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Abstract: Path planning is one of the key technologies for unmanned driving of underground
intelligent vehicles. Due to the complexity of the drift environment and the vehicle structure, some
improvements should be made to adapt to underground mining conditions. This paper proposes a
path planning method based on an improved RRT* (Rapidly-Exploring Random Tree Star) algorithm
for solving the problem of path planning for underground intelligent vehicles based on articulated
structure and drift environment conditions. The kinematics of underground intelligent vehicles are
realized by vectorized map and dynamic constraints. The RRT* algorithm is selected for improvement,
including dynamic step size, steering angle constraints, and optimal tree reconnection. The simulation
case study proves the effectiveness of the algorithm, with a lower path length, lower node count, and
100% steering angle efficiency.

Keywords: underground intelligent vehicles; path planning; RRT* algorithm; articulated vehicles;
unmanned driving

1. Introduction

In recent years, major mining groups have increased their investment in intelligent
mining, and the mining industry is gradually entering the era of being remote, smart,
and unmanned [1–5]. Intelligent vehicles are the most important pieces of equipment for
intelligent mining with unmanned driving. Path planning is one of the key technologies
for autonomous driving of intelligent unmanned vehicles. A reasonable path planning
algorithm helps vehicles optimize the running trajectory, avoid obstacles according to
the environment, and realize safe and efficient driving. The intelligent vehicles include
drilling rigs, charging jumbo, load–haul–dump (LHD), trucks, scaling jumbo, and bolting
jumbo, etc., the goal of which is to achieve intelligent mining processes by autonomous
positioning, autonomous navigation, autonomous driving, and autonomous operation.
These underground intelligent vehicles are shown in Figure 1.

The path planning of underground intelligent vehicles is one of the branches of
research of unmanned ground vehicles (UGV) and unmanned aerial vehicles (UAV). With
the advancement of technology, they have been widely used in the fields of logistics,
transportation, disaster relief, etc., [6,7]. The research into UGV automatic driving in
underground mining can be traced back to the 1960s [8,9]. The USA, Canada, Sweden, etc.,
have researched the remote control of vehicles, but due to the limitations of communications
and sensors, the application progress was slow. With the technological revolution, such
as the Internet of Things (IoT) and machine learning, unmanned mining operation has
become a research hotspot in the mining field again. The European Union (EU) initiated
the “Robominers” project to develop bionic robots for underground mining operations in
harsh environments [10]. Rio Tinto launched the “Mine of the Future” program, which
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aims to remote control more than 10 mines in Pilbara from Perth to realize unmanned
mining operations [11]. The Swedish Mining Automation Group (SMAG) also proposed
a plan to lead the automation upgrading of the mining industry [12]. The main research
interest in this paper is the path planning of underground intelligent vehicles. Based on the
known environmental map, starting point, and target, we use the path planning algorithm
to obtain an appropriate path that accords with mining operation and vehicle kinematics.
More generally, we research global path planning algorithms.

Electronics 2022, 11, x FOR PEER REVIEW 2 of 20 
 

 

 

Figure 1. Underground intelligent vehicles. 

The path planning of underground intelligent vehicles is one of the branches of re-

search of unmanned ground vehicles (UGV) and unmanned aerial vehicles (UAV). With 

the advancement of technology, they have been widely used in the fields of logistics, 

transportation, disaster relief, etc., [6,7]. The research into UGV automatic driving in un-

derground mining can be traced back to the 1960s [8,9]. The USA, Canada, Sweden, etc., 

have researched the remote control of vehicles, but due to the limitations of communica-

tions and sensors, the application progress was slow. With the technological revolution, 

such as the Internet of Things (IoT) and machine learning, unmanned mining operation 

has become a research hotspot in the mining field again. The European Union (EU) initi-

ated the “Robominers” project to develop bionic robots for underground mining opera-

tions in harsh environments [10]. Rio Tinto launched the “Mine of the Future” program, 

which aims to remote control more than 10 mines in Pilbara from Perth to realize un-

manned mining operations [11]. The Swedish Mining Automation Group (SMAG) also 

proposed a plan to lead the automation upgrading of the mining industry [12]. The main 

research interest in this paper is the path planning of underground intelligent vehicles. 

Based on the known environmental map, starting point, and target, we use the path plan-

ning algorithm to obtain an appropriate path that accords with mining operation and ve-

hicle kinematics. More generally, we research global path planning algorithms. 

In addition to the characteristics of common UGVs, the control of underground ve-

hicles has strong industry specificity, which leads to more complicated path planning. 

First, the mechanical structure of the underground vehicles is more complicated, which is 

different from the common four-wheeled UGVs on the ground and UAVs in the air [13]. 

Thus, the underground vehicles are more difficult to control from kinematics and need a 

defined path. Second, compared to roads on the ground, the underground space is narrow 

and curved, with many irregular surfaces. Path planning for underground vehicles needs 

to focus more on passing narrow points and turns. Finally, there is no GPS underground, 

and the communication is worse than that on the ground. The path is required to be rela-

tively simple, which reduces the control commands. Above all, the path planning method 

for UAVs or UGVs will not totally accord with that of underground vehicles. Therefore, 

it is necessary to upgrade the existing path planning method to adapt to underground 

intelligent vehicles. 

RRT* is a sampling-based algorithm with probabilistic and complete resolution, high 

speed, and smooth results. For the 2D finite space of underground vehicles, it has a higher 

probability to create a path through narrow points and turns, which is closer to the 

Figure 1. Underground intelligent vehicles.

In addition to the characteristics of common UGVs, the control of underground ve-
hicles has strong industry specificity, which leads to more complicated path planning.
First, the mechanical structure of the underground vehicles is more complicated, which is
different from the common four-wheeled UGVs on the ground and UAVs in the air [13].
Thus, the underground vehicles are more difficult to control from kinematics and need a
defined path. Second, compared to roads on the ground, the underground space is narrow
and curved, with many irregular surfaces. Path planning for underground vehicles needs
to focus more on passing narrow points and turns. Finally, there is no GPS underground,
and the communication is worse than that on the ground. The path is required to be rela-
tively simple, which reduces the control commands. Above all, the path planning method
for UAVs or UGVs will not totally accord with that of underground vehicles. Therefore,
it is necessary to upgrade the existing path planning method to adapt to underground
intelligent vehicles.

RRT* is a sampling-based algorithm with probabilistic and complete resolution, high
speed, and smooth results. For the 2D finite space of underground vehicles, it has a
higher probability to create a path through narrow points and turns, which is closer to
the underground requirements. Therefore, the RRT* algorithm was selected as the basic
algorithm in this paper. With the aim of intelligent mining operation, by considering
the kinematics of the intelligent vehicles and the drift environment, three improvements
are proposed, including dynamic step size, steering angle constraints, and optimal tree
reconnection. The algorithm improves the effectiveness of obstacle avoidance and shortens
the distance while ensuring efficiency, which provides a feasible path planning method for
intelligent vehicles.

Overall, this paper proposes a path planning method based on an improved RRT*
algorithm to solve the problem of path planning for underground intelligent vehicles under
articulated structures and drift environment conditions. Fully considering the environ-
mental and equipment characteristics of underground mines is also an important feature.



Electronics 2022, 11, 294 3 of 18

The remainder of this paper is organized as follows. In Section 2, the related works are
reviewed and the necessary preliminaries of intelligent mining are presented. In Section 3,
the constraints of intelligent mining are formulated, including the drift environment formu-
lation and the kinematics of vehicles. In Section 4, the process of the classic RRT* algorithm
is analyzed and three improvement measures are proposed to adapt to underground in-
telligent vehicles. In Section 5, the case study by simulation method is presented, and the
results are discussed. In Section 6, the paper is concluded.

2. Related Works
2.1. Underground Intelligent Vehicles

Autonomous vehicle driving is one of the key technologies of intelligent mining, and
its main sensors and operating modes are shown in Figure 2. The intelligent vehicles collect
their states and environmental information by laser lidar, inertial measurement unit (IMU),
camera, RFID, and other sensors and calculate their current position and state by using edge
computing. Then, they interact with cloud computing through wireless communication to
obtain driving paths and complete the current driving process.
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Intelligent vehicles for underground mining can be divided into either an integral type
or an articulated type according to their structure. The integral type has the advantage of a
simple structure but has the disadvantage of often having insufficient power. It is mainly
used in pick-up trucks, small LHDs, and other small vehicles. The articulated type has
the advantages of a small steering radius and sufficient power and is more suitable for the
narrow environment of underground mining [14]. Therefore, it is widely used in heavy
equipment such as underground large LHDs, trucks, and jumbos. Articulated vehicles
are more suitable in underground mines [13]. However, articulated vehicles have more
complex structures than four-wheeled cars. For these reasons, articulated vehicles were
selected as the main research object of this paper.
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Large vehicles have a higher production capacity, but increasing the size of the drift
increases the development cost. The size of the drift is often selected to meet the minimum
specifications for vehicles, which put forward strict requirements for the running trajectory
of vehicles. Therefore, the core of path planning for intelligent vehicles is to coordinate the
environment of the drift and the kinematics of vehicles to obtain an optimal path trajectory
that guides the vehicles to drive autonomously.

2.2. Path Planning Methods

Based on high-precision positioning and unmanned driving technology, many un-
manned equipment path planning algorithms have been studied, which are mainly divided
into artificial potential field methods, graph search algorithms, and sampling-based algo-
rithms. The artificial potential field, proposed by Khatib, is a virtual force method, which
makes the equipment subject to the repulsive forces from obstacles and gravity and from the
target at the same time [15–18]. This method is simple to calculate, and the obtained path is
safe and smooth, but it easily falls into a local optimal solution. The graph search algorithm
converts the map for path planning into a graph and obtains the optimal path through
graph theory, including the Dijkstra algorithm, A* algorithm, etc. [19–24]. This method
takes into account both efficiency and completeness, but the map needs to be rasterized to
complete the graph conversion, resulting in poor path smoothness. The sampling-based
algorithm narrows the search space by discrete sampling in a continuous space. It is a
Monte Carlo method with uniform space, including the Probabilistic Road Map Method
(PRM), Rapid Random Extended Tree Method (RRT), etc. [25–29]. It has the advantages of
fast search speed and simple environment modeling, but it cannot obtain a global optimal
solution, and its efficiency is greatly affected by its step size and sampling mode.

The RRT algorithm [30] was proposed by Lavalle et al. in 1998. It is a random
sampling algorithm that uses incremental growth to achieve rapid search in non-convex
high-dimensional spaces. The RRT algorithm does not need to rasterize the search space
and has the advantage of high search space coverage. It is suitable for dealing with scenes
containing obstacles and motion constraints. Therefore, it is widely used in path planning
for intelligent devices. The RRT algorithm is a Monte Carlo method. It usually takes the
starting point as the root node and generates a random extended tree through random
sampling. When the child node reaches the target area, the sampling is completed, and a
feasible path is obtained.

The sampling of the RRT algorithm is random, and the generated path is a feasible
path rather than an optimal path. Therefore, a variety of improved methods are derived.
The RRT* algorithm [31] was improved based on the RRT algorithm, and the goal is to
improve the performance of the RRT algorithm in order to ascertain the optimal path. The
RRT* algorithm continuously optimizes the path during the search process by reselecting
the parent node and rerouting. With the increase in iterations, the obtained path gradually
approaches the optimal path.

There is relatively little research on path planning in underground mining, and cur-
rently it is mainly focused on underground disaster relief, surveying, and mapping. Ma
et al. [32] proposed a path planning method considering gas concentration distributions.
The global working path for a coal mine robot was planned based on the Dijkstra algorithm
and the ant colony algorithm, then local path adjustments were carried out. The research
object was coal mine robots, and the scene was disaster relief. Mauricio [33] proposed
a strategy of exploration and mapping for multi-robot systems in underground mines
where toxic gas concentrations are unknown. The principal algorithm was behavior control.
Papachristos et al. [34] considered the challenge of autonomous navigation, exploration,
and mapping in underground mines using aerial robots, and proposed an optimized mul-
timodal sensor fusion approach combined with a local environment morphology-aware
exploration path planning strategy. The research objects were four-rotor drones, and the
scene was underground surveying and mapping. Gamache et al. [35] set up a shortest-path
algorithm for solving the fleet management problem in underground mines with considera-
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tion for dispatching, routing, and scheduling vehicles. The solution approach was based on
a shortest-path algorithm. They considered all single-lane bi-directional road segments of
the haulage network. The research focused more on mining scheduling than vehicle path
planning. The solution provided the direction of the vehicle at an intersection, rather than
the trajectory of a single device. It can be considered as a form of cooperative scheduling,
which relates to the upper-level control of intelligent vehicles. Larsson [36] developed a new
flexible infrastructure-less guidance system for autonomous tramming of center-articulated
underground mining vehicles. The results showed that it was capable of autonomous
navigation in tunnel-like environments. However, the process of path planning was not
described. Tian [37] presented a novel strategy for autonomous graph-based exploration
path planning in subterranean environments. Yuan [38] focused more on path planning
and an obstacle avoidance mechanism under the complex geological conditions of a coal
mine. Dang [39] presented a novel strategy for autonomous graph-based exploration path
planning in subterranean environments. Song [40] considered both the distance of the path
and some hybrid costs to obtain a global path. Bai [41] proposed a multisensor data fusion
algorithm based on genetic algorithm optimization of the variably structured fuzzy neural
network. Ma [42] improved both the distance function and the selection of child nodes.
The feature of this paper is the full consideration of the environment with a vectorized map
and the articulated kinematics of underground mines. A comparison between some typical
underground mine path planning studies is shown in Table 1.

Table 1. Comparation of typical underground mine path planning research.

Research Algorithms Scenarios Path Type Map Type Equipment

[32] Dijkstra,
Ant colony Rescue Global Rasterized Mine robots

[33] Scanning
algorithms

Dangerous
environment
in coal mines

Local Real-time
sensing

Multi-robot
systems

[34]

Optimized
multimodal

sensor fusion
approach

Navigation,
mapping Navigation Real-time

sensing Aerial robots

[35] Enumeration
algorithm Production Global Topological Underground

vehicles

[36]
Feature

detection
algorithm

Production Navigation Real-time
sensing

Underground
articulated

vehicles

[37]
Artificial
potential

field
Rescue Global Rasterized Mine robots

and UAVs

[38] A* algorithm Production Global and
local Rasterized

Underground
four-wheeled

vehicles

[39]

Graph-based
exploration

path
planning

Exploration,
mapping

Global and
local

Real-time
sensing UAVs

[40] Ant colony
algorithm

Not
mentioned Global Rasterized Mine robots

[41] Genetic
algorithm Rescue Navigation Real-time

sensing
Rescue snake

robot

[42] D* algorithm Not
mentioned Global Rasterized Mine robots

This
paper

Improved
RRT*

algorithm
Production Global Vectorized

Underground
articulated

vehicles
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3. Constraints Formulation

Autonomously driven underground intelligent vehicles initiate a process of interac-
tion between the underground environment and the vehicle. Before path planning, it is
necessary to establish the environment, vehicle features, and interaction constraints.

3.1. Drift Environment Formulation

Drifts are the main environments for underground intelligent vehicles. These intel-
ligent vehicles start at the stope filled with ore, drive through the drifts, then reach the
orepass, and offload the ore. The point cloud is a common method for intelligent mine
environmental modeling, which is generated by laser scanners [43]. Figure 3 shows the
point cloud data obtained through SLAM, which is a typical drift environment. A typical
design profile of a drift is shown in Figure 4 [44]. Where vehicles are required to travel
through drifts, the vehicle cross-section will fix the dimensions of the opening. Under-
ground intelligent vehicles do not make vertical movements, so it is possible to process 3D
point cloud data into a 2D map by extracting the waistline and then converting the map
into a graph for the path planning algorithm.
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This paper uses the vectorized method instead of the common rasterization method as
the map preprocessing method. The drifts are narrow and long with complicated surfaces.
In the process of rasterization, the grid size has a great influence. Large-size grids cannot
express the small edges and corners of the drifts well, resulting in a lack of detailed map
information, and collisions during driving of the vehicles. Small grids lead to large total
grids, which result in calculations being carried out in increments and a reduction in
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efficiency. Therefore, the rasterization method has certain limitations in processing the drift
environment. A vectorized map can effectively improve these shortcomings. It expresses
map information such as points, lines, and areas by recording coordinates. The points are
represented by the north coordinate and east coordinate. The lines are represented by a
series of ordered coordinates. The surfaces are represented by a series of ordered and closed
coordinates. We recorded the coordinates of the scattered points on the map boundary
through dense interpolation and connected them to form lines. The dataset included
coordinate points, lines, and polygons, named as Polygonmap in the following. The effect
comparison between the rasterized map and vectorized map is shown in Figure 5. The
rasterized map used a 22 × 41 matrix, and the dataset was 26.4 kb, as shown in Figure 5a.
The vectorized map included 17 points, 17 lines, and 1 polygon. The dataset was 0.9 kb,
as shown in Figure 5b. The vectorized map has great advantages in map refinement and
data size.
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3.2. Kinematics of Vehicles

Intelligent vehicle path planning needs to consider the kinematics to realize steering
and obstacle avoidance. Articulated vehicles are considered in this paper, which are
composed of a front body and rear body, and the vehicle bodies are connected through
the articulated points. Articulated vehicles in underground mines are usually rear-wheel
drives, and the steering is completed by controlling the relative position between the front
and rear bodies through the expansion and contraction of the steering cylinders. Non-
articulated vehicles can be abstracted as articulated vehicles with a rear body length of 0 to
achieve the universality of this article. Assuming that the tire and the ground have pure
rolling friction, the movement process of the vehicles can be simplified to rigid body plane
movement, as shown in Figure 6.
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In order to describe the position of the vehicle, the kinematics formula needs to be
established. We established a Cartesian coordinate system for articulated vehicles. We
set the instantaneous steering center as PC(xC, yC), the axle center of the front body as
Pf

(
x f , y f

)
, the axle center of the rear body as Pr(xr, yr), the articulated point as PO(xO, yO),

the front and rear linear velocities as v f and vr, respectively, the headings as θ f and θr, the
radius of the front and rear body as R f and Rr, respectively, the steering angle as γ, and
the angular velocity as ωγ. Then the kinematics model of the articulated vehicles can be
described as follows [45].

.
xr.
yr.
θ f.
γ f

 =


cosθ f
sinθ f

sinγ
R f cosγ+Rr

0

v f +


0
0
Rr

R f cosγ+Rr

1

ωr (1)

Then, the position equation of the vehicles can be derived to avoid collision with drifts
or obstacles; that is, the collision detection should be performed on the geometric shape of
the vehicles, drifts, and obstacles. The Oriented Bounding Box (OBB) method was used to
transform each entity into multiple bounding boxes in different directions for intersection
testing. On the premise of authenticity, it is assumed that the front and rear bodies of the
articulated vehicles are two rectangles, the width is w, and the length of the front and rear
bodies are l f and lr, respectively, as shown in Figure 7.
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Figure 7. The geometric movement state of vehicles.

The OBB of the articulated vehicles (Polygoncar) can be represented by polygon
ABCDEFG. According to the geometric relationship, the coordinates of each point of
Polygoncar can be expressed as the formulas

xA = xo − lrcosθr +
wsinθr

2
(2)

yA = yo − lrsinθr −
wcosθr

2
(3)

xB = xo − lrcosθr −
wsinθr

2
(4)

yB = yo − lrsinθr +
wcosθr

2
(5)
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xC = xo −
wsinθr

2
(6)

yC = yo +
wcosθr

2
(7)

xD = xo −
wsinθ f

2
(8)

yD = yo +
wcosθ f

2
(9)

xE = xo + l f cosθ f −
wsinθ f

2
(10)

yE = yo + l f sinθ f +
wcosθ f

2
(11)

xF = xo + l f cosθ f +
wsinθ f

2
(12)

yF = yo + l f sinθ f −
wcosθ f

2
(13)

xG =
wcosθ f

2cosθr−wcosθ f cosθr
2−wcosθ f sinθr

2+wcosθrsinθ f
2

2(cosθ f sinθr−cosθrsinθ f )

+
xocosθ f sinθr−xocosθrsinθ f

(cosθ f sinθr−cosθrsinθ f )

(14)

The collision can be detected by the intersection area between the map and the OBB of
vehicles. If the vehicle is just within the feasible area of the map, it can be defined as no
collision. We constructed the collision detection formula of the vehicle according to the
Polygonmap and Polygoncar, as shown in Formula (15).

Collision =


1, ∅ < Polygonmap ∩ Polygoncar < Polygoncar
1, Polygonmap ∩ Polygoncar = ∅
0, Polygonmap ∩ Polygoncar = Polygoncar

(15)

4. Improved RRT* Algorithm for Intelligent Vehicles

The RRT* algorithm has great advantages in search efficiency and search quality and
has been successfully applied in unmanned vehicle driving, UAV navigation, etc.

For underground mines, the application of the RRT* algorithm must consider the
following aspects:

(1) The underground drift is long and narrow, and the available area of the entire map is
small. The RRT* algorithm uses fixed-step full-map sampling, which results in low
sampling efficiency in the scene of the drift map;

(2) Drifts are usually constructed by a drilling and blasting method, and their surface
will inevitably be irregular. As a result, the map of drifts cannot be as smooth as a
regular road map, which will affect the smoothness of the solution path;

(3) Underground vehicles are usually large in size, and the steering radius should be
strictly controlled during their driving. Due to the randomness of the expansion, the
RRT* algorithm cannot guarantee a path that meets the steering radius of the vehicles.

Aiming to adopt the use of intelligent vehicles in underground mines, this paper
makes the following improvements to the RRT* algorithm:

(1) Dynamic step size

The classic RTT* algorithm adopts a fixed step size expansion strategy. When the step
size is small, the convergence speed is slow. When the step size is large, the vehicle easily
collides with the drift wall, causing sampling failure and indirectly affecting the solution
speed. The strategy of a fixed step size is: first, we randomly sampled xrand in the map;
secondly, we obtained its neighbor xnear; then, we connected xrand and xnear, and took the
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length of the StepSize from xnear to obtain the point xnew; if the collision detection was valid,
an expansion was completed. Collision detection with a fixed step has a higher probability
of failure. To solve this problem, a dynamic step size strategy was designed, and the step
size was taken as a dynamic random function of CollisionSize (the distance from xnear to
the collision point). When far from the obstacle, a larger step size was taken to ensure the
speed of convergence; when the obstacle was closer, a smaller step size was taken to ensure
the effectiveness of collision detection, as shown in Formula (16) and Figure 8.

DynamicSize =
{

StepSize Collision = false
CollisionSize×U[0, 1] Collision = true

(16)
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(2) Steering angle constraints

The steering process of vehicles is strictly constrained by the max steering angle β.
Therefore, during the sampling process of the RRT* algorithm, the angle θ between the new
path and the parent path should be less than β, as shown in Formula (17) and Figure 9.

θ =
∣∣∣ .
γ f

∣∣∣ = arccos

 −−−−−−−→xparentxnear ·
−−−−−−−→xnearxnew∣∣∣∣−−−−−−−→xparentxnear

∣∣∣∣∣∣∣∣−−−−−−−→xnearxnew

∣∣∣∣
 ≤ β (17)
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(3) Optimal tree reconnection

The classic RRT* algorithm uses random sampling, so the obtained path usually has
certain turns, which lead to the deceleration of vehicles. Therefore, unnecessary turns
should be avoided to lead the vehicles to drive straight. This will reduce the control diffi-
culty of unmanned driving while reducing the path distance. The optimal tree reconnection
process is as follows: we straightened and optimized the feasible path when the RRT*
algorithm found a solution; we continuously traversed from the root node to the child
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node; we searched for the child nodes that were directly connected without obstacles; we
connected the two nodes and deleted the intermediate nodes. This process turned the path
into a curve by reducing the number of nodes, as shown in Figures 10 and 11.
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Algorithm 1 Improved RRT* Algorithm

Input: xstart, xgoal , Map
Output: A path T from xstart to xgoal

1 T.initalize();
2 for i = 1 to n do
3 while true do
4 xrand←Sample(Map);
5 xnear←Near(xrand, T);
6 DynamicSize←CollisionCheck(xnear, Map);
7 xnew←Steer(xrand,xnear,DynamicSize);
8 if CollisionFree(xnew, Map) and Turnable(xnew, xnear, xparent) then
9 break;
10 end
11 end
12 Xnear_neighbours←NearNeighbour(xnew, T)
13 foreach xnear_neighbour ∈ Xnear_neighbours do
14 Test_dis←Cost(xnew) + Distance(xnew, xnear_neighbour)
15 if CollisionFree(xnew, xnear_neighbour, Map) and Test_dis < Cost(xnear_neighbour) then
16 xparent←Parent(xnear_neighbour);
17 Update(T);
18 end
19 end
20 if xnew = xgoal then
21 T←OptimalTreeReconnection(T);
22 success();
23 end
24 end

5. Simulation Analysis
5.1. Simulation Environment

In order to verify the adaptability of the improved RRT* algorithm, the classic RRT,
the classic RRT*, and the improved RRT* algorithms are simulated and verified in the
underground ore transportation scenario. The parameters of the vehicles come from the
Scooptram ST3.5 diesel LHD, as shown in Figure 12 and Table 2. The verification map
comes from a large underground mine in China, as shown in Figure 13a. The design size of
the drifts was 4.4 m × 3.9 m. The ore is transported by an LHD from Stope #1 to Orepass
#1. The map was preprocessed, and only the route of the LHD was retained. The simplified
map is shown in Figure 13b.
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Table 2. Parameters of the Scooptram ST3.5 diesel LHD.

Parameter Value

Max steering angle 42.5◦

Width 2120 mm
Front body length 4130 mm
Rear body length 4330 mm

Data Source: Epiroc official website.
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Figure 13. The map of the case study. (a) The original map; (b) the simplified map.

The case study simulated the operation process of the LHD from the stope to the
orepass and verified the algorithm’s ability to plan a feasible path in a long and narrow
space. The LHD is required to complete ore transportation with the minimum distance
under safe conditions and kinematic constraints. The simulation process was developed
with Python 3.7, the operating system was Windows 10 × 64 bit, the CPU was Intel Core
i7-8550U, and the memory was 16 GB. The simulation environment included Scipy 1.6.2,
Shapely 1.8.0, and Matplotlib 3.3.4. Scipy was used to create the formulas. Shapely was
used to calculate the OBB of vehicles and map polygons. Matplotlib was used to show
the path.
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5.2. Simulation Results

Comparative simulation experiments of the classic RRT algorithm, classic RRT* al-
gorithm, and improved RRT* algorithm were carried out, and the results are shown in
Figure 14. The red “X” represents the starting point and end point of the path planning, the
blue line represents the wall of the drifts, and the horizontal and vertical axes represent
the east and north coordinates. The yellow line represents the result of the classic RRT
algorithm, the green line represents the result of the classic RRT* algorithm, and the red
line represents the result of the improved RRT* algorithm.
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Figure 14. The simulation results.

It can be seen from Figure 13 that the path generated by the classic RTT algorithm had
robust randomness, and there were a lot of irregular corners, such as Circle 1 and Circle 2.
In contrast, the smoothness of the path generated by the classic RRT* algorithm was greatly
improved, but the steering angle at the bend of the drift was too sharp, which was not
suitable for the steering angle of the vehicles, such as Circle 2 and Circle 3.

Ten independent random simulations were performed on each algorithm to offset the
random deviation of a single experiment. The results are shown in Table 3. The average
path length obtained by the improved RRT* algorithm was much lower than that of the
classic RRT algorithm but had only a small reduction compared with the classic RRT*
algorithm. The main reason is that the reconnection in the classic RRT* algorithm can
quickly approach the theoretically shortest time. The improved RRT* algorithm inherited
this feature, and there was no more room for improvement. For the average search time,
the performance of the improved RRT* algorithm was between the classic RRT algorithm
and the classic RTT* algorithm. The same reason also led to the increment in average
search nodes. Due to the optimal tree reconnection, the improved RRT* algorithm had
a significant advantage over the classic algorithm in terms of average path nodes. This
parameter reduced the control points during vehicle driving and reduced the difficulty
of automatic driving. The steering angle constraints made the improved RRT* algorithm
result fully meet the steering requirements, and the optimal tree reconnection increased
the smoothness of the path, so the device can directly follow the path without further
adjustment, avoiding multiple calculations. In general, the improved RRT* algorithm
greatly improved the quality of the path while appropriately sacrificing the solution speed.
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Table 3. Statistics of 10 independent random simulations.

Parameters Classic RRT Classic RRT* Improved RRT*

Average path length (m) 211.11 189.86 189.54
Average search time (s) 168.94 44.16 86.12

Average of search node count 561.60 267.30 360.00
Average of path node count 32.00 28.80 16.20

Effective ratio of steering angle 81.87% 92.71% 100.00%

Obstacles in underground drifts are common, such as faulty vehicles and stacked
materials. Further verification was conducted with known obstacles, as shown in Figure 15.
Two scenarios were considered with both avoidable obstacles and unavoidable obstacles
in the drift. The red line represents the final result, the yellow line represents the invalid
leaf of a random tree, and the blue point represents the obstacle. For avoidable obstacles,
the algorithm could pass them using a smooth curve without more additional sampling
being necessary. For unavoidable obstacles, the algorithm stopped sampling after a certain
number of samples.
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The kidnapping problem of intelligent vehicles might occur due to navigation failure
or other reasons. For the verification of the kidnapping problem, we assumed that the
vehicle planned to reach point B from point A but reached point B’ for kidnapping reasons.
Two scenarios were considered with both turnable kidnapping and unturnable kidnapping
for the vehicle, as shown in Figure 16. For turnable kidnapping, it will reach the front point
of the original path by the maximum steering angle. For unturnable kidnapping, it will
drive astern to the back point of the original path by the maximum steering angle.
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5.3. Discussion

With the aim of the unmanned driving of intelligent vehicles in underground mines,
we improved the path planning algorithm to adapt to the complex drift environment
based on the RRT* algorithm. Many existing algorithms have to rasterize the map, but
rasterized maps are not suitable for the drift environment. We constructed a vectorized
drift environment map and then selected the RRT* algorithm to improve it. The vectorized
map can effectively restore the details of the roadway environment and can also reduce
the dataset. Combined with the articulated structure of underground intelligent vehicles,
the dynamic characteristics were analyzed, and then the constraints were constructed. It
strengthened the consideration of complex vehicle structures in this field. The process of
the classical RRT* algorithm was analyzed, and then its shortcomings in adaptability to
underground mining were extracted. On this basis, three improvements were proposed:
a dynamic step size solved the algorithm efficiency problem; steering angle constraints
solved the vehicle dynamics problem; optimal tree reconnection solved the control difficulty
problem. By way of a simulation case study, the improved RRT* algorithm obtained a path
suitable for underground intelligent vehicles within a reasonable time. Its results increased
the effective ratio of the steering angle to 100%, fully met the vehicle’s requirements,
eliminated the secondary optimization of the path, greatly reduced the average number
of path nodes, and simplified the vehicle’s automatic driving control. Many existing
algorithms have to rasterize the map.

However, we must admit that in order to achieve the path planning effect, a large num-
ber of invalid samples were discarded, which led to an increase in calculation time. This
algorithm can improve the sampling efficiency and shorten the calculation time through
parallel calculation. This will be improved in future research to further reduce the calcula-
tion time. In addition, the simulation case study was completed in this paper, but no on-site
industrial experiment was carried out. The unmanned driving design of underground
intelligent vehicles coordinates with multiple modules, including communication, sensors,
SLAM, mechanical control, etc. It is also necessary to shut down some mining operations
to ensure the safety of the experiment area. Due to these difficulties, this research only
completed the path planning algorithm module, and in the future, an on-site industrial
experiment will be completed after the preparation of each module.

6. Conclusions

This paper proposed a path planning method based on an improved RRT* algorithm
for solving the problem of path planning for underground intelligent vehicles on an ar-
ticulated structure and in drift environment conditions. Through a vectorized drift map
and using the kinematics of vehicles, the constraints of articulated underground intelli-
gent vehicles can be ascertained. The RRT* algorithm is an efficient sampling-based path
planning algorithm, but it cannot meet the constraints of articulated underground intelli-
gent vehicles. To solve this problem, this paper proposed an improved RRT* algorithm,
including dynamic step size, steering angle constraints, and optimal tree reconnection. A
simulation case study proved that the algorithm was effective and could solve the problem
of underground intelligent vehicle path planning.

However, the method in this paper still has limitations, and future research will focus
on the following aspects. (1) The solution time is still unsatisfactory because 86.12s cannot
meet the application requirement for underground unmanned driving. Vehicles need to
obtain a path within several seconds. A parallel calculation will be used to increase the
solution speed and further reduce the calculation time. (2) There is still no joint debugging
with intelligent vehicles. After the preparation of the industrial site, it will be combined
with other modules to complete on-site industrial experiments and test the gap between
the simulated and actual performance.
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