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Abstract: Distance computation between two input vectors is a widely used computing unit in
several pattern recognition, signal processing and neuromorphic applications. However, the im-
plementation of such a functionality in conventional CMOS design requires expensive hardware
and involves significant power consumption. Even power-efficient current-mode analog designs
have proved to be slower and vulnerable to variations. In this paper, we propose an approximate
mixed-signal design for the distance computing core by noting the fact that a vast majority of the
signal processing applications involving this operation are resilient to small approximations in the
distance computation. The proposed mixed-signal design is able to interface with external digital
CMOS logic and simultaneously exhibit fast operating speeds. Another important feature of the
proposed design is that the computing core is able to compute two variants of the distance metric,
namely the (i) Euclidean distance squared (L22 norm) and (ii) Manhattan distance (L1 norm). The
performance of the proposed design was evaluated on a standard K-means clustering algorithm
on the “Iris flower dataset”. The results indicate a throughput of 6 ns per classification and ∼2.3×
lower energy consumption in comparison to a synthesized digital CMOS design in commercial 45 nm
CMOS technology.

Keywords: distance computation; K-means clustering; approximate computing

1. Introduction

With the increasing demand for image and signal processing tasks that need to be
routinely performed in present-day mobile devices, power and energy-efficient custom
hardware implementations are becoming indispensable. This study focuses on the distance
calculation metric between two multidimensional vectors. As a specific example, we will
consider the application of this metric to K-means clustering algorithms, one of the simplest
clustering methods commonly used in various areas, such as artificial intelligence [1], pat-
tern recognition [2,3] and image segmentation [4,5]. Until recently, the K-means algorithm
is still used for solving more complex and sophisticated problems through continuous
improvement [6].

In addition to the possible applications mentioned above that can utilize the K-means
clustering algorithm, theoretical studies have recently been proposed to improve the
clustering algorithm itself based on improved distance metrics, such as adaptive fused
distance [7] and S-distance [8]. Furthermore, instead of relying on a simple similarity
measure (such as Euclidean distance) to divide the dataset into different groups, a study
of an advanced similarity measure to identify hidden patterns in data based on Jeffrey-
differences was proposed in [9,10].

However, despite the theoretical study and application of K-means clustering, efficient
hardware implementation does not appear to have yet been achieved despite the simple and
repetitive multiplication and addition operations required for distance calculation. Apart
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from the most intuitive approach to implementing clustering algorithms based on digital
logic gates, various distance computing methods using analog [11–15] and mixed-mode
design [16,17] have been proposed in the literature. As is well known, the digital-based
approach can provide the most accurate and fast operating speed at the cost of area and
power, while analog methods have comparable precision characteristics despite their simple
structure.

Although accurate distance computation is an important requirement in many cases,
there are some applications that can tolerate small errors in distance measurement results.
For example, in K-means cluster analysis, inputs are classified based on the minimum
distance between the input and the cluster center. Therefore, determining the correct cluster
with the minimum distance is more important than calculating the distance numerically
accurate [18,19]. This resilience to small errors can lead us to utilize approximate computing
for energy-efficient distance calculation unit design. In this context, analog current mode
computing can be a promising candidate for our goals with essentially simple structures
and approximate computational characteristics. However, vulnerability to environmental
changes and slow operation speed are the main drawbacks of this approach. To overcome
this, an approximate distance calculation core based on mixed-mode design is proposed
to achieve both the fast operating speed and comparable accuracy.

The basic motivation for the proposed distance calculation unit begins with con-
structing an approximate multiplier, a hardware costly part of distance computation. This
multiplication can be performed approximately by filling the capacitor using a constant
current source for a certain period of time. The voltage of the capacitor is then proportional
to the product of the current and the charging time. Therefore, if two inputs to the mul-
tiplier can be controlled separately, the corresponding output voltage obtained from the
capacitor represents the multiplication output.

Following the above discussion, here, we propose K-means clustering hardware
based on an energy-efficient distance computing core. The main contributions of the
proposed research are as follows: (1) A mixed-signal approximate distance calculation
core capable of calculating the Manhattan distance or Euclidean distance square between
two multidimensional vectors was proposed. (2) It has been successfully shown that the
proposed distance computing unit can be exploited in K-means clustering hardware based
on a circuit-application co-simulation framework.

The rest of the article is organized as follows. Section 2 addresses related works in
similar fields. Section 3 provides a brief overview of the basics of approximate distance
calculation. Details of the proposed distance computation unit and its operation are
discussed in Section 4. The overall structure of the K-means clustering module based on the
approximate distance calculation device and the simulation framework are presented in
Section 5. Section 6 presents clustering results using the Iris flower dataset and performance
analysis of the proposed system. Section 7 concludes the article.

2. Related Works

This section will introduce some of the previous works devoted to developing hard-
ware implementations of distance computation units. Before starting, it would be good to
mention some basic operations that need to be performed by the core computing unit for
distance calculation. The purpose of distance calculation is to find the difference between
the two multidimensional vectors and then the sum of the absolute values (Manhattan
distance metric, L1 norm) or the sum of the squares of the differences (Euclidean distance
square metric, L22 norm). Accordingly, the distance calculation unit basically needs to
perform subtraction between two input multidimensional vectors first. Then, the absolute
value of the subtraction result for each sub-element needs to be added for L1 distance,
or the sum of the squares of each sub-element is required for L22 distance.

The authors of [18,19] propose an analog distance computing core that utilizes current
mode calculation for most of the main functions required for distance computation. For in-
stance, the current-mode operation was used to (1) subtract between two multidimensional
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vectors, (2) take the absolve value, (3) calculate the square of each term, and then (4) add
all of each term. This analog method can provide reasonably good accuracy if each com-
ponent of the analog circuit is ensured to operate under appropriate operating conditions.
In addition, due to the simple current mode operation based on Kirchhoff’s law, the entire
structure may consist of a minimum number of transistors compared to the other methods
introduced in the next paragraphs. However, the current mode operation is assumed to be
very vulnerable to environmental changes, and it generally takes too much time to obtain a
final answer.

Instead of using the full analog implementation of the distance calculation core,
a mixed-signal approach was proposed in [17,20] to find the minimum distance. Here, some
of the calculations are performed in the digital domain, and the remaining calculations are
performed in the analog domain. Note that the target application in references [17,20] is
associated memory. It is still very similar to the application under consideration because the
goal is to find data with a minimum distance from the presented input data among the data
stored inside the memory. Due to the binary data stored in memory, the initial part of the
distance computation was implemented by digital subtraction based on the adder or XOR
function. However, the latter portion still relies on the current mode squarer [20] or the neu-
ron CMOS inverter-based computation [17]. Although the speed of the distance calculation
could have improved somewhat due to the initial digital part, the overall computational
time is still comparable to the analog counterpart because the main square function is still
performed in the analog domain.

Apart from the aforementioned two analog and mixed signal-based calculations, a fully
digital-based distance computation approach has been proposed in [21,22]. Instead of
faithfully implementing digital components for subtraction, generation of absolute values,
square functions, and addition, the authors of [21,22] propose the concept of distance-clock-
mapping to calculate the Euclidean distance between the two input vectors. The key idea
proposed in these pieces of research is to calculate the square distance corresponding to
one element of a multidimensional input vector at a time, then repeat the calculation and
accumulate the resulting value to obtain the final distance value. This method effectively
reduced the silicon area compared to the area consumed by the full precision multiplier
and adder. In addition, it is possible to generate the most accurate distance calculation
if the implemented hardware can support full precision of data. However, there are still
opportunities to approximate distance calculations depending on the target application
that can significantly improve the efficiency of overall system operation.

Based on the discussion in this section, we proposed an efficient distance computing
core based on the mixed-signal approach introduced in [20]. However, instead of utilizing
the current-mode square unit, we have proposed a concise and fast square computation
unit based on the simple fact that the voltage across the capacitor is proportional to the
product of (1) the amount of applied current pulse and (2) time duration. In addition,
the output of the L22 unit becomes a voltage level, which helps to cluster a given input
based on the minimum distance using a simple latch-based voltage comparator.

3. Basic Distance Metrics

Conventionally, L1 and L22 norms are used to measure the distance between two
multi-dimension vectors. For two n-dimensional vectors (x and c), the L1 and L22 norm
can be described as follows:

DL1 =
n

∑
i=1
|xi − ci|. (1)

DL22 =
n

∑
i=1

(xi − ci)
2. (2)

As shown in the above formulae, the computation of distance between two input
vectors, especially the L22 norm, requires multiplication (squaring) and addition operations.
In order to implement this functionality in hardware, the number of multiplications and
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additions required is equivalent to the number of dimensions (n) of the input vector. Further,
the K-means clustering algorithm requires the computation of such a distance metric for a
large number of input vectors over a number of epochs, thereby resulting in significant area,
power and energy overheads. However, applications in signal processing that utilize such
distance metrics are usually resilient to slight approximations in the metric value. Hence,
optimizations can be performed by constraining the number of bits used to represent the
two input vectors. For example, simulation studies for K-means clustering on the “Iris
flower dataset” [23] reveal that there is insignificant degradation in the final clustering
result when 5 bits are utilized for the input vectors. However, even with such optimizations,
digital CMOS implementations still involve significant energy consumption (explained in
the next section), thereby providing motivation for the exploration of alternative design
approaches.

Proposed Approximate Distance Computing Unit

As discussed earlier, the basic computational units for the distance metric are multipli-
cation and addition. However, in order to implement the multiplication operation in digital
CMOS technology with 5-bit input vector resolution, at least 25 Full Adders are required for
each multiplier. Further, the final addition operation after the multiplication step requires
twice the number of bits of the input vector (as it is driven by multiplier outputs). Since
this operation is performed iteratively over a large number of input vectors, alternative
implementations involving analog current-mode designs of such computations are being
actively explored [11,12,14]. The main advantage of this approach results from the fact
that the addition/subtraction operation can be mapped to current flowing into/out of a
circuit node (following Kirchhoff’s current law). However, such approaches suffer from
high latency and are highly prone to PVT changes. In this work, we propose a mixed signal
design for the distance computing unit to address the above limitations. The inspiration
behind our approach arises from the fact that the voltage V across a capacitor C being
charged by a constant current source i for an integration time t is proportional to the input
current multiplied by the integration time as follows:

V = (i ∗ t)/C. (3)

Figure 1 illustrates the basic idea. Figure 1a depicts that the output voltage follows
a linear trend (L1 norm) when the integration time (t1∼t3) varies linearly and the input
current is kept constant at i f ix. On the other hand, the output voltage in Figure 1b varies
in a quadratic fashion (L22 norm) when the integration time (t1∼t3) and input current
(i1∼i3) are incremented concurrently. This is the principal motivation for the proposed
design of computing L1 and L22 norms. In order to implement the concept into CMOS
hardware, three components are required, as shown in Figure 2a. They are as follows:
(1) the circuit to control the input current i, (2) switches to control the integration time t,
and (3) the output capacitance C. The actual implementation of Figure 2a is depicted in
Figure 2b. In order to interface the computing block with external digital CMOS circuitry, a
binary weighted current mode Digital-to-Analog Converter (I-DAC) with 5-bit resolution
was utilized. To turn on/off each current path selectively, each transistor (1×∼16×) is
provided with a corresponding switch. Hence, the upper row of the stacked transistors in
Figure 2b controls the amount of input current to the capacitor, and the lower row controls
the integration time corresponding to the magnitude of the inputs. Based on this design,
we can generate both of the L1 and L22 norms, as shown in Figure 1.
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Figure 1. Multiplication based on charging a capacitor using an input current: (a) L1 norm with fixed
input current; (b) L22 norm with variable input current.

Figure 2. Hardware implementation of the approximate multiplier unit for distance computation. (a)
Conceptual view (b) Actual implementation.

4. Circuit Details for the Distance Computing Unit

This section outlines the details of each circuit component constituting the approx-
imate distance computing unit and their operations. Furthermore, we will demonstrate
the generation of L1 and L22 norms from the proposed design, which will be utilized
subsequently for K-means clustering algorithm.

4.1. Main Distance Computing Unit

The complete design of the approximate multiplier proposed in the previous section
with peripherals is illustrated in Figure 3. The individual components are: (1) current
reference circuit to provide a bias voltage VBIAS to the current-mode DAC, (2) Timing
controller to control the integration time proportional to the magnitude of the input vector,
and (3) Path selector to turn on/off the proper current path depending on the input vector.
Let us now discuss the operation of the approximate multiplication unit. Assuming the
input to the multiplier unit is the absolute difference between two inputs A and B, a
low-active pulse is generated whose width is proportional to the magnitude |A− B| using
the timing controller. The same input vector also selects a proper current path to the
capacitor by forcing the outputs of the AND gate to low level appropriately. Hence, the
input current magnitude to the capacitor is modulated depending on the value of |A− B|
by the current mode DAC. The time of integration is also modulated by ensuring that
the output of the AND gates are low for a time duration proportional to the magnitude
of |A− B|. For instance, Figure 3 demonstrates the operation of the circuit for the case
when the input |A− B| is ‘01101’. Since both the input current and integration time are
modulated depending on the difference magnitude, the output voltage will be proportional
to the square of the input. On the other hand, if the input vector controls only one variable
between IDC and the integration time, the output voltage will vary linearly with the input.
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Figure 3. Proposed approximate distance computing unit based on the circuit in Figure 2b.

4.2. Timing Controller

The main function of the Timing controller in Figure 3 is Pulse Width Modulation
(PWM), such that the output pulse width varies in accordance to the magnitude of the
input. This can be achieved by providing the clock signal as input to an inverter chain and
subsequently combining any of the two outputs from the inverter chain appropriately to
form an output pulse with varying width. However, such a circuit involves significantly
high switching power and area overhead. Hence, rather than utilizing such a conventional
digital design, we propose a clock-less PWM circuit by utilizing the time constant of a
discharging RC circuit path to control the pulse width. Figure 4a demonstrates the circuit
details for the PWM unit. Initially, the capacitor becomes charged to the VDD level through
the P1 transistor during the precharge mode. Then, during the discharge phase, the current
IDIS flows through the series path of N1 transistor, and the resistor and the speed of
discharging is dictated by the RC time constant of the circuit. In order to control the
discharging speed in a linear fashion, a resistor ladder with five resistors was used. The
size of the resistors were increased in a binary weighted manner, such that the timing
controller provided 31 steps of delay with a 5-bit resolution. Figure 4b,c depicts the details
of the proposed PWM unit and its timing diagram, respectively. The output pulse with
varying width is generated by connecting an inverter to the VCAP node. Once the decaying
voltage at the VCAP node becomes lower than the threshold voltage (Vth) of the inverter,
the output of the inverter V1 will toggle to a high voltage level. Since the slope of the
decaying signal at the VCAP node could be altered by changing the resistance value, the
signal transition at the V1 node will also vary. Hence, the pulse width at the output can
be modulated by combining the precharge and inverted V1 signals. The increment of
pulse width per 1-bit increment in the input code (Delay ∆/bit) is shown in Figure 4d. The
amount of delay increases by almost 50 ps per step throughout the whole input code range,
which enables a reasonably linear operation of the proposed multiplication unit.

4.3. Generation of Distance Norms

Figure 5 illustrates the current and voltage outputs along with the plots of the two
norms obtained from the approximate multiplier with two different input sets. In the
case of Figure 5a, the 5-bit input vector only controls the amount of input current (fixed
integration time ∼ 0.5 ns). For explanation, five input examples are shown in Figure 5 (1, 2,
4, 8, and 16 in decimal). As can be seen, the input current to the capacitor is proportional
to the magnitude of the input vector, and the output voltage of the capacitor rises linearly
with time. On the other hand, Figure 5b demonstrates the case when both the input current
and integration time are modulated by the magnitude of the input. In this case, the final
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output voltage shows a quadratic variation since the integrator output is determined by
the area under the current plot, which is the multiplication of the current magnitude and
integration time.

Figure 4. (a) Basic circuit of the timing controller, (b) the proposed Pulse Width Modulation circuit
with RC discharging path, (c) timing diagram and expected waveforms for the controller, and (d)
simulation results of 1-step delay increment with changes in the input code.

Figure 5. Current, Voltage output plots, and corresponding output curve of the proposed design
for two different input sets: (a) integration time is fixed, current is varying; (b) integration time and
current are both varying together.
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5. Application to K-Means Clustering
5.1. General K-Means Clustering Algorithm for Iris Dataset

The K-means clustering algorithm involves the iteration of two main processes, namely
distance computation and clustering based on the minimum distance. The flowchart of the
algorithm is depicted in Figure 6a. The processes involved are: (1) generation of centroids,
(2) distance computation of data-points D1, . . . , Dn from each of the cluster centroids
and the generation of distance table, (3) clustering based on minimum distance, and (4)
recalculation of centroids. The main computationally expensive portion of these steps
involve the distance computation and clustering processes (implemented using multipliers,
adders and comparators). The analysis performed in this paper is based on the Iris flower
dataset, which includes 150 data from three species of flowers. Each data-point is associated
with four dimensions (width/length of sepal and petal).

Figure 6. (a) Flowchart of the K-means clustering algorithm; (b) distance table generated for each
iteration of the clustering process.

5.2. Architecture of the Proposed K-Means Clustering Unit

The top level architecture of the K-means clustering module is shown in Figure 7.
The main distance computing unit (denoted by the dotted box) represents the prime
computing unit of the system. The additional circuits are required for the clustering
purpose and data pre-processing to compute the absolute difference between the two input
vectors. The number of “Approximate Distance Computing Units” in Figure 7 is equal
to the number of clusters (three in our example). Each of these distance computing units
receives two inputs (in digital format), one of them being a single data-point from the
150 data-points and the other being the centroid value of each cluster. A digital comparator
and subtractor unit computes the absolute difference between the two inputs. It is worth
noting here that current-mode analog computing is also a popular mechanism to calculate
the absolute difference between two inputs [11,12,14]. However, in that case, the inputs
should be represented by analog voltages or currents, which require additional converting
units to interface with external digital logic. Additionally, it typically requires a longer
computing time. To cope with these penalties, pure digital logic-based comparator and
subtractor units are used in this work.
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Figure 7. Architecture of the proposed “K-means clustering unit”.

After generating the absolute difference, output digital bits are provided as input to
the “Main Distance Computing Unit” (described in details in Section 3). The output voltage
of each such unit will be proportional to the square of the input (absolute difference). Inside
each of the single “Approximate Distance Computing Units”, there are four sets of “Main
Distance Computing Unit” cells since the dataset we are considering has four dimensions
per input. Therefore, in order to compute the total distance between the input and the
centroid, an adder summing up all the L22 norms is required. After the calculation of the
total distance between the input vector and the centroids, clustering of the input vector is
performed based on the minimum distance approach. For this, we adopted a Loser-Take-All
(LTA) circuit. The LTA unit receives the distance values from each “Approximate Distance
Computing Unit” and determines the minimum distance value. The output of the LTA is
the digital address of the “loser”. It is worth noting here that the input and output of the
entire system are digital bits, thereby facilitating communication with conventional digital
CMOS logic-based system.

5.3. Additional Circuitry

In this section, we will describe two additional circuits required at the last stage of the
K-means clustering module, namely the summation and LTA units. The summer is required
to add up the distance contributions from each of the L22 units to generate a resultant
distance between the two inputs. In our mixed mode approach for distance computation,
addition can be easily performed since the output from the L22 unit is an analog current.
Hence, by connecting all the outputs from the L22 units to a single capacitor, the summation
can be performed at the junction without any additional circuitry (Figure 8a). Figure 8b
demonstrates the block diagram of the LTA unit comprising of 2:1 multiplexers (MUXs) and
comparators (COMPs). The inputs to the LTA are analog voltages from each “Approximate
Distance Computing Unit”. To define a loser with a short latency, a cell-based tree topology
has been used here [24]. Once two input voltages are received by an unit cell of the LTA,
the comparator determines the smaller input and subsequently transmits the voltage level
of the loser through the transmission gate-based 2:1 MUX [25]. In order to interface with
voltage input, a latch-based voltage mode comparator was utilized.
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Figure 8. (a) Summation Unit for the proposed “Main Distance Computing Unit”; (b) Loser-Take-All
(LTA) circuit based on cell-based tree structure and its inherent address decoding property (left), 2:1
multiplexer (right-top), and comparator (right-bottom) used for LTA unit.

A major advantage of this cell-based tree structure lies in its inherent loser address
decoder [26]. To explain this property, let us assume that there are three inputs to the LTA
unit (IN2 is the smallest input). The two LTA unit cells in the first layer will determine the
smaller input voltage and then transmit the corresponding signals to the next stage. Since
IN2 is the smallest, the output of the comparator CO1 becomes low. At the second layer,
CO3 becomes high since the input to the comparator through the ‘I1’ node is IN2, which is
the smallest distance. If we look at the output of each comparator along the trace of the
loser from the end, it becomes ‘H-L’, which is ‘CO3-CO1’. The address of the loser can
be obtained by inverting this 2-bit data (‘01’, which indicates that the loser is the second
input). The address decoding unit, which is not shown here, can be simply implemented
by a 2:1 multiplexer and a few logic gates. Hence, the proposed “Approximate Distance
Computing Unit” can produce the output address of the lowest distance without any
additional Analog-to-Digital Converter (ADC).

The layout of the approximate K-means clustering circuit is shown in Figure 9. All
CMOS circuits are designed using IBM 45 nm SOI technology that occupies an active area
of 0.011 mm2.

Figure 9. The layout of the proposed “K-means clustering unit”.

6. Performance Analysis

The performance of the proposed K-means clustering computation core has been ex-
plored in two aspects. First, we checked the accuracy of clustering based on the Iris dataset
and compared it with software-based K-means clustering results. The built-in function of
MATLAB (function name ‘kmeans’) was used as the software K-means clustering code,
whose distance metric is Euclidean distance squared. Since the operating procedure of
K-means clustering in MATLAB code is actually the same as described in the flowchart in
Figure 6, we aim to compare classification accuracy based on the proposed computational
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core compared to the ‘ideal’ clustering results of the software. Here, we did not consider
the computational speed or energy consumption for this comparative study. This is because
data throughput and energy consumption based on software solvers typically involve
repetitive commands and data transactions between processor and memory, which requires
considerable time and energy.

Second, after the accuracy comparison, the energy consumed by the proposed K-
means clustering computing core is identified, and the results are compared with the
digital CMOS-based computing core. For digital CMOS power numbers, digital logic was
synthesized using Hardware Description Language (HDL), and then the expected power
consumption is measured using the same simulation environment: SPICE simulation using
commercial 45 nm CMOS technology.

Before discussing detailed performance results, it is necessary to pay attention to the
convergence properties of the K-means algorithm we used in our study. The purpose of
our research is to provide an energy-efficient hardware computing core for the K-means
clustering algorithm and not to improve the algorithm itself. Therefore, the convergence
problem will not be an issue, and the convergence properties of the general K-means
clustering algorithm have been studied and established in many research papers [27,28].

6.1. Simulation Framework and Timing Diagram

For clustering accuracy and energy analysis, we will first introduce a circuit-application
co-simulation framework used in this work, which is depicted in Figure 10a. Based on
our proposed K-means clustering module, SPICE simulations were performed on clus-
tering with the necessary pre- and post-processing performed in MATLAB. Here, the
preprocessing reads data from the Iris dataset and quantizes the vector components of
the individual data to 5-bit resolution. Then, SPICE simulation is performed based on
the input file generated by MATLAB containing quantized input data. When the SPICE
simulation is completed, the address of the loser is collected and stored in the workspace
of MATLAB. By repeating this process, we can calculate the distance of each datum and
perform clustering work.

Figure 10. (a) Circuit-application co-simulation framework used for this work; (b) timing diagram
for the proposed K-means clustering module.

All the CMOS circuits were designed using IBM 45 nm SOI technology with 1 V power
supply. The associated timing diagram is shown in Figure 10b. The ‘Integ. RST’, ‘Integ.
EN’, ‘LTA EN1’ and ‘LTA EN2’ represent the reset and enable signal of the integrator;
and the first and second layer enable signals of the LTA circuit, respectively. As indicated
by the the timing diagram, a single clustering operation can be performed in 6 ns, which is
much faster than other distance computing units (based on current mode calculation) in
the literature [18,19].
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6.2. Clustering Result

Figure 11 depicts the final clustering results for both the ideal case (from MATLAB
built-in function ‘kmeans’) and the proposed design based on the circuit-application co-
simulation framework. The design performs reasonably well, and the only misclassification
error occurs at the boundary between the two clusters, which is quite understandable.

Figure 11. Final clustering results comparison: (a) ideal K-means clustering result; (b) approximate
K-means clustering result. The single error occurs at the boundary of the two clusters.

6.3. Clustering under Different PVT Conditions

Figure 12a depicts the average number of errors (averaged over eight runs) during the
clustering process. The error reduces to 1 out of 150 data-points at the end of six iterations.
To check the robustness of the proposed system under PVT changes, we also performed the
clustering operation under different PVT conditions. For each PVT condition, we used five
processes (TT/FF/SS/FS/SF), three voltages (0.9 V/1.0 V/1.1 V), and three temperatures
(0 ◦C/50 ◦C/100 ◦C), which results in a total of 45 different combinations. Based on these
settings, Figure 12b shows the output current variation from a current reference circuit.
The current reference circuit was designed to exhibit the property of process and voltage
robustness [29]. However, it is not temperature compensated, which results in ±10%
variation, mainly due to temperature changes. This variation affects the output voltage
level of the distance computing units. However, this does not necessarily imply additional
errors in the clustering process due to the inherent error resiliency of such applications.
Figure 12c shows the clustering error during the second iteration in Figure 12a under the
45 PVT conditions. The number of errors at the second iteration was originally four at the
typical condition. As can be seen from the results, the number of errors only increased
for a single corner SS/0.9 V/Low temperature. At this condition, additional clustering
errors occur at the comparator in the last LTA stage due to the low-voltage headroom and
high-threshold voltage of transistors due to the harsh PVT conditions. This problem can
be resolved by improving the final comparator stage. Note that the number of clustering
errors under PVT changes is almost similar in comparison to the typical case. Figure 12d
depicts two groups of waveforms from different corners; one is the typical condition, and
the other is slow process and low VDD condition. As expected, the voltage level under
worse PVT conditions reduces (for the same digital code) due to reduced current. However,
it is worth noting here that the voltage level variation at a specific corner affects all distance
computing units concurrently at the same time. Hence, the sorting operation of the voltage
levels is not affected, even under PVT changes, which ensures that final clustering results
are not affected.
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Figure 12. (a) Average number of clustering errors during the K-means clustering process; (b) normal-
ized current reference output with PVT changes; (c) the number of clustering errors during second
iteration in (a) with PVT changes; (d) output voltage levels from a distance computing unit with three
different inputs under two PVT conditions.

6.4. Clustering Results with Other Datasets

To validate the scalability of the system, we checked the performance of the proposed
approximate K-means clustering hardware based on different datasets. The following four
datasets [23] were used: (1) Seeds dataset (210 instances, 3 classes, and 7 attributes), (2) Ecoli
dataset (336 instances, 8 classes, and 7 attributes), (3) Optical recognition of Handwritten
Digits dataset (5620 instances, 10 classes, and 64 attributes), and lastly, (4) Letter recognition
dataset (20,000 instances, 26 classes, and 16 attributes).

The accuracy of the hardware proposed here was measured in the following two
steps. First, the initial centroids of the dataset under consideration were randomly selected,
and then the clustering output of a given dataset, that is, a reference index, was created
using the software ‘kmeans’ function. Thereafter, the clustering function is performed using
the proposed hardware k-means clustering system with the same initial centroids, and
whether the output index of our system matches the reference index is checked. To obtain an
average error, 1000 clustering operations are performed per dataset by different conditions.

Figure 13a shows the resulting graph in which the average error (in percentage) gener-
ated by the proposed system depends on the number of bit discretization levels. The 5-bit
resolution of the input data was sufficient for a simple Iris dataset, but the inclusion of
more attributes and classes in the dataset increases the bit resolution required for accurate
calculations.
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(a) (b)

Figure 13. (a) Clustering accuracy for different datasets; (b) clustering execution time of the proposed
approximate K-means clustering hardware.

It is worth noting here that the required accuracy level depends on the target applica-
tion. If the target system allows only 1% of total clustering errors, 8-bit resolution is required
for the Seeds dataset and 11-bit resolution seems to be fine for the Ecoli dataset. One of
the important properties found in the accuracy graph is that the number of bit resolutions
required does not strongly depend on the number of instances, classes and attributes of
the dataset. Rather than these attributes, it is important how small incremental numbers
should be mapped to 1 LSB when converting the floating-point number of input data into
binary data. However, it does not necessarily mean that high-resolution systems always
consume more power. This is because, if the amount and period of the current pulses
of the proposed distance computation core are properly adjusted, an input with high bit
resolution could be processed with little or only a slight increase in current consumed by
the system.

Lastly, we will explain that the estimated execution time of the proposed approximate
clustering hardware depends on (1) the number of instances in the dataset and (2) the
number of attributes per instance. The proposed system executes a single clustering
operation for each input instance based on the timing diagram in Figure 10b. This implies
that the total clustering time varies linearly depending on the number of instances of each
dataset. However, the execution time of a single clustering operation becomes a function of
(1) the number of attributes of each input instance and (2) the number of bit-discretization
levels. The graph in Figure 13b shows that the estimated single clustering time varies
according to the two factors mentioned above. Note that areas with the same color have
equal clustering times.

As shown in the figure, if the input data have a combination of two factors within
region A (white area), the system completes the clustering operation within (4 ns + α)
time, where α represents the delay contribution from the LTA unit. Here, the LTA delay is
determined by the number of clusters (‘k’) of the dataset, and the delay can be calculated
as 1 ns × log2(k). For example, if there are four clusters (k = 4) in a particular dataset,
the delay contribution of the LTA becomes 2 ns, which leads to 6 ns of total clustering time,
as shown in Figure 10b.

However, if a combination of the number of attributes and the bit-discretization level
falls within region B, the system may or may not need additional time to complete clustering.
The reason behind this interesting property lies in the unique characteristic of the proposed
system, in which the multiplication output of the proposed distance calculation core is
expressed as a voltage level. This means that if a given process technology allows a higher
VDD level (e.g., analog VDD, typically 2–3 times higher than a nominal VDD voltage), our
system can internally accommodate more distance computation units (or more approximate
multipliers) that the output is represented and added in terms of the voltage level. This
allows a given system to calculate the distance without additional computation time. On the
other hand, if no additional voltage headroom is allowed in a particular process technology,
the input vector should be divided into different ‘n’ groups and distance calculations need
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to be repeated using the proposed system for each group. This makes the total computation
time of n × (4 ns) + α, which is proportional to the change in the two variables.

6.5. Energy Analysis

Let us now consider the average energy consumption involved in K-means cluster-
ing. For the particular Iris dataset being considered in this work, three clusters and four
dimensions per vector result in twelve multipliers, digital comparators and subtractors
for the corresponding hardware implementation. Additionally, a bias circuit and LTA
units are required. The average energy consumption of the entire circuit during a single
K-means clustering operation (duration: 6 ns) was estimated to be ∼3.15 pJ. As described
earlier in this section, a baseline digital CMOS implementation (with the same input bit
discretization) was synthesized using the same process technology. Compared to the syn-
thesized digital CMOS baseline, our approach can potentially achieve ∼2.3× lower energy
consumption. We also estimated the energy benefit of the proposed design using different
datasets, such as Seeds [23] (three clusters, seven dimensions) and Ecoli [23] (eight clusters,
eight dimensions). Figure 14a summarizes the total energy consumption and improvement
for each dataset. The energy consumed by each component of the proposed design and the
CMOS baseline are depicted in Figure 14b,c, respectively. Although the multiplier energy
consumption is still the dominant component, it is almost reduced by half in comparison to
the CMOS baseline.

Figure 14. (a) Comparison of the energy consumption of the proposed distance computing unit with
respect to digital CMOS technology; (b) energy consumption of each component of the proposed
design; (c) component-wise energy comparison with digital CMOS implementation.

Additionally, Table 1 provides a comparison of the proposed approach with previous
work based on analog [18,19], mixed-signal [17] and digital [21,22] implementations for
similar applications based on the same distance metric. Even though the target application
of [18,21,22] and [17] are nearest neighbor search and associative memory, respectively,
the baseline operation is quite similar. Since the power, search time, and energy con-
sumption of the system is dependent on the data size, the corresponding numbers of our
proposed scheme were evaluated for each set of data dimensions in the analog and digital
implementations (mentioned in braces for the power, time, and energy entries in Table 1.
It is worth noting here that although our approach consumes more power than some
competitors, the search time is significantly shortened, resulting in lower resultant energy
consumption.
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Table 1. Performance comparison.

Analog Analog Mixed Digital Digital This Work
[19] [18] [17] [21] [22] (Mixed)

Application Clustering Nearest
Neighbor

Associative
Memory

Nearest
Neighbor

Nearest
Neighbor Clustering

Dist. Metric L1/L22 L1/L22 L1 L22 L22 L1/L22

Technology 130 nm 180 nm 180 nm 180 nm 180 nm 45 nm

Data size
(Centroids/
Dimensions)

4/8 3/4 8 bits 32 words 32/8 32/8 3/4

VDD 3 V 1.8 V 1.8 V 1.8 V 1.8 V 1.0 V

Power
(Estimated)

15 uW
(1.26) mW

0.22 mW
(0.52) mW <5.53 mW 5.02 mW

(9.57) mW
13.5 mW
(9.57) mW 0.52 mW

Search Time
(Estimated) 250 us (6 ns) 143 ns (6 ns) <7.29 ns <23 ns (9 ns) 3.99 us (9 ns) 6 ns

Energy
(Estimated) 3.75 nJ (7.6 pJ) 31.46 pJ

(3.15 pJ) <72.5 pJ <115.4 pJ
(86.1 pJ) 53.9 nJ (86.1 pJ) 3.15 pJ

7. Conclusions

This work describes a novel mixed-signal approach to distance computation between
two input vectors. The design principle is based on the simple concept of charge stored
on a capacitor due to an input current. While conventional digital designs tend to be fast
and power hungry, analog designs are slower and prone to PVT changes. The approximate
K-means clustering circuit was designed using IBM 45 nm SOI technology and verified
through SPICE simulations. MATLAB was used for pre- and post-processing of data.
The proposed approximate mixed-signal computing unit offers the advantage of resiliency
to PVT changes and performs distance computation with high throughput and low energy,
thereby resulting in an energy-efficient design that can potentially be utilized for low-power
signal processing tasks. Finally, we envision that the limited scope of application based on
the proposed approximate K-means clustering system could be resolved through future
works targeting interdisciplinary studies on neural networks and K-means clustering, as
shown in recent research [30,31].
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