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Abstract: A deep learning approach for the efficient electromagnetic analysis of an on-chip inductor 

with dummy metal fillings (DMFs) is proposed. By comparing different activation functions and 

loss functions, a deep neural network for DMF modeling is built using a smooth maximum unit 

activation function and log-cosh loss function. The parasitic capacitive effect of DMFs is quickly and 

accurately extracted though this model, and the effective permittivity can be obtained subsequently. 

An on-chip inductor containing DMFs with different filling densities is analyzed using this pro-

posed method and compared with the electromagnetic simulation of entire structures. The results 

validate the accuracy and efficiency of this proposed method. 
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1. Introduction 

Chemical mechanical polishing (CMP), a key step in modern integrated circuit (IC) 

processes, allows for the homogenization and flattening of metal and dielectric thick-

nesses [1,2]. In order to meet the CMP process requirements and achieve a uniform metal 

density, it is necessary to fill the areas of lower metal density with additional dummy 

metal. However, DMFs introduce additional parasitic capacitances and resistances [3,4], 

which increase the coupling with the on-chip structures and degrade the chip perfor-

mance. The accurate modeling of the DMF effect using an electromagnetic (EM) solver 

can lead to the huge consumption of computational resources such as CPU time and 

memory requirements, which is unacceptable in IC designs. 

Typically, the effect of DMF is simulated through an equivalent circuit of on-chip 

passive components or by using numerical methods to equate the DMF to an effective 

dielectric constant to avoid the significant time and resources spent in calculating the 

DMF directly using EM simulation. In [5], the parasitic parameters of DMFs were ex-

tracted based on the measured data to construct an equivalent circuit, and then predict 

the inductor characteristics containing DMFs. In [6], the parasitic parameters of DMFs 

were extracted based on the PEEC modeling method [7], and then an equivalent circuit 

model was constructed for the analysis of the inductors containing DMFs. However, the 

method proposed in [5,6] was only applicable to a fixed metal filling density. In [8], on-

chip inductors containing DMFs were modeled by using a single π-circuit model, but the 

method used a simple formula to extract the parasitic capacitance of DMFs, and the model 

accuracy was low. In [9], the on-chip inductor containing DMFs was modeled by using a 

double-π circuit model, but this method requires a separate calculation of the S-parame-

ters of the inductor containing and not containing DMFs, which is a very tedious model-

ing process. A simple capacitance extraction formula was proposed in [10,11], but the for-

mula is only applicable for the signal line modeling. An empirical formula was proposed 

in [12], which is applicable to floating metal filling between flat plates, and the key 
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parameters of this empirical formula were obtained by least-squares fitting by the meas-

ured data, so this formula does not have good generality. 

In this work, a method for constructing an equivalent model containing DMFs using 

deep neural networks (DNNs) is proposed. By comparing the performance of different 

activation and loss functions, the smooth maximum unit (SMU) activation function and 

log-cosh loss function are used in the proposed method, because this combination per-

forms better than the traditional Rectified Linear Unit (Relu) [13] activation function and 

mean squared error (MSE) [14] loss function. After constructing a DNN capacitance ex-

traction model containing DMF (DNN-DMF model), the capacitance increments intro-

duced by different densities of DMFs can be quickly and accurately evaluated, and then 

DMFs can be equated to the effective permittivity of the surrounding medium, which can 

get rid of the time-consuming dummy simulation while ensuring accuracy. This equiva-

lent modeling method is only related to the filling density of DMFs and can be applied to 

IC simulation, e.g., inductors containing DMFs. Finally, the effectiveness of the proposed 

modeling approach is verified using full-wave calculations of inductors containing DMFs 

and is compared with the single-π circuit modeling approach in [8]. 

2. Neural Network Equivalent Model 

2.1. Equivalent Relative Permittivity 

As shown in Figure 1, if the metal dummy fill is located at layers M2, M3 and M4, the 

permittivity of the corresponding layered dielectric medium can be replaced by an effec-

tive permittivity, and the influence of the metal fill is contained in the effective permittiv-

ity. 

         Substrate      Substrate

M1

M2

M3

M4

e1 

e2 

e3 

e4 

M1 e1 

e2,eff 

e3,eff 

e4,eff 

Original Technology Transformed Technology

 

Figure 1. Conversion of metal filling into equivalent relative permittivity. 

The effective relative permittivity can be obtained by calculating the capacitance val-

ues before and after the virtual metal filling [15]: 

��,��� =
���

�����

∙ ��,��� (1)

where ��,��� is the effective relative permittivity, ��,��� is the relative permittivity of the 

surrounding inter-layer dielectric (ILD), ��� is the unit cell capacitance with metal fill 

and �����  is the unit cell capacitance without metal fill. 

2.2. Equivalent Flat Capacitance Model with DMFs 

If the capacitance with and without (multilayer-) DMF is calculated according to the 

actual structure of IC, and then obtains the overall equivalent permittivity, it is not uni-

versal because if the structure changes, the capacitance needs to be recalculated. The ef-

fective permittivity is calculated layer by layer. For each DMF layer, a flat capacitor is 

added to cover the DMF region. Since the additional parasitic capacitance is introduced 

by the DMFs, the incremental capacitance can be calculated equivalently using a flat 
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capacitor containing the same DMF process. After evaluating the effective permittivity, 

the simulation of the IC devices can be simulated without containing the geometry of 

DMFs, and thus the simulation is very highly efficient. 

A schematic diagram for constructing an equivalent flat capacitor model based on 

the original inductor containing DMFs is shown in Figure 2. The equivalent flat capacitor 

covers the DMFs with the original surrounding interlayer dielectric. The length and width 

of the top and bottom metal plates equal the total length and width of the DMF array. 

 

Figure 2. Schematic diagram of the equivalent flat capacitor model, with the original inductor con-

taining DMFs on the left and the equivalent flat capacitance containing the same DMF process on 

the right. 

2.3. Construction of DNN Capacitance Extraction Model Containing DMF (DNN-DMF Model) 

Figure 3 shows the flow chart of the DNN-DMF training model. A flat capacitor 

model is built for each DMF layer. After building the parameterized DMF structures, some 

typical DMFs with the sampling filling density are chosen, and the capacitance with the 

DMFs is calculated. The calculated capacitance with the corresponding filling density of 

DMFs and the original permittivity are the training and testing data of the DNN. Once the 

DNN-DFM model is built, the capacitance for the different filling densities of the DMFs 

and the surrounding permittivity is quickly obtained. Compared with the capacitance 

without DMF, the effective permittivity is evaluated using (1). 

Construction of a plate capacitance model containing DMFs

Parameter sweep to acquire training data

Building DNN equivalent capacitance extraction model

Building deep neural networks

Select the optimal activation function and loss function

Optimize model by Adam

Data normalization

 

Figure 3. Flow chart for building DNN capacitance extraction model containing DMF. 

2.3.1. Deep Neural Network Model 

In the DNN, the neurons are used as components of the neural network and the 

mathematical expression is: 

� = � �� ����

�

�

+ �� (2)
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where �� denotes the i-th element of the input matrix; �� represents the weight factor of 

the i-th element; � is the offset. 

The deep neural network model is made up of multiple layers of neurons connected 

in pairs between adjacent layers. The mathematical expression of a complete neural net-

work can be expressed as: 

� = ���� ⋯ ������(��� + ��)� + ��� ⋯ + ��� (3)

where � represents the activation function, which can introduce nonlinear factors into neu-

rons and be used to fit various nonlinear models, � denotes the geometric parameters of 

the DMF layer (inputs to the neural network) and � denotes the corresponding capacitance 

value of the equivalent flat capacitor model containing DMF (outputs to the neural net-

work). In the field of deep learning, the Relu function is the mostly used activation function 

due to its simplicity and good convergence. However, the output of Relu is not zero cen-

tered, and it is easy to have neuron death failure during the training process. As the recently 

proposed activation functions, the ELU [16], Mish [17] and SMU [18] activation functions 

have some advantages in modeling. The definitions of these functions are shown in (4)–(7). 

���(�) = �
�� − 1, � < 0

�, � ≥ 0
 (4)

���ℎ(�) = � ∙ tanh ���(1 + ��)� (5)

���(�, ��; �) =
(1 + �)� + (1 − �)� ∙ ���(�(1 − �)�)

2
 (6)

In the expression of SMU, � and � can be hyperparameters or trainable parameters, 

and in this paper we set � and � as 0.01 and 2.5, respectively. ���  is the Gaussian error 

function defined as follows: 

���(�) =
2

√�
� ����

��
�

�

 (7)

In this work, the Relu, ELU, Mish and SMU activation functions are used for the 

training of DNN-DMF equivalent flat capacitance models, and the performance of these 

activation functions will be compared later. 

2.3.2. Loss Function and Optimization Algorithm 

The role of the loss function is to calculate the difference between the forward calcu-

lation result of each iteration of the neural network and the true value to guide the next 

training step in the right direction, and it will also be used to check the accuracy of the 

model. As a widely used loss function, the MSE function is applied to many general re-

gression problems [19]. However, because MSE squares the error, it will aggravate the 

error of outlier samples and lead to the slow or even non-convergence of the model. The 

loss function of the log-cosh type is another loss function applied in regression problems, 

which is smoother than MSE. This function combines the advantages of MSE and mean 

absolute error (MAE), reduces the sensitivity to outliers, and enhances the robustness of 

the neural network model to outliers. The log-cosh loss function is defined as follows: 

�(�, ��) = � log�cosh���
�

− ����

�

���

 (8)

where � is the actual value; �� is the predicted value. In training the DNN-DMFs model, 

� represents the real capacitance in the dataset and �� represents the capacitance obtained 

from the DNN-DMFs model. 

Next, the loss function is minimized using the Adam [20] optimization algorithm, 

and the training error of the loss function is reduced by continuously adjusting the weight 
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factors and offsets in the neural network with the loss function as the objective function 

during the optimization process to improve the accuracy of the network model. 

2.3.3. Training DNN-DMF Model 

A parametric flat capacitance model containing DMFs is established as shown in Fig-

ure 4, where WD denotes the width of each filler metal, SD denotes the spacing between 

the adjacent filler metals, TD denotes the thickness of the filler metals and Tox denotes the 

distance between the filler metals and the upper and lower flat plates. The aforementioned 

four geometric parameters of DMF will be swept to provide the training data of the DNN-

DMF model, and the scanning range of geometric parameters is shown in Table 1. After 

training the DNN-DMF model, the corresponding capacitance increments introduced by 

DMFs can be quickly obtained by inputting any geometric parameter in the range of Table 

1, and then the DMFs’ effect can be equated to the increase in surrounding permittivity. 

As these four geometrical parameters are swept in Table 1, the testing final error can be 

guaranteed if the DMFs do not exceed the parameter range. Although the DNN can pre-

dict the EM parameters even outside the range of the geometrical training data, the testing 

final error is not guaranteed. In other words, this model is able to apply the DMF distri-

bution if the WD, SD, TD and Tox are from 1 μm to 5 μm. The model may be invalid if the 

DMF distribution exceeds the training range or the IC technology changes, e.g., the die-

lectric layer changes or the number of dummy layers increases. Under these circum-

stances, the model requires to be re-established. 

WD

SD
TD

Tox

 

Figure 4. Parametric flat capacitance model with DMFs. 

Table 1. Sweep Parameters. 

Input Parameters Starting Value End Value Step 

WD(μm) 1 5 1 

SD(μm) 1 5 1 

TD(μm) 1 5 1 

Tox(μm) 1 5 1 

The actual convergence performance of the DNN-DMF model using different com-

binations of the activation and loss functions is compared in Table 2. In this table, the final 

test loss is set as the criterion of convergence. As can be seen from Table 2, for different 

activation functions, the log-cosh loss function always achieves a smaller test loss com-

pared with the MSE. That is because the log-cosh loss is smoother than the MSE, and it 

will decrease the sensitivity to the outliers and consequently enhance the robustness of 

the neural network to the outliers. Moreover, among the listed activation functions, only 

the SMU activation function has two adjustable hyperparameters α and μ. These two hy-

perparameters provide flexibility to fit the DNN-DMF problem more easily (α = 0.01 and 
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μ = 2.5 in this problem). As a result, even using the same log-cosh loss function, the SMU 

activation function performs better than the other three functions, and can satisfy the error 

threshold of 1 × 10��. 

Table 2. Comparison of the convergence of different activation functions and loss functions when 

training DNN equivalent flat capacitance models containing DMFs. 

Test Loss MSE Log-Cosh 

Relu 9.04 × 10�� 2.49 × 10�� 

ELU 5.09 × 10�� 1.14 × 10�� 

Mish 9.98 × 10�� 3.06 × 10�� 

SMU 4.84 × 10�� 8.81 × 10�� 

3. Validation of DNN Equivalent Model 

The capacitance increments introduced by DMFs with different filling densities can 

be quickly obtained using the DNN-DMF model so that the DFM can be equated to an 

increase in the permittivity of the surrounding dielectric layer to avoid EM calculations 

for DMFs. In Figure 5, on-chip inductors containing different DMF densities are calculated 

using the equivalent permittivity method based on the DNN-DMF model, and a single π-

circuit model is constructed as shown in Figure 6, and then the effectiveness of both meth-

ods is verified using EM simulations. In this example, the geometric parameters are as the 

following: ind equals 20 μm, w equals 2 μm and d equals 2 μm. The spacing between the 

DMFs layer and the on-chip inductor metal layer, i.e., Tox, is equal to 1 μm. The DMF layer 

thickness TD is equal to 1.5 μm. When the dummy width and spacing (i.e., WD and SD) 

change and make the metal filling densities 20%, 50% and 80%, the ratio of capacitance 

values (���/�����) for the three metal filling densities is shown in Table 3, and the param-

eters of the lumped device for the single-π circuit model are shown in Table 4, where for 

the capacitance of the oxide layer containing DMF we use Equation (4) in [9]. In calcula-

tion, the effect of the crosstalk capacitance Cs is negligible [21]. 

 

Figure 5. Top view of an inductor containing DMFs. 

 

Figure 6. Single π circuit model. 
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Table 3. The ratio of capacitance before and after metal filling for different metal filling densities. 

Metal Filling Densities ���/����� 

20% 1.26 

50% 1.46 

80% 1.53 

Table 4. Parameters of lumped devices for single π-circuit model at different DMF densities. 

Metal Filling Densities Rs(Ω) Ls(pH) Rsub(Ω) Csub(pF) Cox(fF) 

20% 37.62 1.17 36.57 2.5 12.9 

50% 32.29 1.08 30.51 2.66 19.35 

80% 38.24 1.18 37.32 2.48 26.57 

20% (Triple DMF) 37.62 1.17 36.57 2.5 4.3 

Figure 7 gives the side view of the inductor filling one DMF layer. The capacitance 

increment introduced by the DMF can be easily obtained using the DNN-DMF model, 

and once the capacitance increment has been determined the DMF can be equated to the 

effective permittivity using (1). The S-parameters (S21) and inductance values of the on-

chip inductors with 20%, 50% and 80% DMF densities calculated by the effective permit-

tivity method based on the DNN-DMF model and the single π circuit model equivalent 

method were verified using direct EM simulations of the complete structure containing 

DMFs, as shown in Figure 8, Figure 9 and Figure 10, respectively. It can be seen that the 

results obtained using the equivalent permittivity method based on the DNN-DMF model 

are very close to those obtained using direct EM simulations, but the single-π equivalent 

circuit model has a large error. This may because the capacitance Cox introduced by the 

DMF is calculated using a simple numerical formula, and the mutual coupling between 

the DMF layers is not considered in the equivalent circuit model. 

 

Figure 7. Side view of an inductor containing only one layer of DMFs. 

  
(a) (b) 

Figure 8. S-parameters (S21) and inductance values for a metal filling density of 20%; (a) shows S-

parameters (S21) and (b) shows inductance values. 
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(a) (b) 

Figure 9. S-parameters (S21) and inductance values for a metal filling density of 50%; (a) shows S-

parameters (S21) and (b) shows inductance values. 

  
(a) (b) 

Figure 10. S-parameters (S21) and inductance values for a metal filling density of 80%; (a) shows S-

parameters (S21) and (b) shows inductance values. 

Moreover, the inductor containing three layers of DMFs with a 20% fill density, as 

shown in Figure 11, was analyzed, and the accuracy of the DNN-DMF model was verified, 

with a large error in the same single π equivalent circuit model method. The S-parameters 

(S21) and inductance values for two methods are shown in Figure 12. 

 

Figure 11. Side view of an inductor containing three layers of DMFs. 
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(a) (b) 

Figure 12. S-parameters (S21) and inductance with three layers of DMFs and a metal filling density 

of 20%; (a) shows S-parameters (S21) and (b) shows inductance values. 

In Table 5, the computation cost listed in the DNN-DMF model does not include the 

deep learning process. To train the DNN-DMF model, it takes about 43 min and occupies 

the memory of 1.4 MB. It is observed that the training time is less than the EM simulation 

except in case 3 in the table. Moreover, the trained DNN-DMF model can be applied to a 

category of DMF problems, e.g., cases 1 to 3 are not required to be re-trained. After build-

ing the DNN-DMF model, it takes about 3 s to obtain the effective dielectric constant, and 

the total computation cost including the EM simulation using the effective dielectric con-

stant is compared with the full structure EM simulation in Table 5. To further improve the 

accuracy of the DNN-DMF model, the simplest and most effective way is to increase the 

number of training sets by increasing the scan parameters, which can further improve the 

convergence of the model, but this will also increase the training time of the DNN-DMF 

model. In addition, the development of better performance activation and loss functions 

is also an effective way of improving the accuracy of the DNN model. 

Table 5. Comparison of the efficiency of the EM simulation and the method proposed in this paper. 

Method 
Number of Lay-

ers of DMFs 

Metal Filling 

Density 
Time Memory 

EM Simulation 1 20% 54 min 306 M 

DNN-DMFs 1 20% 73 s 77.5 M 

EM Simulation 1 50% 78 min 678 M 

DNN-DMFs 1 50% 59 s 77.1 M 

EM Simulation 1 80% 28 min 378 M 

DNN-DMFs 1 80% 79 s 76.9 M 

EM Simulation 3 20% 118 min 497 M 

DNN-DMFs 3 20% 72 s 77.6 M 

4. Conclusions 

In this work, the deep learning network is applied to the EM analysis of on-chip in-

ductors containing DMFs. A DNN-DMF model considering the dummy effect of the ef-

fective dielectric constant is proposed to approach the EM simulation, and get rid of the 

time-consuming dummy simulation. Different activation and loss functions were com-

pared to obtain better accuracy of the DNN-DMF model, and it was found that the com-

bination of the SMU activation function and log-cosh loss function performs best in the 

accuracy of capacitance evaluation. Using the DNN-DMF model and the further derived 

effective dielectric constant, the S-parameters and inductance of the on-chip inductor con-

taining DMF can be efficiently calculated. Some examples of inductors containing 
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different DMF filling densities and numbers of layers were given to validate the accuracy 

and efficiency of the proposed method. 
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