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Abstract: As a variant modular converter configuration, the alternate arm converter (AAC) is well-
suited for high-voltage power transmission and large-scale integration of renewables. In contrast to
conventional multilevel converters, the director switches in the arms of AAC lead to the introduction
of an overlap period, during which circuiting current can flow through the two arms in the same
phase. Thus, fixed or variable overlap period control can be implemented in AAC systems so as
to dynamically balance stored arm energy. However, the control of overlap period is linked to
instability issues that might impede the safe operation of AAC systems, which are yet to be reported.
In this paper, the stability of an AAC system is demonstrated based on measured grid and converter
impedance, in conjunction with impedance-based stability criterion in the dq frame. The interaction
between harmonic sources at AC and DC sides of the AAC system is analyzed to determine resonant
frequencies in the AC current when any potential resonance is identified in the dq frame. Novel
results with respect to the impact of overlap period on the system stability are obtained by depicting
and comparing the Eigenloci in the polar plot, which are validated by real-time simulations.

Keywords: alternate arm converter; stability; dq frame; resonance; real-time digital simulation

1. Introduction

Nowadays, power converters are increasing in medium/high-voltage applications,
e.g., HVDC power transmission and renewable energy integration [1]. As the common
interface of renewables and distributed energy resources, converter systems often face
issues of dynamic interactions with the power grid, especially in weak or remote grids [2–4].
The resonance caused by impedance interaction will affect the control performance of
converter systems and amplify specific harmonics in the power system. Harmonics with
fixed magnitude will affect the power quality and introduce extra power losses. In the
worst-case scenario, constantly amplifying harmonics may trigger the relay protections
deployed in the power system and lead to severe consequences, e.g., generator tripping,
load shedding and even the outage of large-scale power networks [5].

There is growing research in the field of stability analysis techniques for converter
systems. State-space modeling and impedance-based modeling are the most typical models
used. State-space modeling analyzes the interaction between the converter and the grid
based on the details of hardware setup and control designs of converters. This type of
model gives deep insights into the relationship between unstable modes and specific
state variables [6]. However, its practical application is limited as accurate device and
control details are difficult to obtain. By contrast, impedance-based modeling treats the
converter as a black box and demonstrates the system stability according to the Nyquist
stability criterion based on its terminal impedance characteristics, which are obtainable
from either data sheets that vendors are willing to openly share or direct measurements [7,8].
Impedance-based stability analysis can help to facilitate converter design tasks of practical
engineers and to set specifications for converter integration required by system operators.
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To date, the stability of common converters has been well predicted based on impedance-
based analysis. The stability of two-level and modular multilevel converter has been anal-
ysed in [9,10], respectively. The root causes of converter-driven stability issues include
grid-synchronization techniques [11], inappropriate control structures or untuned control
parameters [5], and improper power filter design [12]. As a modular converter configura-
tion used for high-voltage power transmission and large-scale renewable energy integration,
the control aspects of alternate arm converter (AAC) have been discussed widely. The param-
eter selection method is proposed in [13] to achieve the desired voltage ripple of submodules.
By utilizing the feature of overlap period, energy balancing control in [14] and zero-current
switching control in [15] are proposed to optimize the performance of AAC systems, respec-
tively. The interoperability of MMC and AAC in Hybrid HVDC Systems are explored in
[16]. In [17], the phase-shift modulation is extended to the control frame of AAC systems so
that the AAC system can be constructed in a cost-efficient way by substituting all full-bridge
submodules with half-bridge submodules. However, the stability assessment of AAC systems
has not been reported in current literature.

This paper firstly demonstrates the stability of an AAC converter according to the
impedance-based stability criterion in the dq frame. The principle is explained based on
the ratio of the measured grid and converter impedance matrix, also defined as the return
ratio matrix. In order to accurately identify resonant frequencies, the impact of off-diagonal
elements in dq impedance matrices, usually ignored, is considered. With the stability
analysis technique, this paper reveals the impact of overlap period on the Eigenloci of
return ratio matrix and the stability of the AAC system. The analysis is further supported
by real-time simulation results using RSCAD and RTDS.

2. Equivalent Model of AAC and Impedance-Based Stability Criterion
2.1. Configuration and Equivalent Model of AAC

A common configuration of the AAC is illustrated in Figure 1a, with each phase of
AAC converter including upper and lower arms. Each arm comprises a stack of H-bridge
cells, a series of IGBT modules functioning as the director switch (DS) and one arm inductor
(Larm). In the normal operation, the upper and lower arms of the AAC system operate
alternately under the control of the DSs, in order to generate the desired voltage waveform.
The AAC system is integrated into the system via a Y/∆ transformer, and vpcc and ipcc
denote the AC voltage and current measured at the point of common coupling (PCC). vg is
the voltage of the utility grid, with its equivalent inductance and resistance represented as
Lg and Rg, respectively. More details regarding this model can be found in [18].

Figure 1b shows the equivalent model of the AAC system. As a grid-tied current
controlled converter system, the AAC is represented using the Norton equivalent circuit [3].
The grid input impedance Zg(s) and converter output impedance Zaac(s), in Figure 1b, are
critical to the stability of AAC systems, which can be measured by using the frequency
scanning method. By injecting the harmonic current into the PCC, voltage and current
perturbations at two sides of the PCC will reflect the impedances of both the converter
and the grid. In this paper, the measurement is carried out by a RTDS component in
the dq frame [10]. The dq frame helps to decouple the interaction of different frequency
components in the grid, which facilitates the accurate recognition of resonant frequencies.
Moreover, the wide application of dq decoupling control in the converter systems make it
easier to analyze the interaction between the DC and AC side in the dq frame, something
that will be discussed in detail in the following section.

In the dq frame, the grid input impedance Zg(s) and the converter output impedance
Zaac(s) are both expressed as a 2 × 2 matrix. For the grid, Zg(s) is denoted as:

Zg(s) =
[

Rg + sLg −ω0Lg
ω0Lg Rg + sLg

]
, (1)
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where ω0 is the fundamental angular frequency. To calculate the exact value of Zg(s), one
needs to evaluate s as jωdq or j(ωabc − ω0). Note that the fundamental frequency in abc
frame corresponds to the DC component in the dq frame. The analytical solution of the grid
impedance matrix allows us to evaluate the system stability under different values of grid
strength, reflected by the short-circuit ratio (SCR) in this paper.
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Figure 1. Configuration and equivalent model of a grid-tied current controlled AAC system: (a) basic
structure; (b) equivalent model.

Compared with the grid impedance, the converter impedance is more complicated
as it depends on the hardware circuit, control architecture and other aspects. Especially,
the circulating current flows through two arms in the same phase during the overlap period
and does not exist when the overlap period is over, which makes the control with respect
to the overlap period a typical non-linear process. To simplify the analysis, the converter
impedance Zaac(s) is measured using frequency scan method and is updated for any
specific operating condition. For example, the profile of AAC impedance matrix when the
overlap period is 20◦ is displayed in Figure 2.
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Figure 2. Frequency scan results of AAC converter impedance Zg(s) (overlap period is 20◦).
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According to the generalized Nyquist Criterion, the resonance issue caused by the
dynamic interaction is easy to occur in a converter system when the phase difference
between grid impedance Zg and converter impedance Zacc is close to 180°. As the grid
impedance resembles an inductor at all frequency range, the AAC system is susceptible
to resonance issues when its impedance resembles a capacitor, which is located at the low
frequency range as shown in Figure 2. At the high frequency range, the AAC impedance is
inductive due to its terminal transformer and arm inductors, which means the converter
system is robust at this range.

2.2. Impedance-Based Stability Criterion in dq Frame

According to Figure 1b, the transfer function ipcc(s)/ire f (s) is represented as:

ipcc(s)
ire f (s)

=
Gc(s)

I + G(s)
=

Gc(s)

I + Zg(s)Zaac(s)
−1 , (2)

where I represents a 2 × 2 identity matrix. The current gain Gc(s) in (2) pertains to the
closed-loop control frame of output current in the AAC system. For an AAC system,
its closed-loop current controller is well designed to have enough phase margin at the
crossover frequency, to guarantee internal stability. Therefore, this current gain Gc(s) will
not introduce right-half plane poles into the transfer function that might jeopardize system
stability. That is to say, the stability of the grid-tied AAC system lies in the denominator of
the expression in (2):

H(s) = I + G(s) = I + Zg(s)Zaac(s)
−1, (3)

where G(s) = Zg(s)Zaac(s)
−1 is defined as the return ratio matrix. When H(s) is not

invertible, unexpected poles will be introduced into the transfer function and destablize the
system. One effective way to demonstrate the stability is to analyze the Eigenvalues of G(s)
in (3). To illustrate the relationship between the Eigenvalues of G(s) and the reversibility of
H(s), G(s) can be decomposed in terms of Eigenvalues and Eigenvectors, as:

G(s) = QΛQ−1, (4)

where Q is the orthogonal 2 × 2 matrix whose i-th column is the unit Eigenvector of G(s),
and Λ is the diagonal matrix whose diagonal elements are two corresponding Eigenvalues,
Λii = λi. By introducing (4) into (3), (3) can be further expressed as:

H(s) = I + G(s) = QQ−1 + QΛQ−1 = Q(I + Λ)Q−1. (5)

Given that Q is an orthogonal matrix, i.e., |Q| = |Q−1| = 1, the determinant of H(s) is
given as:

det(H(s)) = |I + Λ| = (1 + λ1)(1 + λ2). (6)

It reveals that H(s) is not an invertible matrix and the system becomes unstable when
any of the Eigenvalues of G(s) equals or is close to −1, which can be identified in the Bode
plot. In practical applications, a more conservative stability margin will be chosen based on
either the gain margin (GM) or phase margin (PM) so that the system is stable to operate in
a wider range. As shown in Figure 3, 6 dB GM and 30° PM will be adopted to demonstrate
the system stability [9]. Any Eigenvalue of G(s) that is located in the instability region
encircled by the stability margin will be considered as a candidate for resonance at its
corresponding frequency in the dq frame. From the physical point of view, the resonance
tends to occur when control parameters/structures of the converter are not well designed
or the converter is tied to a weak grid (or a strong grid but via a long transmission line).
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Figure 3. Instability region defined in the complex plane.

3. Stability Interaction between DC and AC Side of AAC Systems

Once a series of resonant frequencies are identified by the Eigenvalues of the return
ratio matrix in the dq frame, the following step is to find the corresponding resonant
frequencies in the AC current of the AAC system. In this section, the interaction between
the DC and AC side of the AAC system and its impact on the AC resonant frequencies
is discussed.

For the AAC system, the active power at the AC terminal is identical with the
DC power:

P =
3
2
(vd

pccid
pcc + vq

pcciq
pcc) = vdcidc, (7)

where vd(q)
pcc and id(q)

pcc are d(q)-axis components of PCC voltage and current in the dq frame.
vdc and idc represent the voltage and current of DC bus in the AAC system, respectively.
When resonance occurs in the system, harmonics will appear in both current and voltage
waveforms. However, the AC voltage is sustained by the utility grid and the DC voltage
is supported by dc-link capacitors, which keeps them relatively robust even in the event
of resonance. Moreover, the phase locked loop (PLL) in the current controlled AAC
system enables the PCC voltage to be d-axis oriented. With these conditions, the voltage
components in (7) can be approximated as:

vd
pcc ≈ Vpcc

vq
pcc ≈ 0

vdc ≈ Vdc

. (8)

By contrast, DC and AC currents are more susceptible to the harmonics and distortions
can be observed when the resonance occurs. Since the Eigenvalue analysis identifies
resonant frequencies in the dq frame, the d-axis PCC current can be expressed as:

id
pcc = Id

pcc + îd
pcc = Id

pcc +
n

∑
k=1

Iksin(ωdq
k t + φk), (9)

where îd
pcc represents a series of harmonics that contain n resonant frequencies. Ik and φk

represent the magnitude and phase of harmonic current at the frequency of ω
dq
k that exists

in the d-axis, respectively. By incorporating (8) and (9) into (7), it yields:

idc = Idc + îdc =
3Vpcc

2Vdc
Id
pcc +

3Vpcc

2Vdc

n

∑
k=1

Iksin(ωdq
k t + φk). (10)
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It shows that any harmonic current identified in the dq frame will excite the harmonic
at the same frequency in the DC current. As the DC impedance is defined as the ratio of DC
harmonic voltage to DC harmonic current, the harmonic voltage excited by corresponding
harmonic current can be expressed with respect to the DC impedance:

v̂dc =
3Vpcc

2Vdc

n

∑
k=1

Ik|Z(jωdq
k )|sin(ωdq

k t + φzk), (11)

where Z(jωdq
k ) is the DC side impedance at ω

dq
k and φzk = φk + arg(Z(jωdq

k )). The har-
monic sources at the DC side interact with the AC side under the function of the voltage
modulation of AAC system [19]. The fundamental frequency component in the voltage
modulation signal is considered to demonstrate the impact of harmonic sources at the DC
side. Taking phase A as an example, the induced harmonic sources in the PCC voltage can
be approximated as the product of insertion indices coming from the control frame and the
DC bus voltage:

v̂pcc ≈ msin(ω0t)
v̂dc
2

≈
3mVpcc

8Vdc

n

∑
k=1

Ik|Z(jωdq
k )|cos((ω0 −ω

dq
k )t− φzk)

−
3mVpcc

8Vdc

n

∑
k=1

Ik|Z(jωdq
k )|cos((ω0 + ω

dq
k )t + φzk),

(12)

where m is the modulation index of the AAC system.
The harmonic voltage sources in (12) will finally excite harmonic currents at the AC

terminal of the AAC system. Although the above discussion is established with some
approximations, it reveals that each resonant frequency ω

dq
k identified in the dq frame will

dominantly excite the harmonic with the same frequency in the DC current and a pair of
resonant frequencies, i.e., ω0 ±ω

dq
k , in the AC current as shown in Figure 4.

dq frame DC AC (abc frame)

0 Hz 0 Hz 50 Hz

100 Hz

0 Hz

Positive 

sequence

Negative 

sequence

fk fk f0+fk

f0-fk

Figure 4. Propagation path of the resonant frequency in the AAC system.
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4. Impact of Overlap Period on Stability of AAC Systems

The overlap period is a salient feature of AAC systems that makes them different from
other converters. When the AC output voltage comes close to its zero-crossing point, DSs
in both arms are switched on so that the circulating current flows through two arms to the
DC side. This circulating current in the overlap period helps to balance the stored energy
in the stacks and further balance all capacitor voltages of all SMs. Given the importance of
overlap period to the operation of the AAC system, its impact on the system stability will
be analyzed. For typical applications in reported literature [14,18,20,21], the overlap period
(2α) ranges from 0° to 40°, which will be the main focus of the following discussion.

Figure 5 depicts two Eigenloci of the return ratio matrix G(s), defined in (3), obtained
from the AAC system with a SCR of 3.37. System parameters are given in Table 1. Note that
the Eigenvalue locus of λ2 is far from the instability region defined by the stability margin
of GM 6 dB and PM 30°, which means it will have little impact on the system stability. Thus,
only the dominant Eigenvalue λ1 is considered in the stability analysis. For the dominant
Eigenvalue λ1, it is observed that the impact of overlap period dominantly lies in the low
frequency range (10–150 Hz) in the dq frame and 150 Hz is the frequency of circulating
component introduced by overlap period in the arm current. This range overlaps with the
instability region in which the phase crosses −180° and the magnitude is near 0 dB and
brings in instability issues. When the frequency exceeds 150 Hz, the Eigenvalue locus with
different overlap periods are almost the same and Eigenvalues of the return ratio matrix
gradually moves away from the instability region.
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Figure 5. Bode plot of Eigenvalues of the return ratio matrix: (a) Eigenvalue λ1; (b) Eigenvalue λ2.

Table 1. System parameters.

Parameter Value

PCC L-L voltage (RMS) 380 kV
DC voltage 400 kV

Reference active power 800 MW
Reference reactive power 0 MVar

Transformer ratio 380/280
Lg 0.17/0.065 H
Rg 4.5/2 Ω

SCR 3.37/8.80
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To better illustrate the impact of overlap period, the polar plot of dominant Eigen-
value is shown in Figure 6. The impedance mismatching between the grid and the AAC
leads the Eigenvalue locus into the instability region. With the overlap period increasing,
the Eigenvalue locus has the tendency to engage more with the instability region. In other
words, the increasing overlap period poses an increasing threat to the system stability.
These Eigenvalues included in the instability region will be considered as candidates for
the resonance and their corresponding frequencies become potential resonant frequencies.
For the range of 1–100 Hz in the dq frame, any identified resonant frequency will corre-
spond to one sub-synchronous resonant frequency and one super-synchronous resonant
frequency in the abc frame.SM 1

SM N

SM 1

SM N

Larm 

Larm 

ila 

iua 

-vdc /2

vua 

vdc /2

Vc

idc 

vla 

Director

switch

Lg Rg 
PCC

iinj 

Zaac(s) Zg(s) 

vg

Grid AAC system

Zaac

Zg

Gciref

ipcc

vpcc

vg

ipccvpcc

30°

°

°

°

°

°

°

° °

°

°

°

°

Figure 6. Polar plot of dominant Eigenvalue λ1 of the return ratio matrix at low frequency range
(1–100 Hz) in the dq frame.

5. Simulation Results and Discussions

The simulation model of the grid-tied current controlled AAC-HVDC system is estab-
lished in RTDS, of which system parameters are shown in Table 1 [18]. The control frame of
AAC systems includes high-level and low-level control parts. The high-level control adopts
PQ controller to directly regulate the terminal power flow of the AAC system. The output
of high-level control, AC reference voltages, will be given as the control input of low-level
controllers, including SM sorting control, zero-current switching control, overlap period
control, etc. As the main focus of this paper, the implementation of overlap period control
is shown in Figure 7. The reference value of overlap period comes from either constant
value or the energy balancing controller that regulates the stored arm energy. In this paper,
the constant overlap period control is utilized to better evaluate the stability performance
of AAC system with different overlap periods.

Energy balancing 

controller

AC reference 
voltages

Cap. voltages

Arm currents

Director switch 

controller
DSs

Constant value

2α

Overlap 

period

Constant overlap period control

Variable overlap period control

Figure 7. Implementation of overlap period control in an AAC system.
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Four different values of the AAC overlap period, 2α = 0, 10◦, 20◦ and 40◦, are consid-
ered to validate the impedance-based stability analysis in the dq frame and the impact of
overlap period. The grid input impedance and converter output impedance are measured
by the frequency scanning method using an RSCAD component [10]. The frequency scan
is performed from 1 to 1000 Hz in the dq frame with a frequency resolution of 1 Hz. The
classic synchronous reference frame (SRF)-PLL is adopted to synchronize the AAC system
with the grid, and the bandwidth of SRF-PLL in the simulation model is set low enough so
that its impact on the stability can be minimized.

Figure 8 depicts the polar plot of the dominant Eigenlocus of the return ratio matrix
for all four cases, in which the SCR is set as 8.8. This relatively large SCR makes the
AAC system with different overlap periods have different stability states. The Eigenloci
of 2α = 0◦ and 10◦ are located at the edge of the instability region, which means the AAC
system in these two cases is marginally stable. The Eigenloci of 2α = 20◦ and 40◦ engage
more with the instability region and will consequently make the AAC system experience
resonance. The potential resonant frequency for both cases ranges from 37 Hz to 45 Hz
according to the Eigenvalues that are located in the instability region. However, as the
Eigenvalue locus of 2α = 40◦ is much closer to the point (−1, 0), the resonance will be more
severe in this scenario.
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Figure 8. Polar plot of dominant Eigenvalue λ1 of the return ratio matrix for different values of
overlap period.

Simulation results of the AAC system for all four cases are given in Figure 9. It includes
the waveforms of capacitor voltages in two arms of phase A, three-phase AC voltages and
currents along with FFT results. For the first two cases, the AAC system is marginally stable
and no obvious distortion is observed in the AC voltage, AC current as well as capacitor
voltages. In Figure 9a,b, the total harmonic distortion (THD) of AC voltage and current
is no more than 0.5%. In contrast, the AAC system is no longer stable when the overlap
period is set as 20° and 40° as shown in Figure 9c,d. The ripples of capacitor voltages reach
40% and 75%, respectively. The AC current is obviously distorted and there is one pair of
resonant peaks in the AC current that are recognizable for each case seeing from the FFT
results. For the case of 2α = 20◦, the resonant frequencies in the abc frame are 7 Hz and
93 Hz, which correspond to 43 Hz frequency in the dq frame. For the case of 2α = 40◦,
the resonant frequencies in the abc frame are 8 Hz and 92 Hz, which correspond to 42 Hz
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in the dq frame. For both cases, the resonant frequencies in the dq frame are marked in
Figure 8. These results coincide very well with the impedance-based stability analysis.

As the converter impedance is derived from the small-signal model, the stability
analysis can be only carried out for any given steady state. To expand this method to
dynamic operating conditions, the dynamic process can be divided into multiple steady
states so that the stability of AAC system at each state can be evaluated separately. As shown
in Figure 10, the dynamic process of parameter change occurs when t = 0.2 s, at which
the overlap period changes from 40° to 0°. The AAC system is going through resonance
issues with a large overlap period and the resonance components are well dampened
with a smaller overlap period after the parameter change. It proves that stability analyses
corresponding to steady states are also effective to predict the performance of AAC in
dynamic operating conditions.
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The stability of AAC system with other SCRs can be evaluated in a similar way.
The stability performance of AAC system deteriorates with weaker grid strength (i.e.,
smaller SCR) and the converter system will confront with resonance issues even with small
overlap period. In contrast, when the SCR is larger than 17.6, the Eigenloci with different
overlap periods are all located outside of the stability margin. This means that the AAC
system with different overlap periods keeps stable when it is connected to a strong grid. To
sum up, the Eigenloci that come from the impedance matrices give great insights into the
evaluation of system stability and the identification of resonant frequencies.

6. Conclusions

In this paper, the impedance-based stability criterion in the dq frame is introduced to
evaluate the stability of a grid-tied current controlled AAC system. The system stability can
be reflected by the relationship between Eigenloci of return ratio matrix and the stability
margin in Bode or polar plot. Eigenvalues that are located in the instability region might
cause resonances at the corresponding resonant frequencies. Due to the dq decoupling
control and the PLL effect, any identified resonant frequency in the dq frame will excite
a pair of resonant frequencies in the AC current. The overlap period has its dominant
impact on the stability of AAC at the low frequency range. The larger the overlap period
is, the more unstable the AAC system becomes. The recommended set value for the fixed
overlap period control or set range for the variable overlap period control in practical
applications should not exceed 20°, especially in weak grids.
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