
����������
�������

Citation: Raczek, J. Polynomial

Algorithm for Minimal

(1,2)-Dominating Set in Networks.

Electronics 2022, 11, 300. https://

doi.org/10.3390/electronics11030300

Academic Editors: Juan M. Corchado,

Stefanos Kollias and Javid Taheri

Received: 30 December 2021

Accepted: 17 January 2022

Published: 19 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Polynomial Algorithm for Minimal (1,2)-Dominating Set
in Networks
Joanna Raczek

Department of Algorithms and Systems Modelling, Faculty of Electronics, Telecommunications and Informatics,
Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; joanna.raczek@pg.edu.pl

Abstract: Dominating sets find application in a variety of networks. A subset of nodes D is a (1,2)-
dominating set in a graph G = (V, E) if every node not in D is adjacent to a node in D and is also at
most a distance of 2 to another node from D. In networks, (1,2)-dominating sets have a higher fault
tolerance and provide a higher reliability of services in case of failure. However, finding such the
smallest set is NP-hard. In this paper, we propose a polynomial time algorithm finding a minimal
(1,2)-dominating set, Minimal_12_Set. We test the proposed algorithm in network models such as
trees, geometric random graphs, random graphs and cubic graphs, and we show that the sets of nodes
returned by the Minimal_12_Set are in general smaller than sets consisting of nodes chosen randomly.

Keywords: computational complexity; algorithms; domination number; (1,2)-domination number;
networks

1. Introduction

In networks, some resources (possibly limited in number) should be available im-
mediately and directly. Thus, some nodes can function as special nodes, for example,
servers, radio broadcasting stations, schools or hospitals in networks of streets, and towns
or countries. Then these special nodes form a dominating set. Since we want to minimize
the total costs of devices, facilities or buildings, we are interested in dominating sets of
small cardinality. The domination number is the number of the smallest possible number
of these special nodes.

However, some networks demand a higher reliability, so in the case of one server’s
failure, a different one can take over necessary tasks. In this paper, we focus on a situation
when a spare special node does not need to be a direct neighbour of an ordinary node—it
might be at distance of 1 or 2. If a spare special node is at distance 2, then the communication
might be performed at a lower speed or only the most demanding tasks may be assured
by the spare server. An analogous situation takes place when the poor signal coverage
(because of a failure) makes it impossible to make standard connections via a mobile phone
network. However, in most situations we can call emergency numbers. During pandemics
we want to be sure that in case of overcrowding of the nearest hospital, there is a spare one
at most two distances further. Similar situation takes place when we want to manage the
location of maternity wards. To fulfil these conditions, the special nodes need to form a
(1,2)-set, also known as a secondary dominating set. Of course, determining the smallest
(1,2)-set is most desirable.

The execution time of a polynomial–time algorithm can be bounded by from above
by a polynomial on the size of the input. For this reason such algorithms have practical
use in networks. The Information System on Graph Classes and their Inclusions [1] shows
what we know about computational complexity of graph theory problems. It can be
noted that for most types of dominating set problems determining the smallest set of the
desired property is NP-hard in general graphs. This means that polynomial algorithms
solving these problems are not known (for more information about NP-hard problems
and polynomial algorithms see [2]). On the other hand, polynomial–time algorithms

Electronics 2022, 11, 300. https://doi.org/10.3390/electronics11030300 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11030300
https://doi.org/10.3390/electronics11030300
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1807-4978
https://doi.org/10.3390/electronics11030300
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11030300?type=check_update&version=1

Electronics 2022, 11, 300 2 of 12

exist for specific graph classes. For example, finding the minimum domination number
is polynomial in trees, block graphs, interval graphs, cographs and permutation graphs
(sample algorithms with examples can be found in [3,4]).

For wider and more general graph classes approach on the other way can be made.
Approximate polynomial algorithms are developed, however they do not ensure that the
returned results are best possible, that is of smallest cardinality and dominating at the
same time. Since (1,2)-dominating sets have potential for many applications in real-life
situations and up to now there is a little known about algorithms finding these sets, in our
paper we propose a polynomial time algorithm that finds a minimal (1,2)-dominating set
in any graph. Such a set can be regarded as good heuristic of the minimum (the smallest)
(1,2)-dominating set (see Section 3.1 for more details on minimum and minimal sets and
Section 4.2 for results for trees).

This paper is organized as follows. In Section 3, we present the formal definitions used
in a model of a network and we state the difference between minimum and minimal sets.
Next we present algorithms PowerOfNodes and Minimal_12_Set. In Section 4, we analyze
the performance of the algorithms in geometric random graphs in which nodes are placed
randomly on a unit square and two nodes are adjacent if and only if the distance between
them in Euclidean space is at most given threshold. This is done to predict the results given
by the algorithm in a real network situation. Moreover, we compare the results returned by
the algorithm with exact values of (1,2)-domination number in tree graphs. This helps us
check how much the algorithm is better than simply choosing nodes randomly. At last, we
investigate performance of the algorithm in random graphs and cubic graphs. In Section 6,
we give conclusion of this paper and discuss future further works.

2. Related Works

A review of the literature shows that domination parameters can be used in many
applications, ranging from diverse sensor networks [5] to vehicular ad hoc communica-
tions [6,7], DNA sequencing [8], safety and reliability in transportation [9], disaster rescue
operations [10], and many others. In all these works graphs are used to model the net-
work. In case of Wireless Sensor Networks, mainly dominating sets, connected dominating
sets and weakly connected dominating sets are studied. The connected dominating set
is a model of a virtual backbone, which helps achieve efficient broadcasting in these net-
works [11,12]. Connected domination has also applications to ad hoc networks and there
are a few papers on this topic—see, for example [6,13].

Until now, there have not been many papers on (1, 2) domination. The concept of
(1,2)-dominating sets in graphs was introduced by Hedetniemi et al. [14] as secondary
domination. They also generalized this notion to (1,k)-domination, where k is a positive
integer. In [15], the authors study (1,2)-domination number in tournaments, and in [16]
graphs with the (1,2)-domination number close to their orders are characterized. An
independent version of (1,2)-domination in graphs is studied in [17]. In particular the
authors investigate graphs which posses a (1,2)-dominating set such that no two nodes of
the set are adjacent.

The computational complexity of determining the smallest (1,2)-dominating sets in
graphs and a polynomial time algorithm finding the (1,2)-domination number in trees are
presented in [18]. In particular, the authors prove that determining the (1,2)-dominating
number is NP complete, even for split graphs and even for bipartite graphs and many
other graph classes. In the same paper, the author prove that if a graph does not have
nodes of degree one nor triangles (three nodes such that each two of them are adjacent),
then the (1,2)-domination number is equal to the domination number. The problem is that
determining the domination number is also NP-hard. Furthermore, in the case of ad hoc
networks, we may never be sure whether the network contains triangles of nodes of degree
one without constant checking the structure of the network.

The main differences between this contribution and published works is that the
published works do not consider approximate algorithms that find the (1,2)-domination

Electronics 2022, 11, 300 3 of 12

number for general graphs. Even though there are some algorithms for dominating sets
and connected dominating sets (for example a self-stabilizing algorithm finding a minimal
dominating set is presented in [19] and an exact algorithm for the domination number
is given in [20], however it runs in exponential time) they can not be applied to (1,2)-
domination. By the definition, (1,2)-domination number is never bigger than domination
number. Similarly, if the connected domination number of a graph is equal to 1, then the
(1,2)-domination number is equal 2, however in all other cases the (1,2)-domination number
is not greater than the connected domination number. Moreover, the difference between
these two dominating numbers may be big relative to the number of nodes (for a path
on 100 nodes the difference between these two domination parameters is 64). Hence, we
conclude that algorithms for connected dominating sets do not apply here.

Since determining the exact value of (1,2)-domination number is known to be NP-
hard for chordal bipartite graphs, C4-free graphs, maximum degree 4 graphs, partial grid
graphs and planar graphs (see [18]), in this paper we propose an algorithm that finds a
minimal (1,2)-dominating set in an arbitrary graph in a polynomial time. By analyzing
neighbourhoods of nodes, our algorithm aims to construct a minimal (1,2)-dominating sets
of cardinalities close to the (1,2)-domination number.

3. Materials and Methods

In this section, we explain all necessary definitions and also indicate the difference
between the minimum and minimal (1,2)-dominating sets. Next, we present the two main
algorithms of this work.

3.1. Model of Network

In a formal way, let an undirected graph G = (V, E) be a model of a network. Namely,
let V be the set of nodes and E the set of two element subsets of V, called links. If
{u, v} ∈ E(G) is a link, then we will write uv for short. If v ∈ V(G), then N1(v) = {u ∈
V(G) : vu ∈ E(G)} is the set of all neighbours of v and N2(v) is the set of nodes in G at
distance exactly 2 from v, that is N2(G) = {u ∈ V(G) : vz, zu ∈ E(G) for some z ∈ V(G)
and uv /∈ E(G)}. The number of elements in N1(v) is called the degree of v.

A set D ⊆ V(G) is a dominating set in of graph G = (V, E) if every node not in D is
adjacent to a node in D. A set D ⊆ V(G) is a (1,2)-dominating set in G if every node not in
D is adjacent to a node in D and is also at distance at most 2 to another node from D. Hence
each (1,2)-dominating set is also a dominating set, but not vice versa. The (1,2)-domination
number, denoted by γ(1,2)(G), is the cardinality of a smallest (1,2)-dominating set of G.

We say that a node v is (1,2)-dominated by a subset D ⊆ V(G) if v is adjacent to a
node belonging to D and there is another node in D at distance at most 2 from v.

A (1,2)-dominating set is a minimal (1,2)-dominating set of a graph G if no proper
subset of D is a (1,2)-dominating set of a G. The following example clarifies the difference
between minimum and minimal (1,2)-dominating sets.

For example, in Figure 1 the sets {A, B, D, H}, {A, C, F, H}, {B, E, G} and {B, E, H} are
examples of minimal (1,2)-dominating sets, but only the sets with three nodes are minimum
(1,2)-dominating sets. The set {A, B, D, G} is not a (1,2)-dominating set, as although H has
a neighbour in this set (namely G), no other node of the set is at distance at most 2 from H.
On the other hand, a set {B, E, G, H} is a (1,2)-dominating set, but not minimal, because its
proper subset, {B, E, G} is also a (1,2)-dominating set.

In some cases, in graph G the difference between the (1,2)-domination number and a
cardinality of a minimal (1,2)-dominating set can be large in relation to the number of nodes
of G. For example, let us consider a star K1,t with t nodes of degree 1. Then γ(1,2)(K1,t) = 2,
while the set of all nodes of degree 1 form the biggest minimal (1,2)-dominating set. The
algorithm presented in this paper tries to avoid constructing such a biggest minimal (1,2)-
dominating sets. In particular, for stars it always returns a solution with two nodes, which
is the best in terms of the number of nodes.

Electronics 2022, 11, 300 4 of 12

A B

C D

E

F

G H

Figure 1. Example of a graph.

3.2. Algorithm PowerOfNodes

The algorithm presented here finds a minimal (1,2)-dominating set D in G. In the
beginning, D is an empty set. In each main step of the algorithm, a new node is added to D
until each node in V − D has a neighbour in D as well as is at distance at most 2 to another
node in D.

Each node has three local variables: code, dom and pow. These variables show the state
of each node and its neighbours.

dom If a node v is chosen to be in D, then v.dom is equal to 1. Otherwise, v.dom = 0.

code If v.dom = 1, then v.code = 30.

If v.dom = 0 and if additionally

• For each node x of N1(v) ∪ N2(v) is x.dom = 0, then v.code = 0.
• There is exactly one node x in N1(v) such that x.dom = 1 and for each node x of

N2(v) is x.dom = 0, then v.code = 10.
• There is at least one node x in N2(v), such that x.dom = 1 and for each node x of

N1(v) is x.dom = 0, then v.code = 5.
• v is (1,2)-dominated by nodes in D, then 15 ≤ v.code ≤ 20.

pow This parameter shows the gain of adding v to D and its value depends on two
algorithm parameters: a1 and a2. If v is already chosen to the (1,2)-dominating set,
then v.pow = 0. Otherwise, v.pow = n0 + a1 · n1 + a2 · n2, where

• n0 = 1 if v is not (1,2)-dominated and otherwise n0 = 0.
• n1 is the number of nodes in N1(v) that do not have a neighbour in D.
• n2 is the number of nodes in N2(v) that have exactly one neighbour in D but are

not (1,2)-dominated by D or do not have any neighbours belonging to D within
distance 2.

By assigning different values to parameters a1, a2 we can obtain different (1,2)-
dominating set D.

To introduce an algorithm for finding a minimal (1,2)-dominating set in arbitrary
graphs, we first introduce a function PowerOfNodes which has four parameters: a graph G,
a node u ∈ V(G) and two positive numbers: a1, a2. The function determines the powers of
u, each neighbour of u and each node at distance 2 from u.

Algorithm PowerOfNodes Analysis

Let v be a node in N1(u) ∪ N2(u) ∪ {u}. The Algorithm 1 first checks (if. . . else lines 3
and 14–15) whether v is in D (then the power of v is always 0) or not. If not and if v is not
(1,2)-dominated, then v gets power at least 1 (lines 5–6). This assures a proper work of the
Algorithm 1 in case when, for example, v is not connected to any other node.

Electronics 2022, 11, 300 5 of 12

Algorithm 1: PowerOfNodes
Data: A graph G, a node u and parameters a1, a2
Result: G with determined power of nodes in N1(u) ∪ N2(u) ∪ {u}

1 Function PowerOfNodes(G, u, a1, a2):
2 for v ∈ N1(u) ∪ N2(u) ∪ {u} do
3 if v.dom = 0 then
4 m = 0;
5 if v.code ∈ {0, 5, 10} then
6 m← 1
7 for x ∈ N2(v) do
8 if x.code ∈ {0, 10} then
9 m← m + a2;

10 for x ∈ N1(v) do
11 if x.code < 11 then
12 m← m + a1;
13 v.pow← m;
14 else
15 v.pow← 0
16 return G

For each node not in D belonging to N2(v) with code 0 or 10, we add a2 to v.pow
(lines 7–9). Similarly, for each node not in D belonging to N1(v) with code smaller than 11,
we add a1 to v.pow (lines 10–12). Hence, a node gains a higher power if it has more non
(1,2)-dominated nodes in its neighbourhoods. By assigning different values to a1, a2, we
may obtain different results.

Since there might be some links among nodes in N1(v)∪N2(v), the algorithm not only
updates the power of v, but also nodes in N1(v) ∪ N2(v). For this reason the complexity of
this algorithm is O(∆2), where ∆ is the maximum degree of a node in a graph.

3.3. Algorithm Minimal_12_Set

The second algorithm, namely Minimal_12_Set uses the PowerOfNodes algorithm and
finds a minimal (1,2)-dominating set.

Algorithm Minimal_12_Set Analysis

In the beginning, Algorithm 2 assigns initial values to nodes: code and dom are as-
signed 0, while pow of a node v is a positive number and is equal to 1 + a1 · |N1(v)| +
a2 · |N2(v)| (lines 2–5). In each step of the main loop of the Minimal_12_Set (while. . . do
lines 6–20), a node with the maximum value of pow is chosen and added to the minimal
(1,2)-dominating set (lines 7–11). This node changes its value of dom from 0 to 1 (line 12).
Then, necessary local variables of nodes are updated, first code (lines 14–19), then pow (line
20). Checking whether x.pow > 0 (line 11) prevents the addition of a redundant node to
the minimal (1,2)-dominating set. At the end of the performance of the Algorithm 2 (line
21), nodes with dom equal to 1 form a minimal (1,2)-dominating set.

Note that in the case of assigning x.dom = 1 the powers of nodes at distance at most
4 might change. Our algorithm updates only powers of nodes at distance at most 2 from
x (see the Minimal_12_Set algorithm). This accelerates the performance of the algorithm.
However lines 7–11 make sure that the set of nodes with dom = 1 is always minimal in
sense of (1,2)-domination.

Electronics 2022, 11, 300 6 of 12

Algorithm 2: Minimal_12_Set
Data: A simple graph G and parameters a1 and a2
Result: A minimal (1,2)-dominating set

1 Function Minimal_12_Set(G, a1, a2):
2 for v ∈ V(G) do
3 v.pow← 1 + a1 · |N1(v)|+ a2 · |N2(v)|;
4 v.code← 0;
5 v.dom← 0;
6 while ∑v∈V(G) v.pow > 0 do
7 repeat
8 Let x be a node with the highest power;
9 update x.pow;

10 until x.pow > 0 or ∑v∈V(G) v.pow = 0;
11 if x.pow > 0 then
12 x.dom← 1;
13 x.code← 30;
14 for y ∈ N2(x) do
15 if y.code ∈ {0, 10} then
16 y.code← y.code + 5;
17 for y ∈ N1(x) do
18 if y.code < 11 then
19 y.code← y.code + 10;
20 G ←PowerOfNodes(G, x, a1, a2);
21 return G

The main loop of the Algorithm 2 (while. . . do lines 6–20) performs at most |V(G)|
times, because each time it adds one node to the (1,2)-dominating set and nodes in the
(1,2)-dominating set have pow = 0. Moreover, it takes at most n = |V(G)| operations to
choose a node with the highest power and at most ∆2 operations to update the power of a
node and nodes at distance 1 or 2 from it. Therefore, the time complexity for Algorithm 2 is
O(∆2n2), so it is polynomial.

3.4. Example

We illustrate the performing of the Minimal_12_Set for a1 = 2 and a2 = 1. Let G be a
graph as in Figure 2. The first number inside a node is its power, while the second–code.
The numbers in Figure 2 show their values after performing the first five lines of the
Algorithm 2.

6, 0 11, 0

8, 0 8, 0

12, 0

9, 0

8, 0 4, 0

Figure 2. Graph G at line 5 of the Algorithm 2.

The graph in Figure 3 illustrates the state of the graph after performing the main
while. . . do loop (lines 6–20) once. The dark node has dom = 1 and the light have dom = 0.

Electronics 2022, 11, 300 7 of 12

4, 5 9, 10

6, 5 6, 10

5, 10

6, 10 3, 50, 30

Figure 3. Graph G after performing the main loop of the Algorithm 2 once.

The state of the graph after performing the main loop twice is presented in Figure 4.
Note that since the node of degree 1 and pow = 3 is at distance more than 2 from the node
lastly added to the (1,2)-dominating set, its power is not updated.

0, 15

0, 15 0, 15

0, 20

2, 15 3, 50, 30 0, 30

Figure 4. Graph G after performing the main loop of the Algorithm 2 twice.

The graph G after the last, third performance of the main loop is shown in Figure 5.
The power of each node is 0. Since γ(1,2)(G) = 3, in this example the Minimal_12_Set
algorithm finds a minimal (1,2)-dominating set with the minimum possible cardinality.

0, 15

0, 15 0, 15

0, 20

0, 150, 30 0, 300, 30

Figure 5. Graph G after performing the main loop of the Algorithm 2 third (and last) time.

4. Results

The Minimal_12_Set algorithm and PowerOfNodes function were implemented and
tested using the igraph library in R. First, we used random geometric graphs as models
of a network. A geometric random graph is the model of a spatial network, namely an
undirected graph, constructed by placing randomly a given number of nodes in a unit
square and connecting two nodes by a link if and only if their distance is in a given range,
see [21,22]. In our tests, we generated random geometric graphs of order from 55 to

Electronics 2022, 11, 300 8 of 12

190 nodes and the radius within which the nodes are connected by a link between 0.08 and
0.4. We used three sets of parameters:

• a1 = 2, a2 = 1 denoted 2 1,
• a1 = 1, a2 = 1 denoted 1 1,
• a1 = 1, a2 = 2 denoted 1 2.

For each graph we compared the results obtained by Minimal_12_Set with an algo-
rithm that builds a minimal (1,2)-dominating set by choosing a permitted node randomly.
(We permit a node to be added to a minimal (1,2)-dominating set if adding this node
decreases the number of nodes which are not partially or fully (1,2)-dominated). We call
this algorithm a random algorithm and denote it on presented diagrams by rand. Its time
complexity is O(∆2n).

Next, since there is an optimal algorithm finding the (1,2)-domination number in
trees [18], we checked the performance of the algorithm for this class of graphs and we
compared the results with an optimal solution as well as with the results returned by the
random algorithm. Since adding a new link to a graph does not increase its (1,2)-domination
number, the (1,2)-domination number of a spanning tree T(G) of a connected graph G
is an upper bound for the (1,2)-domination number of G. At last we shortly study the
performance of our algorithm in random graphs and cubic graphs.

The statistics are done in Python using the pandas [23] library and the visualization
with the seaborn [24] library.

4.1. Geometric Random Graphs

As it is shown in Figure 6, the Minimal_12_Set algorithm gave much better results
than the random algorithm in the case of geometric random graphs. Not surprisingly, the
difference between the results of the algorithms was greater for graphs with more nodes.

Figure 6. Average number of nodes in a minimal (1,2)-dominating set.

In most cases of our tests, the algorithm with parameters 2 1 gave the best results on
average, however the differences between versions 2 1, 1 1 and 1 2 were not significant.

Electronics 2022, 11, 300 9 of 12

4.2. Trees

The Minimal_12_Set algorithm analyzes local neighbourhoods of each node. For this
reason, for example in stars it always finds a minimal (1,2)-dominating set with the smallest
possible cardinality, namely a minimum (1,2)-dominating set. However, this may not be
true for trees in general.

We tested the algorithms on random trees of order from 15 to 845 nodes. The results
given by the Minimal_12_Set algorithm and the random algorithm were compared to the
optimal algorithm that finds the (1,2)-domination number in trees (for details of the optimal
algorithm see [18]). The cardinalities of the minimal (1,2)-dominating sets together with
the optimal solutions are given in Figure 7.

Figure 7. Returned values of carnality of minimal (1,2)-dominating sets for random trees.

It can be seen that the differences between the values returned by the Minimal_12_Set
algorithm and the exact algorithm were much smaller than for the case of random algorithm.
To investigate this difference more deeply, we counted the percent error. Namely, Figure 8
shows the percent error of the minimum value returned by algorithms 2 1 and 1 2 in
relation to the optimal solution (denoted % alg), as well as the percent error of the random
algorithm (denoted % rand). We noted that the Minimal_12_Set algorithm gives much
better results than the random one.

The statistics presented in Table 1 show that the percent error of 2 1 and 1 2 is
relatively small, because it lies between 0% and 12.12% with a mean value of 6.64%, while
the percent error of the random algorithm is between 15.56% and 50.00% with a mean value
of 33.23%.

Electronics 2022, 11, 300 10 of 12

Figure 8. Percent error.

Table 1. Basic statistics for percent error.

% Alg % Rand

mean 6.636940 33.234861
std 2.700715 5.330012
min 0.000000 15.555556
25% 5.559414 30.740952
50% 6.698718 32.365320
75% 8.016610 35.875975
max 12.121212 50.000000

4.3. Random Graphs and Regular Graphs

We have tested the algorithm for random graphs generated according to the G(n, p)
Erdos–Renyi model for n varying from 30 to 250 and the probability for constructing a link
p = 0.1. The results can be seen in Figure 9.

The statistics show that the random algorithm returned values on average 77.30%
worse than the Minimal_12_Set algorithm. Moreover, the results given by the random
algorithm were more diverse. In some cases the results were just 8.33% worse than the
Minimal_12_Set algorithm, while in some cases were as high as 129.41% worse.

Since the Minimal_12_Set algorithm prefers the nodes with the highest degree, we
tested the Minimal_12_Set algorithm and random algorithm on random cubic graphs,
that is graphs in which each node is of degree 3. We supposed that these graphs should
eliminate the advantage of adding nodes with high degrees to the minimal (1,2)-dominating
set. Since the degree of each node is only 3, adding a node to a minimal (1,2)-dominating
set changes the power of at most 10 nodes. We tested the algorithms for cubic graphs of
order from 30 to 500 nodes. Furthermore, in this situation the Minimal_12_Set algorithm
gave better results than the random one. The random algorithm gave worse results by
38.34% on average, varying from 18.42% to 75.00%.

Electronics 2022, 11, 300 11 of 12

Figure 9. The cardinality of (1,2)-dominating sets returned by the Minimal_12_Set and random
algorithms in random graphs.

5. Discussion

In this paper, we proposed two algorithms: PowerOfNodes and Minimal_12_Set. The
second algorithm uses the first one and finds, in a polynomial time, a minimal (1,2)-
dominating set of any graph. The conducted tests in trees show that the results returned by
the Minimal_12_Set are not far from the optimal solution and are much better than a simple
random algorithm. Since a tree is a subgraph of any graph, this allows us to assume that
similar good results should be true in general graphs. The tests performed for geometric
random graphs, random graphs and cubic graphs seem to confirm our suppositions. Even
though the nodes in cubic graphs have the same degree, the new algorithm still returned
better results than the random one.

For these reasons, our algorithm may be used in high reliability networks in which
we must guarantee that each node has an instant access to a spare server at least at
distance 2 from it. Since each node has a spare dominating node in (1,2)-dominating
set, these networks are more fault tolerant. Additionally, if the model of a network is vast,
there is a possibility of dividing it into unit squares and applying the algorithm in each
square independently.

6. Conclusions and Future Work

In future, it might be interesting to investigate the potential of using the
Minimal_12_Set algorithm in ad hoc networks in which nodes are changing their po-
sitions. Furthermore, it is worth checking whether updating the powers of all nodes at
distance at most 4 from the node newly added to the minimal (1,2)-dominating set will give
much better results than updating the powers of nodes at distance at most 2. Of course, the
computational time complexity of the new version of the algorithm will be greater, so the
question is if such greater time complexity is of practical importance.

Another interesting open problem is to investigate possible generalization of the
presented algorithms to (1,k)-domination. In this paper, we are studying the case for
k = 2, however other values of k seems to be worth studying. The possible extension
of the algorithm for the neural networks and neuromorphic computing is left for further
investigations in future.

Electronics 2022, 11, 300 12 of 12

Funding: This work was supported by the Ministry Subsidy for Research for Gdańsk University of
Technology.

Data Availability Statement: Datasets analyzed or generated during the study. https://github.com/
JoannaRaczek/Polynomial-Algorithm-for-Minimal-1-2-Dominating-Set, accessed on 18 December 2021.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Information System on Graph Classes and Their Inclusions (ISGCI). Available online: https://www.graphclasses.org (accessed

on 18 December 2021).
2. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; Freeman: San Francisco, CA,

USA, 1979.
3. Haynes, T.W.; Hedetniemi, S.T.; Slater, P. Fundamentals of Domination in Graphs, 1st ed.; CRC Press: Boca Raton, FL, USA, 1998.

[CrossRef]
4. Haynes, T.W.; Hedetniemi, S.T.; Slater, P.J. Domination in Graphs Advanced Topics, 1st ed.; Routledge: London, UK, 1998. [CrossRef]
5. Karbasi, A.H.; Atani, R.E. Application of Dominating Sets in Wireless Sensor Networks. Int. J. Secur. Its Appl. 2013, 7, 185–202.
6. Dubois, S.; Kaaouachi, M.H.; Petit, F. Enabling Minimal Dominating Set in Highly Dynamic Distributed Systems. In Stabilization,

Safety, and Security of Distributed Systems; Pelc, A., Schwarzmann, A., Eds.; SSS 2015, Lecture Notes in Computer Science; Springer:
Cham, Switzerland, 2015; Volume 9212._4. [CrossRef]

7. Yu, J.; Wang, N.; Wang, G.; Yu, D. Connected dominating sets in wireless ad hoc and sensor networks—A comprehensive survey.
Comput. Commun. 2013, 36, 121–134. [CrossRef]

8. Yamuna, M.; Karthika, K. Medicine names as a DNA sequence using graph domination. Pharm. Lett. 2014, 6, 175–183.
9. Guze, S. An application of the selected graph theory domination concepts to transportation networks modelling. Sci. J. Marit.

Univ. Szczec. 2017, 52, 97–102.
10. Ramalakshmi, R.; Radhakrishnan, S. Weighted dominating set based routing for ad hoc communications in emergency and rescue

scenarios. Wirel. Netw. 2015, 21, 499–512. [CrossRef]
11. Hedar, A.-R.; Abdulaziz, S.N.; Mabrouk, E.; El-Sayed, G.A. Wireless Sensor Networks Fault-Tolerance Based on Graph Domination

with Parallel Scatter Search. Sensors 2020, 20, 3509. [CrossRef] [PubMed]
12. Hedar, A.-R.; El-Sayed, G.A. Parallel genetic algorithm with elite and diverse cores for solving the minimum connected dominating

set problem in wireless networks topology control. In Proceedings of the 2nd International Conference on Future Networks and
Distributed Systems (ICFNDS ’18), New York, NY, USA, 26–27 June 2018; Association for Computing Machinery: New York, NY,
USA, 2018; pp. 1–9. [CrossRef]

13. Dai, F.; Wu, J. An extended localized algorithm for connected dominating set formation in ad hoc wireless networks. IEEE Trans.
Parallel Distrib. Syst. 2004, 15, 908–920. [CrossRef]

14. Hedetniemi, S.M.; Hedetniemi, S.T.; Kinsley, J.; Rall, D.F. Secondary Domination in Graphs. AKCE J. Graphs Combin. 2008, 5,
103–115.

15. Factor, K.A.S.; Langley, L.J. An introduction to (1, 2)-domination graphs. Congr. Numer. 2009, 199, 33–38.
16. Kayathri, K.; Vallirani, S. (1, 2)-Domination in Graphs. In Theoretical Computer Science and Discrete Mathematics; Arumugam, S.,

Bagga, J., Beineke, L., Panda, B., Eds.; ICTCSDM 2016, Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2017;
Volume 10398. [CrossRef]

17. Michalski, A.; Włoch, I. On the existence and the number of independent (1,2)-dominating sets in the G-join of graphs. Appl.
Math. Comput. 2020, 377, 125155. [CrossRef]

18. Raczek, J. Complexity Issues on Secondary Domination Number. Nord. J. Comput. 1994, 1, 157–171.
19. Kakugawa, H.; Masuzawa, T. A self-stabilizing minimal dominating set algorithm with safe convergence. In Proceedings of the

20th IEEE International Parallel and Distributed Processing Symposium, Rhodes, Greece, 25–29 April 2006; p. 8. [CrossRef]
20. van Rooij, J.M.M.; Bodlaender, H.L. Exact algorithms for dominating set. Discr. Appl. Math. 2011, 159, 2147–2164. [CrossRef]
21. Penrose, M. Random Geometric Graphs; Oxford Univ. Press: Oxford, UK, 2003. [CrossRef]
22. Bringmann, K.; Friedrich, T. Exact and Efficient Generation of Geometric Random Variates and Random Graphs. In Automata,

Languages, and Programming; Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D., Eds.; ICALP 2013, Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7965. [CrossRef]

23. Pandas. Available online: https://pandas.pydata.org/ (accessed on 2 October 2021).
24. Seaborn: Statistical Data Visualization. Available online: https://seaborn.pydata.org/ (accessed on 2 October 2021).

https://github.com/JoannaRaczek/Polynomial-Algorithm-for-Minimal-1-2-Dominating-Set
https://github.com/JoannaRaczek/Polynomial-Algorithm-for-Minimal-1-2-Dominating-Set
https://www.graphclasses.org
http://doi.org/10.1201/9781482246582
http://dx.doi.org/10.1201/9781315141428
http://dx.doi.org/10.1007/978-3-319-21741-3_4
http://dx.doi.org/10.1016/j.comcom.2012.10.005
http://dx.doi.org/10.1007/s11276-014-0800-4
http://dx.doi.org/10.3390/s20123509
http://www.ncbi.nlm.nih.gov/pubmed/32575880
http://dx.doi.org/10.1145/3231053.3231080
http://dx.doi.org/10.1109/TPDS.2004.48
http://dx.doi.org/10.1007/978-3-319-64419-6_17
http://dx.doi.org/10.1016/j.amc.2020.125155
http://dx.doi.org/10.1109/IPDPS.2006.1639550
http://dx.doi.org/10.1016/j.dam.2011.07.001
http://dx.doi.org/10.1093/acprof:oso/9780198506263. 001.000
http://dx.doi.org/10.1007/978-3-642-39206-1_23
https://pandas.pydata.org/
https://seaborn.pydata.org/

	Introduction
	Related Works
	Materials and Methods
	Model of Network
	Algorithm PowerOfNodes
	Algorithm Minimal_12_Set
	Example

	Results
	Geometric Random Graphs
	Trees
	Random Graphs and Regular Graphs

	Discussion
	Conclusions and Future Work
	References

