actual state of the system, are useful for detailed material flow analysis and optimization
in Intralogistics. Using the developed solution, IPS technology is leveraged to enhance the manually
operated warehouse operational efficiency in Intralogistics. Due to the hardware independence, the
developed software solution can be used with virtually any BLE supported beacons and receivers.
The results of IPS testing in laboratory/office settings show that up to 98% of passings are detected
successfully with time delays between approach and detection of less than 0.5 s.

Keywords: indoor positioning systems; bluetooth low energy; intralogistics; nature–inspired algorithm;
particle swarm optimization

1. Introduction

Logistics is becoming an increasingly important activity globally, with an estimated
annual industry value of EUR 5.73 trillion in 2020. The value has dropped since the
beginning of the COVID-19 pandemic in 2020, but it is expected to rise to EUR 6.88 trillion
by the year 2024 [1]. Intralogistics (internal logistics), including the warehousing processes,
is one of the largest activities in Logistics, accounting for around 20.5% of the total Logistics
market in 2018, indicating the strong importance of Intralogistics in the economy [2].

Intralogistics covers all technical systems, services and operations concerning the
material and information flow inside production processes. Processes inside the Intral-
ogistics domain are crucial to managing material and information flow along the whole
supply chain, as they ensure reliable and predictable material and information flow [3].
Warehouses are important in the economy due to: (1) the uncoordinated in- and out-flow
of goods, (2) the unpredictable dynamics in production and consumption, (3) the reduction
of transport costs, and (4) to increase the level of satisfaction of end-users. The warehouse
is the place where the processes of receiving, storing, ordering and dispatching goods are
carried out [4].

Faber et al. [5] note that warehousing is a critical activity in the supply chain that can
create a competitive advantage in terms of customer service, reduction of order-to-fill times,
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and cost. Today, most warehouses use WMS to ensure product traceability, which is the
first step in organizing and optimizing warehouse operations.

A WMS is an IT solution that provides, stores, and reports the information necessary
to manage the flow of material efficiently within a warehouse from the moment a request
is issued to the execution of the delivery. The benefits of using a WMS include increased
productivity, reduced inventory, better space use, error reduction, and better customer
support, due to the traceability of products [5].

While WMS are sufficient in terms of controlling and organizing the warehouse itself
and have a positive impact on the quality of the warehouse’s operation and performance,
they often do not reflect the actual condition of the warehouse. The accuracy of the
WMS data still relies on the human factor, as the data are processed manually (scanning
the correct bar/Radio Frequency Identification (RFID) code associated with product and
location, etc.) [6]. Products may have been deposited in the wrong place, or may have
been booked incorrectly. The WMS status information itself is often incomplete, incorrect,
or even misleading. A system that does not know the actual status can lead to incorrect
commands, e.g., sending several workers with forklifts to the same place, where a collision
or congestion can occur [7].

Therefore, those systems should be upgraded with advanced technologies that provide
reliable and accurate information, mostly independent of the human factor. Halawa et al. [7]
note that the latter is possible using Real-Time Location System (RTLS) technology, a subset
of IPS. A large study has been examined, showing that the combined use of WMS and RTLS
can improve the quality of the data obtained, improve the management of the warehouse,
and overall improve warehouse safety and operational efficiency significantly. The authors
also point out that several unique analyses could be performed based on the gathered
data [7].

IPS work indoors, where satellite positioning systems (GPS, Galileo, Glonass) fail
to provide (accurate) location of the subject in question. Furthermore, IPS technology
can also be used for outdoor positioning, although the same technology used inside and
outside may give different results [8]. IPS are used to determine the current location of
(1) an object (e.g., a forklift truck), (2) an industry item (a tote or a pallet), or (3) a person
(order-picker) in warehouse environments [9]. An IPS consists of transmitters located on
the observed subject and a wireless signal reader that detects and reads the received signals.
The location of transmitters and receivers can be swapped, which depends on the type of
application. Various wireless technologies are used to communicate between transmitters
and readers. The most popular are Ultra-Wideband (UWB), Wireless Fidelity (Wi-Fi),
Bluetooth, light, and active/passive RFID systems [10]. Visible Light Communication
(VLC) is gaining increasing attention, since its high data rate, security, no interference with
Radio Frequency (RF) spectrum and high resolution [11] make it an appropriate choice for
localization application.

By placing the reader in fixed positions within an environment (e.g., a warehouse),
the location of mobile transponders can be determined by analyzing changes in signal
properties (delay, attenuation, phase changes) and data exchange between the reader and
the transponder [10]. Sophisticated mathematical and heuristic methods should be used to
process highly unstable and noisy signals coming from the transmitters [12].

IPS that provide the information of location in real-time are called Real-Time Location
Systems (RTLS). They are also being used increasingly in medical environments (tracking
patients and seniors [13], expensive equipment [14]), large shopping malls [15], sports [16],
etc. However, highly accurate RTLS, with localization error less than 20 cm, covering
large areas, such as warehouses, are usually expensive and economically unfeasible for
manually operated warehousing systems. Usually, such systems intended for high precision
localization are based on UWB technology [10]. Piccinni et al. [17] demonstrated that
accuracy of under 2 cm can be achieved using the Time Difference Of Arrival (TDOA)
positioning technique coupled with Orthogonal Frequency Division Modulation (OFDM).
A few-centimeter accuracy can also be achieved with VLC technology [18,19] on account of
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the more expensive hardware and computational setups. However, as a drawback of VLC
technology, constant line-of-sight (LOS) is necessary for correct operation, coupled with the
demand that light sources must stay on all the time [20].

A more cost-effective solution that still provides enough information about subject
location can be realized with technologies like Wi-Fi and Bluetooth. However, Wi-Fi and
Bluetooth technologies are less appropriate for accurate localization, due to heavy influ-
ences from electromagnetic (EM) sources, causing interference to signal properties [21–23].

Several attempts have been made to reduce the localization error of the Bluetooth
RTLS, yet none of them reduced the localization error to less than 1.5 m in the warehouse
environment [9].

This paper proposes a prototype of IPS, based on BLE technology. The proposed
solution does not provide accurate real-time location of the observed subject at any time,
but instead records passings, or arrival signals, at the BLE transmitter area in real time. It
eliminates the need for the expensive hardware needed for accurate localization associated
with UWB technology and the complex setup related to Wi-Fi technology. In addition,
direct LOS is not necessary, contrary to VLC technology. Compared to RFID technology, it
uses far less energy and is easier to operate, due to the absence of large external antennas
associated with passive RFID systems. In addition, the Bluetooth transmitter(s) and the
reader(s) can be battery powered.

The proposed IPS is capable of accurate event detection used for providing near
real-time data of subject movement in manually operated warehouses (e.g., smaller retail
businesses). Using the developed solution and additional analysis of the acquired data,
more efficient order-picker routes, material flow analysis, order-picker congestion, and
overall efficiency can be achieved. Accurate event detection is achieved using a Nature-
Inspired Optimization Algorithm (NIA) for setting a near-optimal threshold for a measured
data filter, which eliminates all measurements below the set threshold. The system is
designed to be as automatic as possible, with very few parameter settings. The user is
guided through the process of calibration using a straight-forward graphical interface.
All the developed code is available upon user request, as the proposed IPS is merely a
framework that can be adapted freely to meet specific user requirements.

The authors expose four major contributions to the field of Bluetooth-based IPS:
(1) an automatic calibration system that requires only a small intervention due to the
automatic peak finding procedure using the Particle Swarm Optimization (PSO) algorithm,
(2) accurate event detection with a very low false detection rate, (3) simple implementation
of the peak detection procedure, capable of running on low-power hardware (such as
Raspberry Pi), and (4) decentralized architecture, which allows data to be processed locally,
and, consequently, there are no server costs. Only a final location and timestamp are posted
into the database.

The paper is organized as follows. A general overview of BLE-based IPS and state-
of-the art of related solutions is provided in Section 2. Emphasis is placed on BLE-based
IPS used especially in warehouse environments. In addition, a short overview will be
provided of NIAs used in improving IPS technology. The software and hardware setup
of the proposed system is presented in Section 3. The PSO algorithm for determining
optimal threshold value for the measured data filter, programmed in MATLAB, will be
discussed, along with the used evaluation protocols and layout of the testing area. The
results of the proposed IPS in three-fold tests are presented in Section 4: (1) processing
time evaluation, (2) beacon calibration tool evaluation, and (3) IPS real-time localization
accuracy. In conclusion, pointers are provided to future work.

2. Literature Review
2.1. BLE Indoor Localization Systems

Bluetooth-based IPS became widespread with the introduction of the Bluetooth 4.0
BLE Standard in 2009 [24]. Since then, the specifications of the Standard have allowed more
advanced use of the technology for localization purposes by introducing a new type of
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devices called “Bluetooth beacons”. Unlike the devices that used the previous Standards,
the new ones have the option of transmitting at set intervals, which contributes significantly
to the energy efficiency of the system, while also improving the hardware and the immunity
to interference.

Generally, Bluetooth-based IPS are-based upon manipulation of Received Signal
Strength Indicator (RSSI) information. Those systems fall into three categories by the
technique that is used for localization: (1) distance-based, (2) fingerprinting-based and (3)
probability estimation techniques [25]. Determining distance from the well-known log-
normal propagation model is challenging due to the noise, reflection, and multi-path effect
of the RF signal. Theoretically, up to 10 cm accuracy can be achieved at distances between
beacons and anchors less than 1 m in low noise environments, with both components
being in the same horizontal plane [26]. However, as the distance between the components
rises, the RF signal gets distorted, and the accuracy drops significantly. Those influences
can be reduced successfully by implementing various filters, most commonly used are
variations of the Kalman Filter [27] and Particle Filters [25]. Fingerprinting usually requires
a calibration pre-operation, which can take tremendous time and effort; however, if done
properly, it can achieve a positioning error of less than 1 m, especially if fused with other
sensor data [28]. Frequently, this process requires to be repeated after some time, due to
the changes in environment. Probability estimation techniques require proper parameter
settings to work as expected [29].

Our work does not fall directly in any of the above categories, since only events linked
to location in space are detected. However, since the log-normal model is used passively,
distance-based techniques are the closest related.

Localization techniques based on RSSI usually face great positioning errors or difficult
parameter settings, which can be reduced successfully by combining them [30]. Since
many new smartphones already have built-in Bluetooth capabilities, several authors are
experimenting with those devices [31], which reduces the need for additional hardware.
Inertial Measurement Units (IMUs), such as accelerometers and gyroscopes, are usually
also present, and are combined successfully with the Bluetooth capabilities [32].

Xu et al. [28] presented an IPS which combines the fingerprinting-based RSSI tech-
niques with pedestrian dead reckoning (PDR). The fingerprinting method was improved
by using robust filter, and the PDR was improved by using a Mahony complementary
filter, which reduced the drift error. Their experiments, which were performed using
a smartphone and several BLE beacons, showed mean positional accuracy of around
0.8 m. Dinh et al. [33] proposed a novel IPS based on BLE beacons with a low RSSI rate
and smartphone sensors. They employed the distance-based technique, which fuses least-
squares-estimation-based positioning together with PDR using a Kalman Filter. Their work
also includes a study of how velocity affects the accuracy of the system. The accuracy of
the system is around 1.1 m for a walking target, compared to 1.6 m for a running target.
Bai et al. [34] presented an IPS that can be used for tracking elderly people. They proposed
a trilateration and fingerprinting method and compared the results. They used the grid-
based and location-of-interest-based fingerprinting classification method with five different
classifiers. Using the above method, they achieved over 90% accuracy in determining
the location of interest successfully, even with low-cost sensors. Ho et al. [35] proposed
a decentralized positioning method that does not require a manual training stage before
deployment, but instead takes place on the fly. The anchor nodes broadcast and receive sig-
nals from other anchors simultaneously, for which the anchor operation must be modified.
An average error of 1.5 m was achieved in the best-case scenario. Shen et al. [25] presented
a Particle Filter-based IPS that has been tested on commercial off-the-shelf devices (smart-
phones). Experiments have been conducted in a 5.4 m × 4.95 m area with four anchors,
and compared with conventional trilateration and two approaches proposed by them in
previous papers. They achieved a median accuracy of 1.16 m. Serhan et al. [36] proposed
an adaptive Sequential Monte Carlo filter (SMC), which is applied to the fingerprinting
technique in a 17 m × 20 m open office area. Twelve BLE receivers, based upon Raspberry
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Pi, are used for receiving the advertisement data. A single smartphone transmitter moves
around the office area, whereas their IPS models the motion of tracked objects, having
no prior information about their movement. The positioning error rate in the worst-case
scenario was around 3.15 m. Lie et al. [37] proposed a coarse-to-fine fingerprint-based algo-
rithm for location detection. Weighted sum and k-nearest neighbors with three different
weight calculations are used in the coarse location estimation. In the fine-tuning step, the
delta rule is used for the single-layer neural network to update the coordinates of reference
points. Experiments were conducted in two rooms, a classroom of 4 m × 6 m and a lecture
room of 19 m × 12 m. The proposed fine-tuning algorithm improved positioning accuracy
by up to 15.8%, with a mean positioning error in first room of 0.87 m to 1.54 m in the
second, respectively. Yang et al. [38] proposed a heading estimation solution that is based
on fusing a smartphone built-in motion sensor, magnetometers, building map knowledge
and fingerprinting coarse position from Wi-Fi or Bluetooth using an Extended Kalman filter.
The system was tested in a building complex (mainly corridors), which showed that the
sensor fusion reduced positioning errors from 3.57 m to 0.9 m. Assayag et al. [39] proposed
a dynamic model estimation IPS solution that uses dynamic parameters estimated based
on the location of the sent signal. For each anchor, a different propagation model (path
loss exponent) is used as the basis for distance and position calculation. They also used a
novel best anchor selection procedure. The IPS requires a kind of training phase, which is
supposedly shorter than by fingerprinting techniques. The experiment was done in a 43 m
× 15 m area with 15 anchor nodes. The positioning error decreased by around 17% to 3 m,
compared to the fixed model-based IPS.

Specifically in warehousing, two major contributions have recently been made in the
field of BLE-based IPS. Zhao et al. [40] developed an IPS that tracks assembled forklifts
in the warehouse. The authors used Bluetooth transmitters, which were placed in a bag
attached to each forklift truck. They automated the data acquisition process, so they placed
receivers (Raspberry Pi) on the ceiling above the forklifts, reporting whether a forklift is
stored in that sector. The case study was conducted in a real warehouse, but since the
forklifts only move around the warehouse sectors and the receivers are stationary, the
problem is relatively straightforward. Li et al. [9] developed an IPS solution based on BLE
technology to be used in warehousing environments. Its architecture can be divided into
two parts: The Internet of Things (IoT) framework and the localization module. Localization
is performed based on trilateration, but a novel LSTM distance estimator is used, due to
the heavy inaccuracies which come from using the log-normal propagation model. Several
self-adaptive mechanisms have also been used to increase localization accuracy–elastic
radius intersecting, multiple weighted centroid localization, and a variant of the Kalman
filter. The system has been tested in an ideal lab environment and Alibaba’s large-scale
warehouse. In the first scenario, around 0.9 m localization accuracy was achieved and
1.5 m in the second, respectively.

2.2. Nature-Inspired Algorithms in Indoor Positioning Systems

NIAs are a type of optimization algorithms inspired by natural phenomena [41]. Their
basis is the maintenance of a population of solutions, which, through different varia-
tion operators, change the values of individual elements to improve the quality of the
current individuals. In each generation, the population of current individuals (parents)
competes with a new generation (offspring), and, by eliminating the worst individuals,
we get the best possible population of survivors, which enter the next evolutionary cy-
cle [42]. A measure of how well our individuals have adapted to a specific problem is the
evaluation function.

Algorithms, according to their principle of operation in nature, are divided into
three major groups [41]: Evolutionary Algorithms (EAs), Swarm Intelligence (SI)-based
algorithms, and others. The first group is based on Darwinian natural selection [43], while
the second group is based on the behavior of living things living in swarms (e.g., flocks of
birds, bees, bats). Other algorithms mimic processes that we find in Chemistry, Physics,
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and even social sciences such as Sociology. EAs date back to the 1970s, and, because of
their longer history, are also slightly more developed. Each of the different types of EAs
consists of the following components [43]: initialization, parental choice, recombination,
mutations, evaluation functions and, lastly, choice of survivor(s).

Several popular NIAs are used today: Evolution Strategies (ES) [44,45], Differential
Evolution (DE) [46] and its self-adaptive variant jDE [47], Particle Swarm Optimization
(PSO) [48], Bat Algorithm (BA) [49], and others.

Several IPS technology applications have been enhanced using various NIAs. How-
ever, PSO has been used extensively, due to its simple formulation and fast execution [50].
Li et al. [51] presented an improved algorithm method for localization based on RSSI.
Based on the collected samples of the RSSI, a Neural Network (NN) has been learned to
approximate the relationship between the received power and the distance to the node.
The PSO algorithm is used to prevent the NN from being trapped in the local optimum.
Tomažič et al. [52] developed a sophisticated IPS which combines visual-inertial tracking
and Bluetooth technology. PSO is used to find the position of the smartphone (particle) in a
2D space, for which a corresponding vector of signal strengths, obtained by a constructed
path loss model, is the most like the vector of current measurement according to their objec-
tive function. Several other authors have also used PSO algorithms to improve localization
accuracy and reliability [53,54].

Compared to the related works, our system is superior in terms of its shorter pre-
operation training phase compared to systems which use fingerprinting-based localization
techniques. The system scales easily with greater areas, as the localization accuracy is
directly dependent on the number of anchors and not the area itself. In addition, no specific
measurements at exact locations are needed, such as the determination of the path loss
exponent, necessary for distance-based localization techniques, instead only passing by a
beacon. Furthermore, the calibration process is almost entirely automated. Since we are
limited to the points of interest, training only takes place in areas near the beacon instead
of the whole area. As most of the related works are interested in providing an accurate
location of the whole area, we cannot compare our system’s accuracy directly to theirs.
The closest work to ours is that of Bai et al. [34], which discusses obtaining a presence
for the location of interest (e.g., kitchen, bathroom, bedroom) in elderly homes, which
shows >90% accuracy. Furthermore, no modifications of beacons or receivers are necessary.
For larger-scale operations, only the software, containing a localization engine, must be
distributed to a specific number of subjects to be monitored and beacons placed to the point
of interest (POI).

3. Sensor System for the Application of IPS in Intralogistics

The proposed prototype IPS is composed of multiple hardware and software solutions,
which are explained in detail in the following sections. The prototype hardware consists of
multiple BLE transmitters, called beacons, and a Raspberry Pi microcomputer, acting as a
receiver. A single beacon must be used for every POI. The software part consists of several
developed software solutions written in the programming language Python and MATLAB.

3.1. Experimental Setup—Hardware
3.1.1. Bluetooth Low Energy Beacons

BLE beacons are small electronic devices that transmit messages periodically [55] in the
form of RF waves in the ISM band at a carrier frequency of 2.4 GHz [56]. To detect nearby
devices and receive data, it is necessary to use a communication module that supports
BLE technology with a Bluetooth version equal to or higher than the one used on the
transmitting side. Unlike Wi-Fi transmitters, which also transmit in the ISM band, BLE
devices use only three advertising channels (37, 38, 39) and 37 data channels (0–36) spaced
2 MHz apart to prevent interference [57]. This also reduces power consumption, as only
three channels need to be checked, so they are typically powered by cell batteries and have
a lifetime of up to several years. Frequency hopping technology is used to transmit data so
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that BLE advertising moves randomly between the channels and sends short packets of
data [58]. As noted by Huang et al. [59], BLE beacons usually broadcast on three different
channels, which means that the RSSI information is channel dependent. The authors in [59]
showed that the positioning error could be reduced by around 33% using a single channel
advertising approach for the distance-based technique. The single-channeled operation
is preferred, as Assayag et al. [39] noted, since up to 50% of packets got lost due to the
multi-channel operation in their experiment. However, not all beacons (also the ones used
in the experiment) have that capability.

The advertised data are configured using the associated software provided by the
beacon manufacturer before they are put into operation. Some transmitters can transmit
multiple different data packets sequentially from the same devices, which is known as
packet interleaving [60]. Data packets have a simple structure consisting of an address, a
data frame, and a Cyclic Redundancy Check (CRC). The data frame can be customized, since
the Bluetooth SIG has not specified it. In practice, three main protocol implementations are
used, iBeacon (Apple), Eddystone (Google) and AltBeacon (Radius Networks) [61]. For
our localization purposes, the selected beacon advertisement protocol is arbitrary. Only
the transmitter’s Universally Unique Identifier (UUID) or Media Access Control (MAC)
address is required for unique identification, along with the RSSI. In addition, some beacons
measure battery status and room temperature, which is included in the data frame as an
additional feature.

In our experiments, six BLE beacons Smart Beacon SB16-2 were used, shown in
Figure 1. The original batteries were replaced with a single cell CR2477 battery, and the
PCB was placed in a smaller 3D-printed case to reduce size further. The Smart Beacon
SB16-2 specification is presented in Table 1.

Figure 1. Original kontakt.io Smart Beacon SB16-2.

Table 1. Smart Beacon SB16-2 specification [62].

Specification

Supported Bluetooth version Bluetooth 4.2

Dimensions 56 mm × 55 mm × 15 mm

Weight 35 g

Range Up to 70 m

Supported protocols iBeacon, Eddystone

Available transmission power levels 0 (−30 dBm), 1 (−20 dBm), 2 (−16 dBm), 3 (−12 dBm),
4 (−8 dBm), 5 (−4 dBm), 6 (0 dBm), 7 (4 dBm)

Sensitivity −93 dBm

Battery Life (Tx = −12 dBm; interval = 350 ms) Up to 24 months
(original batteries)
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3.1.2. Raspberry Pi Microcomputer

The main algorithm runs on a credit-card-sized Raspberry Pi 4 (8 GB) microcomputer
(Figure 2). Featuring a quad core 64-bit processor, it is possible to run quite complex
algorithms that would be exceedingly difficult to run on a standard microcontroller. The
onboard Bluetooth and Wi-Fi connectivity mean that no additional hardware is required to
perform localization algorithms and upload the acquired data to the online database. How-
ever, we found that using an external Bluetooth receiver improved localization accuracy
significantly. Therefore, two different Bluetooth USB adapters were used for localization
purposes: (1) Trust Manga Bluetooth 4.0 USB; and (2) LM Technologies LM1010 with
external antenna. The specifications for both adapters are presented in Table 2.

Table 2. Bluetooth USB adapter specifications.

Specification

Bluetooth USB adapter Trust Manga Bluetooth 4.0
USB [63] LM Technologies LM1010 [64]

Supported Bluetooth version 4.0 4.0

Range 15 m Antenna dependent

Dimensions 17.6 mm × 13 mm × 4.5 mm 58.5 mm × 28 mm × 14 mm
(without antenna)

Weight 3 g 11 g

Antenna Onboard LM251 (2 dBi) [65]

Raspberry Pi also features GPIO pins, which can be used to connect additional sensors,
actuators, or other devices. Due to its relatively low current consumption, Raspberry Pi
can be powered using a 5 V USB Power Bank. Coupled with the Raspberry Pi’s portable
size, it is suitable to be carried around by a subject or placed on the subject to be tracked.
The Raspberry Pi 4 (8 GB) technical specifications are presented in Table 3.

Table 3. Raspberry Pi 4 (8 GB) technical specifications [66].

Specification

Processor Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @
1.5 GHz

RAM 8 GB LPDDR4-3200 SDRAM
Connectivity 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless, Bluetooth 5.0, BLE

Ethernet Gigabit Ethernet

Figure 2. Raspberry Pi 4 microcomputer.

The main task of the Raspberry Pi microcomputer is to receive and process messages
(advertisement data), which are transmitted by BLE beacons. There are only two essential
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pieces of information from the received message: (1) the BLE beacon’s MAC address; and
(2) RSSI. The latter is a measure of the portion of the received power sent from the BLE
beacon. Based on the RSSI metrics, a rough estimation of the distance between transmitter
and receiver can be determined from the log-normal propagation model. The model is
defined with Equation (1) [67]:

pr(d)dB = pr (d 0)dB − 10·n·log(
d
do

) + χ, d > d0, (1)

where pr(d)dB is the received power at distance d from the transmitter (also RSSI), pr (d 0)dB
is the average of all possible transmitted powers at reference distance d0, n if the power
loss coefficient, χ is Gauss’s random variable with mean 0 and variance δχ

2 describing
random shading effects. pr (d 0)dB is calculated based on Equation (2):

pr (d 0)dB= pt − pd0
, (2)

where pt is transmitter power and pd0
is the power loss at reference distance (1 m). pd0

is obtained via measurement, or calculated from power loss in the free space formula in
Equation (3) [68].

pd0
= 20 log

(
4πd0

λ

)
, (3)

where λ represents the wavelength of the transmitted EM waves, c is the speed of light and
f the signal carrier frequency.

The propagation model considers a shading whose random variable has a Gaussian
(normal) distribution, hence the name log-normal. Our application; however, does not use
any of the above Equation directly, but simply observes the rising and falling of the RSSI
values during a person’s movement.

3.2. Experimental Setup—Software

Software for indoor localization is divided into three parts, each running on its own
platform. MATLAB runs on a Windows PC and is used for non-real-time CPU-intensive
algorithms. Raspberry Pi runs a Raspbian operating system for localization algorithms,
which are developed in Python. It involves BLE detection, signal processing and evaluation
algorithms, which run on multiple threads in soft-real-time. BLE detection is based on the
“bluepy” Python library, developed by Ian Harvey [69]. Google Spreadsheets API [70] is
used as a database for detected user passing by the BLE beacons. Python user code, used
for visualization, runs cross-platform and parses data from the Google Spreadsheets. Each
of the mentioned pieces of software will be discussed in detail according to the phases of
use: (1) the calibration phase, (2) the real-time detection phase and (3) the post-processing
phase, as shown in Figure 3. The real-time detection phase and post-processing phase are
intertwined and co-dependent–namely, data from the real-time detection phase are needed
to perform the post-processing (visualization) phase.

Figure 3. Phases of the proposed indoor positioning system.
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3.2.1. Calibration Phase

The calibration phase is necessary to optimize the value of the measured data filter
threshold used in the localization phase to ensure accurate detection of passing by the
BLE beacons. The EM signals emitted from the beacons are susceptible to noise, therefore,
raw RSSI measurement data must be filtered and processed properly for accurate peak
detection and to suppress false detections. Only raw, unfiltered data are saved and fed into
the objective function, which must determine the correct threshold value to achieve the
best signal-to-noise ratio (SNR) to enhance real-time detection capabilities. Therefore, a
person carrying the receiver of the IPS must determine the time correctly and exactly when
they pass a BLE beacon. The acquired measurements (RSSI values and timestamps) are
imported into MATLAB, which performs the calibration procedure (Figure 4).

Figure 4. Calibration procedure.

During the calibration phase, six to eight separate measurements of BLE beacons (six to
eight RSSI samples) are captured under specific conditions, as described in “Measurement
protocol”. Whenever a person carrying a Raspberry Pi walks perpendicularly by the beacon
at the fixed distance, the mouse button must be pressed. Captured data are zipped and
saved to the web service for post analysis, where MATLAB reads it. The data are interpreted
using MATLAB and the task of finding the optimal threshold value is performed, to ensure
that peaks are not filtered out and no additional false positives are included. To find the
best threshold value of the measured data filter, the objective function is expressed as:

f =(npeak − ndet)·f1 +nmiss(1 − f1) (4)

where npeak is the number of actual peaks, nmiss the number of miss-detected peaks, ndet
number of detected peaks and f1 a measure of sensitivity.

The PSO algorithm is used to minimize the objective function. As in one of the
previous studies [50], the main author found that the PSO is easy to implement, has rather
simple parameter settings, and uses computing resources efficiently. In addition, the PSO
proved to be superior in terms of convergence speed, meaning less evaluations needed and
faster execution speed for the optimization process.

The PSO algorithm was developed by Ebenhard and Kennedy in 1995 [48]. It is based
on the behavior of certain species of animals or insects that live in groups (e.g., flocks of
birds or fish). An individual within a population is called a ‘particle’ and represents a
potential solution to a problem. The particles travel virtually through the search space.
Each particle has two parameters, i.e., position and speed. The better the solution, the
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better the value of its evaluation function. Particles pass through space and move the
solution to follow the best particle at the moment. The PSO also uses memory, as it stores
the global best particle in addition to the local best particle. In our paper, we used the
so-called canonical PSO, which is a simplification of the original PSO. Best local particle
(local best) is the best position a particle can reach within a given number of iterations.

The global best represents the best solution found by the algorithm up to a certain
optimization stage.

To find the best local and global values for a particle, its velocity must be calculated,
followed by the new particle position according to the following equations [71]:

v(k)
i= C0·v(k−1)

i+C1·rand(0, 1)·(g (k) − x(k)i+C2·rand(0, 1)·(p (k)
i − x(k)i), (5)

xk+1
i= x(k)i +v(k)

i (6)

The rand (0,1) function calculates a random value between [0, 1]. The constant C0
represents the weighting factor of the particle velocity value from the previous iteration
and represents the inertia of the particle motion. Usually, the value of C0 is between 0 and
1 (the best values are just below 1). Constants C1 and C2 are learning constants and usually
take the value 2. The constant C1 represents the amount of knowledge or the experience
acquired by the particle itself, and C2 the knowledge acquired by the swarm [72]. The
pseudocode of the optimization procedure, containing PSO optimization, is expressed in
Algorithm 1.

Algorithm 1 FindOptimalThreshold

1: Initialize best_global_fitness.
2: Initialize population consisting of i particles with random position between [min, max].
3: Initialize generation consisting of j populations.
4: for each particle in population do
5: Calculate number of actual and miss-detected peaks with particle_position.
6: Calculate fitness function best_local_fitness.
7: best_local_solution = particle_position (i)
8: if best_local_fitness (i) < best_global_fitness then
9: best_global_fitness = best_local_fitness (i)
10: best_global_solution = best_local_solution (i)
11: end if
12: end for
13: for each population in generation do
14: for each particle in population do
15: Calculate new particle velocity new_particle_velocity.
16: Calculate new particle position new_particle_position with new_particle_velocity.
17: Calculate number of actual and miss-detected peaks with new_particle_position.
18: Calculate fitness function local_fitness.
19: if local_fitness < best_local_fitness (i) then
20: best_local_solution (i) = new_particle_position (i)
21: best_local_fitness (i) = local_fitness
22: end if
23: if local_fitness < best_global_fitness then
24: best_global_solution = new_particle_position (i)
25: best_global_fitness = local_fitness
26: end if
27: end for
28: end for
29: optimal_threshold = best_global_solution
30: return optimal_threshold
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Due to the number of PSO evaluations used in the process of optimization for each
beacon (nfes= 500), the optimal threshold value is calculated on the PC instead of Raspberry
Pi. Namely, for each separate beacon, a calibration must be performed to ensure optimal
detection and false positives’ rejection. The calibration process takes place in a MATLAB
App Designer-developed app, which guides the user visually through the entire calibration
process (Figure 5). The app graphical user interface (GUI) is user friendly, intuitive, and
the calibration process is almost entirely automatic. However, due to the fluctuations
of measurements, sometimes the thresholds should be finely adjusted manually by the
user. Of course, before the system is used in a final application, the thresholds must be
validated accordingly.

Figure 5. Beacon calibration tool, developed in MATLAB.

The sensitivity measure (Figure 5) adjusts the weighting factor f1 of the fitness function
f; values closer to 1 favor thresholds that may have multiple false detections, but also
discover higher numbers of peaks, contrarily, values closer to 0 favor thresholds which
eliminate false detections but can also filter out actual detected peaks. The number of
samples adjusts the interval of where the peaks are supposed to be. Lower values tighten
the interval, which prevents multiple detections, but can also suppress actual peaks. The
number of generations (nGEN) adjusts the number of generations (and, consequently,
evaluations) for the PSO algorithm–higher numbers usually improve solutions to some
extent, although they take longer to complete.

The optimization process is presented graphically in Figure 6. First, a PSO test popula-
tion (swarm) is initialized. In the initial population, particles are initialized randomly, with
values between [min, max]. Next, all measurements of the specific beacon are processed
using a measured data filter, with the value of the test individual contained in the popu-
lation. If the average of the last three measurements of a single beacon is higher than or
equal to, the set measured data filter threshold, it is ready for the next phase of filtering. In
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the second phase, raw values are first processed using the measured data filter, followed by
a simple moving average (SMA) filter with five samples (Equation (7)).

SMAk =
1
k

n

∑
i=n − k+1

pi, (7)

where k represents the number of data points (filter window) and n the number of samples.

Figure 6. The PSO optimization process in MATLAB.

Lastly, two Exponential Moving Average (EMA) filters are used on the SMA processed
values (Equation (8)) [73], first with a window size of w1 = 3, and second with a window
size of w2 = 4. EMA smoothing with two different window sizes is used for approximate
peak detection. This is done by subtracting the calculated EMA filter value with window
size w1 = 3 from the value with window size w2 = 4.

St = αyt−1 + (1 − α)St − 1;
0 < α ≤ 1,

t ≥ 3,
(8)

where Si is a smoothing observation, y an original observation, and α a smoothing constant.
The results of the two EMA values are then subtracted. For a peak to be detected in

processed measurements three conditions must be met:

(1) The difference between the two EMA values falls between the fixed value (typically <1.0
and >−1.0),
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(2) The first EMA value is equal to or higher than the threshold value carried by the
current individual,

(3) The second EMA value is lower than the fixed value.

If the peak is detected it is written to a vector containing peaks. Detected peaks are
compared twofold to the measured (set) peaks during the calibration phase. First, the
algorithm searches for exact matches, and second, it searches in the search interval of the
set click, provided by the user. The calculated peaks are expected to be delayed compared
to the measured (set) due to multiple filtering of the measurements beforehand. Then, the
fitness function is calculated, according to Equation (4). Particles (threshold values) which
find the most actual peaks and least peaks that should not be present, are ‘awarded’ with
the lowest value of the fitness function. The best value for a measured data filter carried by
an individual continues into stage two of the PSO optimization, where initial particles are
modified, and the entire process described above is repeated from the beginning until a
set number of evaluations is reached. The best individual with the lowest fitness function
value is recognized as the best solution to the problem, and is saved for the real-time
detection phase.

3.2.2. Real-Time Detection Phase

The real-time detection phase is implemented on Raspberry Pi to use available com-
puting resources efficiently, namely, all the processing takes place locally except writes into
the database.

The algorithm running on Raspberry Pi is divided into three categories: (1) detec-
tion, (2) signal processing, and (3) data evaluation and posting. As can be noted from
Figure 7, several steps in the calibration/PSO optimization process are identical, so that the
calibration and real-time detection phases should return the same results.

Figure 7. Real-time detection phase.

The system’s main component, Raspberry Pi, attached to the person, scans the nearby
surroundings for any present beacon with a predefined MAC address. After the scan cycle
has been completed, the system first filters out measurements which returned the value



Electronics 2022, 11, 308 15 of 27

‘None’ and replaces them with a fixed negative number (−100). All beacons which are not
recognized by the system are eliminated automatically and have no effect on measurements.
Next, the measurements of each beacon are processed using the measured data filter with
their corresponding threshold, set in the calibration phase. If the average of the last three
measurements of a processed beacon is higher or equal to the set measured data filter
threshold, we assume that the person carrying the receiver is in the vicinity of a beacon
and is ready for the next phase of filtering. In the second phase, thresholded values are
processed with a simple moving average (SMA) filter (Equation (7)) with five samples,
followed by an EMA filter calculation (Equation (8)). Values first processed with SMA are
processed further with the EMA filter with a window size of w1 = 3, and secondly with a
window size of w2 = 4, but not sequentially. Similarly to the calibration process, for a peak
to be detected in the processed measurements, three conditions must be met:

(1) The difference between the two EMA values falls between the fixed value (typically <1.0
and >−1.0),

(2) The first EMA value is equal to or higher than the threshold value carried by the
current measurement,

(3) The second EMA value is lower than the fixed value.

Only the selected number of beacons (six in our example) are processed simultaneously
in the second phase, to prevent overly long processing times. Additionally, we work under
the assumption that the person carrying the IPS receiver cannot be in the near vicinity of
more than six beacons at a time, and that the beacons are spaced apart appropriately.

Once a passing-by event is detected, a routine is triggered for writing the event into
the Google Spreadsheets database. The beacon ID, along with a timestamp, is posted to
the database, which is retrieved in the visualization and analysis phase. If a new event
from the same beacon is triggered in less than 2.0 s after the first event, it is considered that
multiple detections occurred, and only the first event is written into the database.

The localization engine on Raspberry Pi runs on multiple threads to distribute the
processing load evenly. The first core takes care of BLE beacon scanning with identification
and rejection. The data from the first thread are fed into the second thread, where filter
calculations and peak detection take place. Finally, the third thread waits for the information
on possible new peaks, and writes the received data into the web database. The process of
real-time detection and database writes run in separate threads, therefore ensuring that the
writing to the database does not interfere with the real-time detection procedure.

3.2.3. Visualization and Analysis Phase

The last phase of the IPS procedure is visualization and analysis of the captured
data. The data are parsed from the Google Spreadsheets document into the Python-based
graphical user interface (GUI), shown in Figure 8. The GUI shows a map of the observed
test area and plots points with a timestamp. Prior to on-line localization, the operator must
enter the physical locations of the set-up beacons. The newest location data are displayed
in green, whereas the oldest known locations in red. Visualization takes place in soft-real
time, and the graphics are updated as soon as a new event takes place. Lines are drawn
between the nodes, which represent movement between known locations. The accuracy of
localization inside the area of question depends on the number of beacons positioned in
the localization area.
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Figure 8. Tracker application main window.

3.3. Testing Area

To evaluate the operation of the proposed IPS, an office/laboratory setting was selected
to simulate the tracking of a manually operated warehouse scenario.

The results of the experimental work for the office/laboratory setting were acquired
in the Laboratory for Cognitive Systems in Logistics at the Faculty of Logistics. Three
scenarios were chosen featuring six beacons. The beacons were put in front of the selected
stations to be monitored, as shown in Figure 9: (1) computer workstation, (2) 3D printer,
(3) roller conveyor transporter, (4) robot cell worktable, (5) guided assembly worktable,
(6) office desk.

Figure 9. Position of the selected beacons for the experiments.
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In the first scenario, the person walks between those beacons in a clockwise direction.
In the second, travelling takes place in a counterclockwise direction, and in the third,
randomly between the stations. Table 4 shows the beacon number, ID, coordinates and
height, and Figure 10 the layout of the Laboratory.

Table 4. Location and height of beacons used in the office/laboratory setting.

Parameter/Beacon (ID) Location [m] Height [m]

Beacon 1 (A7Az) X: 9.01, Y: 2.92 0.85
Beacon 2 (VFI9) X: 10.12, Y: 1.46 0.86
Beacon 3 (zEs4) X: 9.65, Y: 6.40 1.04
Beacon 4 (ed5j) X: 2.47, Y: 2.24 0.86

Beacon 5 (UpCY) X: 6.45, Y: 5.28 0.99
Beacon 6 (CXOk) X: 4.20, Y: 7.24 1.03

Figure 10. Layout of the test setting in the Laboratory for Cognitive Systems in Logistics. The red
line indicates the path of the person performing the experiments. The blue circles represent the
used beacons.

3.4. Protocols for IPS Evaluation

The following protocols were used to obtain results as accurate as possible. The
localization accuracy and reliability depend mainly on the successful completion of the
calibration phase. Each calibration takes approximately 1–2 min for a single beacon to
complete, resulting in a threshold value for the filter, described in Real-Time Detection
phase. Calibration can be performed for several beacons simultaneously, although it is
recommended that only one beacon is calibrated at a time.

3.4.1. Calibration Phase

The advertising interval of BLE beacons was set to a fixed value of Ts = 20 ms and
transmitting power to TxPower = −16 dBm, respectively. Those values were selected
experimentally, yielding the best results at the lowest energy consumption for the longest
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battery life. Additionally, the transmitting power should be set as low as possible to prevent
mutual interference if the IPS is installed in a smaller room. Raspberry Pi performs scans of
nearby beacons at time intervals of approximately Tscan = 100 ms. The calibration phase
parameters are shown in Table 5. Movement speed indicates the normal walking speed of
the subject who carries the IPS. The Raspberry Pi is attached to the belt of the person with a
3D printed holder, as shown in Figure 11.

Table 5. Calibration phase parameter settings.

Parameter Value

Transmitting power (TxPower ) −16 dBm
Transmitting interval (Ts ) 20 ms

Raspberry Pi scan rate (ms) 100 ms
Movement speed (vm ) ≈5 km/h

Perpendicular distance from receiver to beacon (d) 0.5 m
Number of samples (n) per beacon 7–9

Figure 11. Raspberry Pi attached to a person’s belt.

The orientation and location of the receiver should not be altered during the calibration
phase; however, smaller variations are permitted to account for the person walking. The
battery (USB Power Bank) powering the receiver is placed in the nearest pocket of a person
performing calibration. Calibration should be performed under such conditions as are
expected from the system to operate during the real-time detection phase. It is important
that the person performs the calibration sequence at around 0.5 m distance from the beacon.
It is recommended that the person performs the walk-by of the beacons in both directions,
three to four times, collecting six to eight samples. More samples provide a more accurate
and easier calibration procedure. If the beacon is placed in a corner, meaning that the
person cannot walk by in both directions, they should come near to the beacon, and return
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in same direction as quickly as possible, repeating the steps until enough samples have
been collected.

3.4.2. Real-Time Detection Phase

IPS protocols in the real-time detection phase were established trying to mimic order-
picker on-duty behavior. The scenario parameter settings were set to the same values as in
the calibration phase. Obviously, the location and height of the beacons used were also set
the same as in the calibration phase. The complete parameter settings for both scenarios
are provided in Table 6. The measurements for each of the scenarios started at the neutral
location (“Start”), as shown in the Section 3.3. The person was instructed not to stop at
any of the locations/stations, only passing them. When the beacon was approached at the
minimal distance (~25 cm), the button was pressed, which was recorded by the Raspberry
Pi. The quality metrics of successful IPS operation is the number of detected passings-by,
false detections and time difference between detection and near beacon presence. Ideally,
the difference would be equal to zero, meaning that the detection and approach happen at
the same time. Additionally, the human factor must be considered, as it takes up to a few
hundred milliseconds for a person to press a mouse button.

Table 6. Parameter settings for scenarios 1–3.

Scenario/Parameter Scenarios 1–3

Transmitting power (TxPower ) −16 dBm
Transmitting interval (Ts ) 20 ms

Raspberry Pi scan rate (ms) 100 ms
BLE scanner timeout (ms) 0 ms

Movement speed (vm ) ≈5 km/h

4. Results

The results from the proposed IPS evaluation are presented in the following section.
The processing times for the on-line localization on Raspberry Pi are evaluated first. Second,
based on the samples collected during the calibration phase, a calibration was performed
for the selected beacons. This was achieved using the custom developed Beacon Calibration
Tool in MATLAB, separately for each beacon orientation. Finally, real-time localization
accuracy was elaborated to validate the correct operation of the IPS.

4.1. Processing Time Evaluation

The scan interval of Raspberry Pi was set to 100 ms. This means that, during this
time, the Bluetooth receiver listens to all beacons which are in the near vicinity and saves
the incoming data for processing. After the scanning procedure, the data are processed
according to the phases presented in Section 3. The results of processing time evaluation
showed that the localization procedure (calculation of different filters and peak detection)
for the six beacons used in the experiment takes approximately 3 ms. Adding more beacons
means that the scan interval increases, which may lead to lower real-time detection accuracy.
The total processing time with a scan rate of Ts = 100 ms takes Tp = 160–175 ms before a
new scan is initialized. The larger portion of the processing time (57–72 ms) is accounted
for tasks instated by the BLE library.

4.2. Beacon Calibration Tool Evaluation

The calibration took place using the above Calibration protocol, which ensures simple
and accurate calibration of the used beacons. For each of the used beacons, seven to nine
samples were collected for the threshold optimization process. Their thresholds were
determined automatically using the Beacon Calibration Tool. To verify the correct operation
of the Beacon Calibration Tool, a single beacon was selected with four various orientations:
(1) the beacon was put vertically, with the antenna facing away from the front of the
desk, (2) with the antenna facing towards the front of the desk, (3) the beacon was put
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horizontally with the antenna facing up, and (4) with the antenna facing the table. The
calibration was performed for each stated orientation. A single cycle of measurements for
real-time localization for the selected beacon was performed based on the automatically
determined thresholds. The calibration parameters are shown in Table 7.

Table 7. Beacon Calibration Tool parameter settings.

Beacon Sensitivity Number of Samples Number of Evaluations

1–5 0.85 8 500
6 0.85 4 500

The results of the calibration procedures and corresponding real-time measurements
are shown in Table 8. Please note that the verification was only done using the LM
Technologies adapter.

Table 8. Results of Beacon Calibration Tool verification using LM Technologies LM1010.

Parameter/Beacon
Setting 1 Setting 2 Setting 3 Setting 4

Threshold [dBm] Threshold [dBm] Threshold [dBm] Threshold [dBm]

Beacon: CXOk −63.8 −65.3 −72.8 −72.8
Number of matches/collected

samples analyzed in the Beacon
Calibration Tool

7/7 7/7 8/8 8/8

Number of passings-by (n) 27 31 27 31
False positives (fp) 1 0 0 2 2
False negatives(fn) 2 2 2 0 0

Successful triggers (ns) 25 29 25 29
Success rate (SR) 92.59% 93.55% 92.59% 93.55%

Average time delay (td ) −0.79 s −0.69 s −0.10 s 0.32 s
Standard Deviation of time delay (σtd ) 0.17 s 0.28 s 0.52 s 0.49 s

1 False positive—system detects passing by, even if there was none. 2 False negative—system does not detect
actual passing by.

The success rate (SR) was determined based on the following Equation (9):

SR =
n − fp − fn

n
·100 [%], (9)

where n is the complete number of passings-by, fp the number of false positives and fn
the number of false negatives. Since other beacons were powered-off during this initial
test, the number of false positives indicates that multiple detections occurred. Obviously,
false negatives represent the missing detections when an actual passing by occurred. The
time delay is the time difference between a timestamp when the IPS registered the event of
passing by and the timestamp mouse button was pressed by the person performing the
experiments, as noted in Equation (10):

td= treg − tp [s], (10)

The average time delay was calculated only on successful triggers (ns) in the following
Equation (11):

td =
∑ns

i=1 tdi

ns
[s], (11)

where tdi is the i-th sample of time delay.
Similarly, the Standard Deviation of time delay was calculated in the following

Equation (12):

σtd =

√
∑ns

i=1(t di
− td)

ns − 1
[s] (12)
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As can be noted from the results of Table 8, the threshold values from the calibration
differ from orientation to orientation. Based on the results, it is recommended that the
beacon is set vertically with the antenna facing towards the front of the desk; therefore, all
further tests were performed based on that orientation, as shown in Figure 9. The high
percentage (over 92%) of correctly determined passings-by indicate that the calibration
procedure and the Beacon Calibration Tool worked as intended. As can be seen from
Figure 12, the fitness function value decreased with each new generation, showing that the
PSO optimization algorithm improved the initial solution as expected.

Figure 12. Best fitness function value by generation, generated in the Beacon Calibration Tool.

As can be seen from Figure 12, the best fitness function value of the generation
improved up to the fifth generation (50 evaluations) and remained the same until the end
of the optimization process. The PSO optimization algorithm in the Beacon Calibration
Tool guided the process of discovering all seven peaks that were acquired in the calibration
procedure. Based on the above results, the calibration was performed for all the used
beacons for two Bluetooth USB adapters. The same calibration parameters were used for
both configurations, as shown in Table 5. The results of the complete calibration are shown
in Table 9.

Table 9. Threshold values for the Bluetooth USB adapters, obtained in the Beacon Calibration Tool.
All values are in dBm.

Bluetooth USB
Adapter/Beacon (ID)

Trust Manga Bluetooth
4.0 USB LM Technologies LM1010

Beacon 1 (A7Az) −61.4 −60.5
Beacon 2 (VFI9) −63.2 −64.0
Beacon 3 (zEs4) −57.8 −60.0
Beacon 4 (ed5j) −63.5 −64.5

Beacon 5 (UpCY) −63.0 −63.0
Beacon 6 (CXOk) −68.5 −67.0

Furthermore, the initial real-time localization tests show that the localization was
successful in over 93.5% in the best-case scenario. In the following extensive tests, the IPS
was analyzed in detail in the real-world scenario operation.

4.3. Real-Time Localization Accuracy

The most important metric of IPS evaluation is the rate of successful triggers with the
occurrence of actual passings-by of the beacon. Additionally, the system must be resistant
to false detections, which might occur if the beacons are not spaced apart appropriately.
Therefore, three different scenarios were prepared to evaluate real-world performance. The
real-time localization accuracy test was executed with the parameters specified in Table 6,
with Scenario 1 being the reference scenario. Altogether, more than 400 events for a single
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Bluetooth USB adapter were recorded, with an overall detection success rate of 95.7% for
the Trust Manga Bluetooth 4.0 USB adapter and 95.9% for the LM Technologies LM1010
adapter, respectively. The results are presented in Table 10.

Table 10. Results of real-time localization for two external Bluetooth USB adapters.

Bluetooth USB Adapter Trust Manga Bluetooth 4.0 USB LM Technologies LM1010
Scenario/Result Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

Number of passings-by (n) 144 143 121 137 145 135
False positives (fp) 0 0 2 0 2 2
False negatives (fn) 5 4 6 7 0 6

Successful triggers (ns) 139 139 113 130 143 128
Success rate (SR) 96.53% 97.20% 93.39% 94.89% 98.62% 94.07%

Average time delay (td ) −0.61 s −0.63 s −0.77 s −0.31 s 0.24 s −0.19 s
Standard Deviation of time delay (σtd ) 0.42 s 0.49 s 0.51 s 0.61 s 0.83 s 0.53 s

Here, false positives were obtained by examining the log file of the measurements. As
the person walking around moved between the beacons, the beacons’ IDs were known in
advance in the predefined sequence (except in Scenario 3). In Scenario 3, the person had
to note the walking path between the beacons. If a beacon appeared before the one that
should, this was considered a false positive. For example, if the beacons were to be very
close together and calibrated improperly, the system might detect a beacon that the person
was not close to, which is referred to as a false positive. Similarly, false negatives were
obtained in the same way, only this time, we looked for the ones that were absent from the
measurement log file.

The results from the three different scenarios for the first USB Bluetooth adapters
indicate that the proposed IPS works stably. In the first scenario, the success rate was
96.53%, with five false negatives, which was expected, according to the Beacon Calibration
Tool analysis. In the second scenario, where the order-picker walked counterclockwise, the
results improved marginally. The last scenario introduced a few false-positive detections
into the measurements, therefore the overall success rate dropped a few percent. The
average time delays between detection and the near proximity of the person to the beacons
are approximately the same, which is also true for the Standard Deviation of the time delay.
This means that the repeatability of the measurements is high. The negative sign indicates
that the IPS detection of the beacon took place shortly before the person approached the
beacon at a few centimeters.

For the second used USB Bluetooth adapter, the results are also quite like the ones
acquired by the first USB Bluetooth adapter. However, some differences arose in the average
time delay and Standard Deviation of the time delay. The external antenna on the adapter
provided more stable RSSI readings, but, in the case of Beacon 5 (UpCY), the beacon was
detected much earlier than it should be, which contributed to the positive time delay. That
is because there was no obstruction of the signal between beacon and receiver, and in
the event of walking toward the receiver, the detection requirement was fulfilled quickly.
This can be serviced by experimenting with beacon positioning and orientation, or using
other Bluetooth USB adapters. Similarly, for the experiments conducted for both Bluetooth
USB adapters, the Raspberry Pi onboard Bluetooth receiver was tested, but the results
obtained in these experiments proved much worse than the ones with the external Bluetooth
USB adapters.

Due to the similarities between the success rate of the first and second adapters, we
tested how well the Trust Manga Bluetooth 4.0 USB adapter performed with the calibration
values obtained with the LM Technologies LM1010 adapter. The results are presented in
Table 11.
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Table 11. Results of real-time localization for the Trust Manga Bluetooth 4.0 USB adapter, using
the calibration values from the LM Technologies LM1010 adapter. Calibration values are shown in
Table 9.

Scenario/Result Scenario 1 Scenario 2 Scenario 3

Number of passings-by (n) 49 47 44
False positives (fp) 1 0 0
False negatives (fn) 6 3 9

Successful triggers (ns) 42 44 35
Success rate (SR) 85.71% 93.62% 79.55%

Average time delay (td ) −0.82 s −0.79 s −0.79 s
Standard Deviation of the time delay (σtd ) 0.52 s 0.41 s 0.38 s

The above results indicate that the calibration procedure is necessary when using a
different type of Bluetooth USB adapters, even if the same settings are used of the beacons
transmitting power and interval. The results in the second scenario may be somewhat
surprising, given that Scenario 1 and Scenario 3 achieved about 8–14% worse results. These
results were, however, the consequence of having set thresholds for several beacons sub-
optimally–the system may detect them in some cases, but not always, because the system
filtered out more than it should.

5. Discussion

The results from the study of the proposed IPS indicate that the system worked stably
and reliably in the office/laboratory setting with few false detections. The success rate of
up to 98% in the office/laboratory setting was achieved in the best-case scenario and 93% in
the worst-case scenario, respectively. The average time delay took −0.77 s in the worst-case,
and −0.19 s in the best-case scenario, which means that the detection took place a bit later
after the person approached a beacon, but the calibration values and beacon orientation
could still be modified to achieve better results. The Standard Deviation of the time delay
was approximately equal for all scenarios obtained using the Trust Manga Bluetooth 4.0
USB adapter, and was a bit higher for the results obtained by the LM Technologies LM1010
adapter. The false positive detection rate reached up to 5% and 1.5% passings-by not being
detected in the worst-case scenario, respectively. The two external Bluetooth USB adapters
used worked pretty similarly in terms of success rate, but achieved different results in
terms of average time delay and Standard Deviation, which speaks in favor of the Trust
Manga Bluetooth 4.0 USB. Due to the high-gain antenna used on the LM Technologies
LM1010 adapter, the signal was very strong, and sometimes the beacon was detected too
soon before the person approached the beacon. This is especially true if the line of sight
between the beacon and the receiver is clear, and the calibration values are set incorrectly.
We did not detect similar problems with the Trust Manga Bluetooth 4.0 USB, which is also
more appropriate from the standpoint of dimensions.

The interface of the proposed IPS is simple and adaptable in terms of using multiple
beacons to cover larger areas or multiple rooms, because BLE beacons are relatively cheap
devices. Their only running costs are batteries, which must be replaced periodically, but
otherwise they do not require any servicing after the initial configuration. Multiple beacons
can be configured in bulk over the air (OTA); hence, no physical connections are required
between transmitters and receivers. The main drawback of the proposed IPS are the
limitations on transmitter and receiver positions—we found that the system works best
if the receiver is attached at the front, to the belt of the person carrying the receiver. It is
preferred that the receiver is positioned as colinearly as possible to the main axis of the
person carrying the system. The signals obtained from the transmitters are most stable if
they are positioned at the receiver level, but higher and lower placements at around 20 cm
are also tolerated well. Even though the calibration phase is almost fully automated, it
can still take a considerable amount of time to perform the calibration for the first time,
especially for larger areas or several rooms. Nevertheless, this can still be performed
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considerably faster than calibration using the fingerprinting method. The main advantage
of the BLE technology is that the transmitters are not mutually dependent, if one of the
beacons must be re-calibrated, it does not require recalibration of the whole system, as in
UWB-based RTLS. Additionally, battery-powered devices that are very small can be placed
almost anywhere.

The proposed IPS is not vendor dependent—it can be used with any BLE-capable
beacons and receivers; however, results may vary greatly, as it was found that external Blue-
tooth receivers proved to be superior to the one integrated on Raspberry Pi. Additionally,
multiple Bluetooth receivers can be used for several subjects; however, the running costs
increase considerably, accounting for the multiple needed batteries and external Bluetooth
receivers. Smartphones could also be used for the localization, but, again, the external
Bluetooth receivers work significantly better in our experience, while the software had to
be rewritten for the Android operating system. Since the required processing power for
localization is low, systems requiring fewer beacons could probably run satisfactorily on
other low-powered devices, such as Raspberry Pi Zero or older versions of Raspberry Pi,
which consume less energy. Older Raspberry Pi versions would also present noticeable
financial savings. Since the system runs on an open real-time localization engine, it could
easily be modified to suit specific needs, not only those investigated in the experiment.
The data gained by the IPS could be used in various applications: (1) to monitor the num-
ber of workers in the vicinity of a specific area, (2) to prevent worker congestion, (3) to
track elderly patients in nursing homes, (4) to guide tourists in museums and entertain-
ment centers, etc. The proposed IPS is presented as a framework to build upon, not a
final solution. The authors can also provide raw data from the acquired measurements
upon request.

6. Conclusions

The authors presented a cost-effective BLE-based IPS that can detect passings-by with
very high accuracy (up to 98%) in office/laboratory environments with few false detections
in real time. The calibration process is time-efficient and straightforward, and scales easily
with greater area, compared to fingerprinting-based methods. The IPS is meant to be used
in various fields, especially in small to mid-sized manually operated warehouses. We
conclude that the localization accuracy depends mainly on the type of hardware used, the
position of the transmitter and receiver, and the success of the calibration phase. In the
above experiments, a single person was conducting the experiments, but the system can
be scaled easily between multiple users. For the users to be distinguished uniquely, the
localization engine must only post additional user data to the database. The localization
algorithms are, namely, executed locally and are mutually independent.

Several new studies should be performed to find the best combinations of BLE beacons
and receivers, which are smaller, more energy-efficient and especially economical for
large IPS instalments, although the system is intended primarily for smaller to medium-
sized manually operated warehouses. Additionally, the effect of different placements
should be inspected, along with the influence of walking speed. In this setting, the current
configuration can become quite expensive for larger areas or multiple rooms, making such
a project financially unfeasible for larger warehouses. We also propose that researchers
explore the option of beacons and Raspberry Pi stations being reversed—the beacons
should be carried around and the Raspberry Pis should be placed on fixed positions. That
way battery power requirements could be reduced further, as the Raspberry Pis could be
powered via electrical outlets. If possible, BLE beacons that only use single channel for
data transmission should be used, to reduce the RSSI information variation and packet
loss further.
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