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Abstract: Multi-agent reinforcement learning (MARL) aims to study the behavior of multiple agents
in a shared environment. Existing communication-based MARL methods seldom consider the
case of communication interference. However, such situations are not rare in real-world inter-agent
communication. The majority of previous MARL methods struggle to design effective communication
techniques for better cooperation between agents without considering communication reliability or
channel capacity constraints. In addition, these models are typically not ready to be extended to large-
scale multi-agent systems. To address these issues, in this paper, we propose a method named the
Attentional CommUnicaTion FramEwork (ACUTE), which enables efficient communication between
agents in a dynamic environment and improves the effectiveness of decision-making by using the
most useful information from other agents. Specifically, we introduce an attention mechanism for
the feature extraction of information during communication which determines the importance of
messages received by agents. We evaluate the performance of our approach under different channel
capacity constraints. Experimental results show that our model can efficiently exploit messages
transmitted in unreliable channels for higher returns when compared to existing methods and can be
applied to large-scale multi-agent systems.

Keywords: multi-agent reinforcement learning; partial communication; attention mechanism; large-
scale systems

1. Introduction

Multi-agent reinforcement learning (MARL) algorithm leverages reinforcement learn-
ing (RL) techniques to simultaneously train multiple agents in an interactive environment,
where each agent regards the other agents as part of the environment. MARL has been
applied successfully in many fields [1]. However, cooperation between agents is difficult
to learn due to the complexity and uncertainty of the learning process. The complexity of
MARL lies in the fact that each agent makes decisions that affect the environment differ-
ently. The difficulty is that each agent cannot know what the other agents are doing. This
uncertainty presents a significant challenge for cooperation between agents [2]. Moreover,
with an increase in the agents’ scale, it is increasingly difficult to manage the interactions
between all agents, because the number of possible interactions grows exponentially.

There are generally two learning paradigms widely adopted in early MARL studies.
One is independent learning (IL), which allows each agent to learn its own strategy in-
dependently and has achieved good performance in some cooperative tasks. However,
it ignores the connection between agents and aggravates non-stationary learning [3,4],
leading to poor performance in some adversarial tasks [5]. Well-known methods in this
category include IQL (independent Q-learning) [6] and IPPO (independent PPO) [7]. The
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second learning paradigm is centralized learning, which considers the multi-agent system
as a single system and solves the non-stationary issue of the environment. However, it
implicitly assumes global communication and cannot be applied in scenarios with local
communication and large-scale state-action space.

The current mainstream MARL algorithms typically solve the above issues by making
a trade-off between fully independent and centered paradigms, which can be roughly
categorized into collaboration-based MARL learning and communication-based learning.
Specifically, the former usually belongs to the centralized training decentralized execu-
tion [8] (CTDE) paradigm. CTDE strategies combine the ideas of multi-agent learning and
reinforcement learning, where agents have access to the global state during training and
rely only on their partial observations during execution. CTDE strategies have drawn signif-
icant attention from researchers and been regarded as a landmark in MARL studies. Some
representative CTDE methods such as QMIX [9], MADDPG [10], and MAPPO [11] have
achieved considerable success in many MARL scenarios. The CTDE strategy can partially
alleviate the environmental non-stationarity problem through centralized training. How-
ever, collaboration between the agents is still tricky because each agent can only obtain its
local observation in the execution stage [12]. To solve this problem, many researchers have
proposed communication-based multi-agent reinforcement learning methods to enable
information sharing between agents during execution.

Although some communication-based approaches such as CommNet [13] and ATOC [14]
explicitly leverage information interaction in the execution stage and achieve empirical
success in the laboratory environment, they pay little attention to the unreliability of the
channel and bandwidth limitation factor in reality. However, in many MARL applications,
especially UAV swarms (unmanned aerial vehicle), these issues have to be considered. UAV
swarms are widely used in modern combat [15] and are known for their large-scale number,
low individual production cost, and resistance to communication interference. Inspired by
this, we aim to study a multi-agent communication paradigm under the above constraints
that can help UAV swarms efficiently accomplish global awareness and decision-making
by their limited communication capabilities under interference.

In this paper, we build a model for the communication between agents with unreliable
channels and bandwidth constraints and develop a communication mechanism between
agents in this scenario, termed Attentional CommUnicaTion FramEwork (ACUTE). Specif-
ically, the agents send messages to other agents by broadcasting, and the communication
message is in the form of discrete values. Only a random fraction of the agents can receive
this message, and the information that each agent can receive in each round of commu-
nication is limited by the maximum capacity of a fixed channel. In addition, we assume
a dynamical environment where the number of agents varies over time. To handle this
challenging setting, we design a generalizable message feature encoder module, which re-
ceives broadcast messages from a variable number of other agents and outputs a fixed-size
encoded message. An attention mechanism is introduced to excavate the most important
information. As a result, the encoder can extract features from the messages randomly
received by each agent and efficiently leverage the useful information for decision-making,
which is formulated as a part of the input of the action selector. Meanwhile, each agent
broadcasts the encoding obtained by a local observation module to other agents that are
able to receive the message. The features from the message feature encoder module and the
local observation encoder module constitute the complete input of the action selector, which
can be learned by the deep Q-learning or an actor-critic-based approach. Our approach is
trained and tested in some scenarios in ma-gym [16] and LBF [17,18]. We also tested the
model’s performance in the above scenarios in the case of large-scale multi-agents and the
effect of channel capacity size on the cooperative performance of the agents.

In summary, the contributions of our work can be summarized as follows:

1. To the best of our knowledge, we are among the first attempts to model partial com-
munication scenarios for MARL under unreliable channels and bandwidth constraints,
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which is easy to measure the level of communication interference and apply to various
multi-agent environments without complex modifications to the environment.

2. To address these issues, we propose an attentional communication framework which
efficiently extracts useful features from the randomly received messages for decision-
making with unstable channels.

3. Extensive experimental results in various environments show that our approach
achieves better performance than existing MARL algorithms and can be extended to
large-scale multi-agent systems.

The remainder of this paper is organized as follows: In Section 2, we introduce the
related work about communication-based MARL algorithms. In Section 3, our approach,
i.e., ACUTE, is described in detail. In Section 4, we compare the performance of ACUTE
and other algorithms under various settings and make a conclusion in Section 5.

2. Related Work

The study of communication-based MARL algorithms is an active area in MARL.
Communication channels can be divided into two types: discrete-based and continuous-
based channels. The discrete channel model treats a message as an action generated by the
policy network. As a result, the action space is expanded, and a few actions are specifically
designed for communication. In contrast, in a continuous channel, the message generated
by an agent is used directly as an input to another agent’s network, rather than simply
generating an action of communication, so that the gradients flow can go through agents
via the communication channel [14].

The first communication mechanism introduced in MADRL (multi-agent deep rein-
forcement learning) is DIAL [19], which integrates the learning of communication and
policy in deep Q-networks and enables gradients to flow across agents in continuous com-
munication channel, increasing the agent’s perception of the environment, which alleviates
the problem of a non-stationary environment better than IQL. However, the communication
model of DIAL is too simple and can only select predefined messages (usually a real value)
to be transmitted. Its performance is limited by the small amount of information to be
transmitted, which makes it only capable of solving a few simple tasks. The bandwidth for
communication is significantly wasted compared to the cost of establishing the connection
in application.

CommNet is the first communication model for transmitting information based on a
continuum channel where information is delivered by broadcasting following the CTCE
framework, and the algorithm receives local observations of all agents as input and then
outputs the decisions of all agents. However, it is poorly scalable because it is only a
massive single feed-forward network for all agents. It performs poorly in environments
with many agents because the number of interactions between agents grows exponentially
as the number of agents increases. Moreover, the fully connected communication topology
is not applicable in many application scenarios, such as unreliable communication channels.

The attention mechanism is a way to focus on a few key pieces of information by filter-
ing them from massive information. Many successful applications have been developed in
computer vision [20,21], natural language processing [22], and reinforcement learning [23].

MAAC [24] shares an attention module among centrally computed critics and uses
attention to select relevant information to estimate critics, which is scalable and more
effective in complex multi-intelligent systems. Nevertheless, centrally trained critic makes
it difficult to expand to larger multi-agent systems.

ATOC expects the agent to learn the communication model, i.e., the agent itself
decides at any moment whether it needs to communicate with other agents and with which
agents. It introduces an attention mechanism to build its communication model where
the agent uses its local observations to decide whether it needs to initiate communication
with other agents within its field of view and with which agents. The topology of this
communication method for communicating with neighbors is a tree topology [25], and this
neighboring structure effectively reduces the communication cost and makes it easier to
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be applied to large-scale MARL systems. However, ATOC only simulates the situation of
limited communication bandwidth by a simple policy to select up to m agents to join the
communication group, and it only considers the case of channel reliability. In addition,
being a CTDE framework algorithm also makes it difficult to extend to scenarios where the
number of agents is significant.

Mean field [26] receives the mean action of neighboring agents to help make the
decision, and it is suitable for making algorithms scale to many agents. However, some
important information that contributes to cooperative decision-making is lost in the av-
eraging procedure. Similar to DIAL, it also has the problem of wasting communication
bandwidth because only the action information of the agent is delivered in each timestep.

POOL [27] solves the large-scale multi-agent coordination problem by introducing a
pheromone communication framework in reinforcement learning and using the pheromone
mechanism in the ant colony algorithm to transfer information between agents. However,
it is difficult for real-world agents to leave information in the environment. Therefore, the
application of POOL is restricted.

Generally, existing communication-based approaches focus on designing efficient com-
munication protocols to achieve SOTA performance in ideal experimental environments.
However, they ignore the unreliable channel and bandwidth limitations in real-world sce-
narios and the wastage of channel resources caused by transmitting only little information
per communication. In addition, the centralized training fashion makes these methods
difficult to be trained on large-scale multi-agent systems. Our work is the first attempt
towards a partially communicable MARL scenario, and the level of interference of the
communication is easily measurable.

3. Background
3.1. Decentralized-Partially Observable Markov Decision Process (DEC-POMDP)

The problem that our framework tries to solve can be formulated as a DEC-POMDP [8]
game, which is a partially observable multi-agent extension of the Markov decision process.
It can be defined by a tuple I ,S , {Ai},P , {Ri}, {Ωi},O, T , γ >, where

• I is a finite set of N agents;
• S is a set of states;
• Ai is a set of available actions for agent i;
• Ωi is a set of observations for agent i;
• T is the time horizon for the game;
• Ri is the reward function for agent i, and γ is the discount factor for individual

rewards;
• P(s′ | s, a) denotes the probability that agents took actions a in state s transitioning to

state s′;
• O(o | s, a) denotes the probability of agents obtaining the observations o.

3.2. Deep Q-Networks (DQN)

Q-learning [28] is one of the classic value-based methods in reinforcement learning,
and DQN extends it with neural networks, which have promoted the development of RL
and achieved success in many areas such as Atari Games [29] and Go [30]. Specifically, for
an agent i at each timestep t, it receives the observation ωt ∈ Ω, chooses an action at ∈ A
according to the policy π, obtains a reward rt, and transitions to the next state st+1. The
objective is to maximize the total expected discounted reward Ri = ∑T

t=0 γtrt. DQN uses
neural networks to approximate the action-value function Qπ(s, a) = Es[Rt | st = s, at = a],
which can be recursively rewritten as

Qπ
i (ω, a) = Eω′

[
r(ω, a) + γEa′∼π

[
Qπ
(
ω′, a′

)]]
. (1)
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The optimal value can be obtained by minimizing the loss:

Li(θ) = Eω,a,r,ω′
[
(Qi(ω, a; θ)− y)2

]
, (2)

where y = r + γ maxa′ Qi(ω
′, a′; θ). DQN uses a replay buffer to store agent information

in each step and randomly extracts it from it to optimize the Q-network. To reduce over-
estimation, double-DQN [31] decomposes the max operation in the target into the action
Q-network and action Q-network.

4. Proposed Method

In this section, we introduce ACUTE in detail. We develop a concrete implementation
based on a value-based approach. However, it can also be combined with other MARL
algorithms. Generally, our method consists of three parts: an observation encoder, a
message feature encoder, and an action selector, which are depicted in the top-left, top-
right, and bottom-right parts of Figure 1, respectively. All agents share the same set of
parameters.
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Figure 1. Network architecture for agent i. The observation encoder on the left encodes observation
ωi to Msgi and broadcasts it. The right part shows how policy network receives the messages from
other agents and aggregates them with ωi by the multi-head attention unit.

Based on the IL framework, ACUTE does not require a global state st during the
training and execution phases.

4.1. Communication Framework

Considering unreliable channels and bandwidth limitations, we design a passive
communication model for this scenario. Specifically, the agent aims to receive as many
messages from other agents as possible to establish a more global environmental awareness,
thus achieving better synergy. In this way, the communication bandwidth can reach its
maximum efficiency. For the unreliable channel condition, we choose a passive approach to
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receive messages broadcast by other agents. Compared with peer-to-peer communication,
the broadcast–receive asynchronous communication model is well suited to the unreliable
channel conditions and can deliver information to as many agents as possible. For the com-
munication bandwidth constraints, the agent is restricted to receiving at most C messages
at each timestep. In our implementation, at each timestep t, we randomly pick the encoded
local observations yt

j = {yt
u1

, yt
u2

, . . . , yt
u3
}(uk 6= i, k ∈ [1..C]) of C agents for each agent i as

the input to the multi-head attention module.
Each agent i will receive a local observation ωt

i at timestep t. The observation encoder
takes the agent’s local observations ωt

i and self attribute attr(agenti) (including the agent
number, location, etc.) as input. It then passes through a linear layer l1(the MLP in an obser-
vation encoder) to obtain a compressed encoded observation message Msgt

i , which contains
the agent’s local observations and its attributes, denoted as Msgt

i = l1(ωt
i , attr(agenti)).

Then, we use \i to denote the set of all agents except i and index it with j (timestep t is omit-
ted below). Each agent i broadcasts its observation message Msgi and randomly receives
C (maximum channel capacity) encoded messages Msgj from other agents. Afterwards,
these messages are stored in their message memory Mi, which is initialized to a matrix of
C empty messages at the beginning of each timestep. All the messages stored in Mi will be
concatenated to the multi-head attention network. Figure 1 shows the overall framework
of ACUTE for each agent i.

In contrast to MeanField [26] and CommNet [13], which integrate the shared in-
formation of agents using the average action and arithmetic mean of their surrounding
neighbors, our attention module can efficiently find the information that promotes the
agents’ cooperation and integrate it into the inputs of the agents.

4.2. Attention Module

After receiving messages from adjacent agents, we expect the agent to explore useful
information from the messages adaptively. Intuitively, the agent will query the messages
for information relevant to its observations. One naive strategy to distinguish useful
information could be the adoption of some predefined rules, such as giving higher weights
to messages sent by close agents. However, this could be too poorly scalable. In this paper,
we encourage the agents to find which messages are relevant in a learnable way. To this end,
we introduce a multi-head attention mechanism in the message feature encoder module
and merge it into the estimation of the Q-value function. Attentional mechanisms can
be viewed as differentiable key–value memory models [21,32]. The attention module can
better find the relationship between its observations and the received disordered messages
than linear and convolutional layers [33].

During our work, we tried various input–output modes for the attention module and
chose the most effective one. Specifically, we used the self-attention mechanism, which
integrates the Msgj and Msgi (ignore t) to obtain a message matrix with C + 1 messages
size as the input of multi-headed self-attention module. It then flattens the output as the
input of the action selector. However, we empirically found that it is difficult to converge
in our case. We conjecture that the attention module needs to downscale the input to be
able to extract effective features of the aggregated messages. In addition, we employed a
residual structure which may also have an important impact on the model performance.

In our implementation, the attention module is implemented by the MLP. Concretely,
at each timestep t, the attention module receives two inputs: an observation xi = l2(ωi) of
the agent after a linear layer l2 transformation and C messages Msgj received randomly
from other agents. The output zi of the attention layer is a weighted sum of the messages
that agent i received:

zi = ∑
j∈u

αjvj = ∑
j∈u

αjh(Vyj). (3)

The attention weights αj are generated by the query–key–value system, where xi
is the “query” and yj is the “key” and “value”. By comparing the similarity of xi and
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each yj, passing these embeddings into softmax to obtain the weight of each message, all
“query”, “key”, and “value” are transformed by linear layers Wq, Wk, and Wv, respectively.
Moreover, they matched according to the dimensionality of these matrices. To perceive the
different input features, we use multiple attention heads [34]. Each head has a separate set
of parameters (Wq, Wk, Wv), and the outputs of all heads are concatenated together and
size-transformed by a matrix V. It will be added to the output xi of the linear layer l2 as the
input of the action selector. The residual connection avoids the gradient vanishing problem
and improves the convergence speed of the network during the training.

4.3. Training and Implementation Details

All agents are trained together in ACUTE by minimizing a joint regression loss function
due to shared parameters. Compared to DQN, ACUTE adds an attention module to the Q-
network to handle messages received from other agents. In addition to partial observation
of the current environment, our action selector receives messages that have been processed
through the attention module. For each agent i, the messages received by it are noted as
msgs, and we update the action-value function Q(ω, msgs, a; θ) as:

Li(θ) = Eω,msgs,a,r,ω′ ,msgs′
[
(Qi(ωi, msgsi, a; θ)− y)2

]
, (4)

where y = r + γ maxa′ Q̄i(ω
′, msgs′i, a′; θ′). The complete algorithm is presented in Al-

gorithm 1. Specifically, the algorithm consists of two parts: in the first part, each agent
encodes and broadcasts the local observations to other ones. In the second part, each agent
receives the messages from other ones and selects actions based on its local observations as
well as communication messages it received.

Algorithm 1 Deep Q-learning with ACUTE extension

Input: D:replay buffer; θ, θ′: current Q-network and target Q-network; Ne: number of
epochs; T:maximum timestep of one game episode; M: memory to store messages with
maximum C; Ncap: capacity for replay buffer

Output: Optimal parameters θ for the trained model
Initialize replay buffer D to capacity Ncap
Initialize messages memory for each agent i with all zero matrix of shape C ∗
size(message),
Initialize θ with random parameters, initialize θ′ = θ
for epoch e = 1 to Ne do

for step t = 1 to T do
obtain observation ωi and transform ωi into yi for each agent i
broadcast yi to all available agents for each agent i
randomly receive C messages and store in mi for each agent i
Select Action ai for each agent by ai = arg maxa Q(ωi, msgsi, a; θ)
Execute actions taken by agents and observe reward ri and next observation ω′i for
each agent i
Store transition (ωi, ai, ri, mi, ω′i , m′i) to D for each agent i

end for
Sample random mini-batch of transitions from D
Perform a gradient descent step on loss according to Equation (2) to update θ
Copy parameters from θ to θ′ per certain steps

end for

4.4. Limitations

However, some limitations should be noted. When the interference level of communi-
cation channel changes dynamically, ACUTE can only utilize a less efficient bandwidth as
it receives a determined number of messages at each timestep. For example, in t1 the agent
receives eight messages and in t2 it only receives three messages; our model can only set
up at the lower one, which means that five messages in t1 need to be discarded. Moreover,
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if the quality of the communication channel is good and the number of agents is extremely
large, then many messages are redundant because the agent simply expects to learn about
the information that it is interested in. We leave it to be solved in our future work.

5. Experiment

In this section, we separately set up experiments with two different task types of
environments: cooperation confrontation and purely cooperation. We test the specific
performance of ACUTE and the comparison with other methods. Besides we also show the
effect of communication channel capacity constraints on ACUTE capability.

5.1. Hyperparameters, Base Settings and Detailed Information of Environments

We use three-layer MLP to implement the double Q-Network in all the experiments
with Adam [35] optimizer and the hidden layer (second layer) has 64 units. It is also possible
to implement it with RNN [36], but there is no significant difference in performance in
our experiments. The implementation of two MARL algorithms, DQN and QMIX, and
the multi-process benchmark framework are referred to EPyMARL [37]. For MFQ, our
implementation refers to the open-source code provided by the authors. The deep learning
frameworks we use are Pytorch-1.12.0 and CUDA-11.6. The learning rate of the optimizer lr
is 5× 10−4. The discount factor of reward γ is 0.99. The capacity of the replay buffer is 5000,
and the batch size is 32. To accelerate the sampling, we employ eight processes at a time to
interact with the environment to obtain replay data. The agent chooses actions according
to the epsilon-greedy policy, with an epsilon starting value of 1 and a final value of 0.05
for 2 or 5 million steps. The detailed information of environments used in experiment is
shown in Table 1. For partially observable environments, the state size is the sum of the
size of the observation space for all agents.

Table 1. Detailed Information of Environments in Experiment.

Environment Observation
Space State Space Agent Amount Observation

Type

Combat 120 600 5 part
8 × 8-2p-2f 12 12 2 full

5s-19 × 19-8p-5f 78 1482 19 part
Switch 2 4 2 part

5.2. Cooperation Confrontation Task
5.2.1. Description of Combat Environment

We chose the “Combat” environment in ma-gym as a cooperation confrontation
scenario. Two opposing teams battle in a 15 × 15 grid as shown in Figure 2a, each team has
five agents, and their initial position are sampled uniformly around the team center in a
5 × 5 square around. Each timestep, an agent can move in one of the four directions (up,
down, left, and right) or attack the enemy within shooting range. After an attack, agents
need a cool-down time during which they cannot attack. Our model controls one of the
teams, and predefined rules control the other team. They attack the nearest enemy agent
at their attack range, and the agents in the team share the observation range. This visual
sharing setting provides an advantage to the team controlled by the rules. If a team of
agents loses the game or reaches the time limit, they will receive a −1 reward. In addition,
it receives a reward of −0.1 multiple, the sum of the enemy agents’ health to encourage
attacks on the enemy side. Each agent has a starting life value of 3 points, and it will die
when the life value is less than zero. When one team’s agents are killed within 40 timesteps,
the other team will win. Otherwise, it is a tie.
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(a) Combat environment (b) Result of combat environment 

Figure 2. Sample and experiment results in ma-gym: Combat.

5.2.2. Result of Experiment in Combat Environment

We compared three value-based methods in combat environments: ACUTE, MeanField-
Q (MFQ) [26], and IQL [6]. Figure 2b shows the results for each algorithm after 4 million
training steps. It is evident that ACUTE receives higher average rewards (blue line) than
the other two methods. As we can see, these three algorithms have similar performances in
the beginning. However, ACUTE relies on information sharing to obtain better results in
the end, which indicates that our framework can effectively exploit helpful information
from disordered messages.

We evaluate ACUTE and other methods by running 100 test episodes. The mean test
reward and win rate are illustrated in Table 2.

Table 2. Mean reward and win-rate per episode on ma-gym: Combat.

ACUTE MFQ IQL

mean reward −3.43 −5.12 −4.84
mean win rate 0.77 0.43 0.52

5.3. Pure Cooperation Task
5.3.1. Description of Level-Based Foraging Environment

Level-based foraging (LBF) environment is a mixed cooperative–competitive grid
game that focuses on the agents’ cooperation. Agents must navigate the environment
and collect food items randomly scattered in a grid world. In the beginning, each agent
is assigned a level, and each food item has its level. Agents can move in four directions
and attempt to collect food items placed next to them. Only when the sum of the levels of
the participating agents is equal to or greater than the level of the food item will the food
collection be successful. Finally, agents are awarded points equal to the level of the food
they helped collect divided by the sum of their levels.

LBF is a challenging environment, requiring the cooperation of multiple agents while
being competitive at the same time, and the discount factor also necessitates speed for the
maximization of rewards. Each agent is only awarded points if it participates in collecting
food, so it has to balance collecting low-level food on its own or cooperating in acquiring
higher rewards.

It is possible to customize some parameters of the environment to generate many
different tasks in LBF. Figure 3 illustrates the two settings of the LBF environment. We
define several distinct tasks with variable world size, number of agents, and number of
food items to evaluate our approach and other baseline algorithms.
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(a) 8x8-2p-2f (b) 19x19-8p-5f

Figure 3. Illustration of LBF environment: (a) 8 × 8 grid, 2 players, 2 food items (b) 19 × 19 grid, 8
players, 5 food items.

5.3.2. Description of Switch Environment

Switch environment is a grid world environment having two agents where each agent
wants to move their corresponding home location (marked in boxes outlined in the same
colors, as shown in Figure 4a). Agents must coordinate to pass through a narrow corridor
that only one agent can traverse at a time. They need to cooperate and not block each
others’ passages. When the agents reach their home zone, they will be rewarded. The game
ends when both agents have either reached their home state or have taken a maximum of
20 steps in the environment.

(a) Switch environment (b) Result of switch environment 

Figure 4. Sample and experiment result in ma-gym: Switch2-v0.

5.3.3. Cooperation Task on Reliable Channel

In order to show the effectiveness of communication in our method, we consider the
simplest case where there are only two agents in the 8x8 grid world, such as Figure 3a.
Two agents can send and receive messages from each other over a reliable channel. We
compare our model with the baseline IL algorithm DQN, MFQ with global information
that averages all agents’ actions, and the value-based baseline CTDE algorithm QMIX.

Figure 5 indicates that the attention module in ACUTE can efficiently extract more
effective information from the local observation of the agent than the average action in
MFQ, and the result is shown in Table 3. It performs even better than the value-based
CTDE method QMIX. This result suggests that communication between agents during
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execution is essential, and the more messages are exchanged, the more effective the resulting
decisions are.

Figure 5. Experiment result in lbforaging: 8 × 8-2p-2f.

Table 3. Mean reward per episode on lbforaging: 8 × 8-2p-2f.

ACUTE MFQ IQL QMIX

mean reward 0.83 0.57 0.35 0.56

Experiments in the Switch environment also confirmed this speculation. From Figure 4b,
it can be seen that ACUTE and MFQ can decide whether to give way by receiving a
message from another agent. ACUTE analyzes the message directly, while MFQ decides
its action based on the other side’s action. IQL is limited by the non-smoothness of the
algorithm, causing the model to converge slowly and the return value to fluctuate more.
The experimental results can be found in Table 4.

Table 4. Mean reward per episode on ma-gym: Switch2-v0.

ACUTE MFQ IQL

mean reward 2.31 2.23 2.05

5.3.4. Cooperation Task on Unreliable Channel

Section 5.3.3 describes the simplest case with two agents and no communication
interference channel. We extend it to tasks with large-scale agents cooperating under
different levels of interference to evaluate the impact of communication interference on
ACUTE. We also tested the performance of other value-based methods for this task (without
communication interference).

We select “5s-19 × 19-19p-9f” from LBF tasks. In this term, “5s” means that each agent
can only see 5 × 5 squares centered on itself. In this 19 × 19 size environment, there are
19 agents and 9 food items. For ACUTE, we set different interference levels: “ACUTE-3”
means that at each timestep, the agent will receive messages broadcast by any three of
the other agents, “ACUTE-6” means that at each timestep the agent will receive messages
broadcast by any six other agents, and so on. IQL does not require communication during
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training or execution for other value-based methods, so whether or not it interferes does not
affect its performance. MFQ collects the action of other agents to obtain the average action
as part of the input and does not consider communication interference, so the experiment
for MFQ is based on a reliable channel. Each algorithm was run for 2 million timesteps in
the environment. Figure 6 shows the performance of ACUTE-3, ACUTE-6, ACUTE-9, MFQ,
and IQL in this LBF task. Each set of experiments was run three times to better evaluate
these methods’ performance.

Figure 6. Experiment result in lbforaging: 5s-19 × 19-19p-9f.

Figure 6 shows that compared to the baseline IQL, which does not require com-
munication during training and execution, communication between agents can improve
decision-making. Intuitively, communication can extend an agent’s perceptual range and
assist its decisions based on those of other agents. MFQ approximates the effect of other
agents on the current agent by computing the average of the previous actions of other
agents. However, this estimate is rough, so the actual effect of MFQ is slightly better than
the baseline method IQL. The attention module in ACUTE can extract information relevant
to itself from the messages received by other agents. The experimental results on ACUTE-3,
ACUTE-6, and ACUTE-9 suggest that, over a range, the more information received, the
better the cooperation between agents. This is the reason why ACUTE-9 achieves the best
performance in the experiment. Experimental results are given in Table 5.

Table 5. Mean reward per episode on lbforaging: 5s-19 × 19-19p-9f.

Method Mean Reward

ACCUTE-3 0.67
ACCUTE-6 0.82
ACCUTE-9 0.96

IQL 0.61
MFQ 0.64

6. Conclusions and Future Work

In this paper, inspired by the real-world environment where the communication
between agents often suffers from interference, we conceive a simplified unreliable channel
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model and propose ACUTE, a framework for attentional communication between agents
to address multi-agent cooperation tasks in partially communicable scenarios. It integrates
reinforcement learning techniques and attention mechanisms that enable the agent to
distinguish features that are relevant to itself from randomly received messages. We
implement our framework based on Q-learning, but ACUTE can also be an extension of
other MARL algorithms. We evaluated ACUTE using different Q-learning-based algorithms
in several settings in ma-gym and LBF. The experimental results show that ACUTE can
fully utilize the information delivered in unreliable channels to obtain higher returns. In
addition, we tested the performance of ACUTE under different levels of interference and
found that the performance of ACUTE is inversely correlated with the interference level.
These results also confirm that the more information an agent receives, the better it can
perceive the state in the global environment. Particularly, our work will help improve global
environment awareness and decision-making effectiveness for individuals in large-scale
UAV swarms under different levels of communication interference.

In our future work, we will research how ACUTE can be combined with other in-
dependent MARL algorithms such as TD3 [38] and SAC [39] and how to improve their
performance in larger-scale multi-agent systems.
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1. Zhang, K.; Yang, Z.; Başar, T. Multi-agent reinforcement learning: A selective overview of theories and algorithms. In Handbook of

Reinforcement Learning and Control; Springer: Berlin/Heidelberg, Germany, 2021; pp. 321–384.
2. Guicheng, S.; Yang, W. Review on Dec-POMDP Model for MARL Algorithms. In Smart Communications, Intelligent Algorithms and

Interactive Methods; Springer: Berlin/Heidelberg, Germany, 2022; pp. 29–35.
3. Tan, M. Multi-Agent Reinforcement Learning: Independent versus Cooperative Agents. In Proceedings of the Tenth International

Conference on International Conference on Machine Learning; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1993;
pp. 330–337.

4. Foerster, J.; Farquhar, G.; Afouras, T.; Nardelli, N.; Whiteson, S. Counterfactual multi-agent policy gradients. In Proceedings of
the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2018; Volume 32.

5. He, H.; Boyd-Graber, J.; Kwok, K.; Daumé, H., III. Opponent modeling in deep reinforcement learning. In Proceedings of the
International Conference on Machine Learning, PMLR, New York, NY, USA, 20–22 June 2016; pp. 1804–1813.

6. Gupta, J.K.; Egorov, M.; Kochenderfer, M. Cooperative multi-agent control using deep reinforcement learning. In Proceedings of
the International Conference on Autonomous Agents and Multiagent Systems; Springer: Berlin/Heidelberg, Germany, 2017; pp. 66–83.

7. De Witt, C.S.; Gupta, T.; Makoviichuk, D.; Makoviychuk, V.; Torr, P.H.; Sun, M.; Whiteson, S. Is independent learning all you need
in the starcraft multi-agent challenge? arXiv 2020, arXiv:2011.09533.

8. Oliehoek, F.A.; Spaan, M.T.; Vlassis, N. Optimal and approximate Q-value functions for decentralized POMDPs. J. Artif. Intell.
Res. 2008, 32, 289–353. [CrossRef]

9. Rashid, T.; Samvelyan, M.; Schroeder, C.; Farquhar, G.; Foerster, J.; Whiteson, S. Qmix: Monotonic value function factorisation
for deep multi-agent reinforcement learning. In Proceedings of the International Conference on Machine Learning, PMLR,
Stockholm, Sweden, 10–15 July 2018; pp. 4295–4304.

10. Lowe, R.; Wu, Y.I.; Tamar, A.; Harb, J.; Pieter Abbeel, O.; Mordatch, I. Multi-agent actor-critic for mixed cooperative-competitive
environments. Adv. Neural Inf. Process. Syst. 2017, 30, 6379–6390.

11. Yu, C.; Velu, A.; Vinitsky, E.; Wang, Y.; Bayen, A.; Wu, Y. The surprising effectiveness of ppo in cooperative, multi-agent games.
arXiv 2021, arXiv:2103.01955.

12. Hernandez-Leal, P.; Kartal, B.; Taylor, M.E. A survey and critique of multiagent deep reinforcement learning. Auton. Agents-
Multi-Agent Syst. 2019, 33, 750–797 [CrossRef]

13. Sukhbaatar, S.; Fergus, R. Learning multiagent communication with backpropagation. Adv. Neural Inf. Process. Syst. 2016, 29,
2244–2252.

http://doi.org/10.1613/jair.2447
http://dx.doi.org/10.1007/s10458-019-09421-1


Electronics 2022, 11, 4204 14 of 14

14. Jiang, J.; Lu, Z. Learning attentional communication for multi-agent cooperation. Adv. Neural Inf. Process. Syst. 2018, 31,
7254–7264.

15. Bridley, R.; Pastor, S. Military Drone Swarms and the Options to Combat Them. Small Wars 2022. Available online: https:
//smallwarsjournal.com/jrnl/art/military-drone-swarms-and-options-combat-them (accessed on 7 December 2022).

16. Koul, A. Ma-Gym: Collection of Multi-Agent Environments Based on OpenAI Gym. 2019. Available online: https://github.com/
koulanurag/ma-gym (accessed on 7 December 2022).

17. Christianos, F.; Schäfer, L.; Albrecht, S. Shared experience actor-critic for multi-agent reinforcement learning. Adv. Neural Inf.
Process. Syst. 2020, 33, 10707–10717.

18. Papoudakis, G.; Christianos, F.; Schäfer, L.; Albrecht, S.V. Comparative evaluation of cooperative multi-agent deep reinforcement
learning algorithms. arXiv 2020, arXiv:2006.07869.

19. Foerster, J.; Assael, I.A.; De Freitas, N.; Whiteson, S. Learning to communicate with deep multi-agent reinforcement learning.
Adv. Neural Inf. Process. Syst. 2016, 29, 2137–2145.

20. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

21. Mnih, V.; Heess, N.; Graves, A.; Kavukcuoglu, K. Recurrent models of visual attention. Adv. Neural Inf. Process. Syst. 2014, 27,
2204–2212.

22. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473.
23. Fawzi, A.; Balog, M.; Huang, A.; Hubert, T.; Romera-Paredes, B.; Barekatain, M.; Novikov, A.; R Ruiz, F.J.; Schrittwieser, J.;

Swirszcz, G.; et al. Discovering faster matrix multiplication algorithms with reinforcement learning. Nature 2022, 610, 47–53.
[CrossRef] [PubMed]

24. Iqbal, S.; Sha, F. Actor-attention-critic for multi-agent reinforcement learning. In Proceedings of the International Conference on
Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 2961–2970.

25. Sheng, J.; Wang, X.; Jin, B.; Yan, J.; Li, W.; Chang, T.H.; Wang, J.; Zha, H. Learning structured communication for multi-agent
reinforcement learning. arXiv 2020, arXiv:2002.04235.

26. Yang, Y.; Luo, R.; Li, M.; Zhou, M.; Zhang, W.; Wang, J. Mean field multi-agent reinforcement learning. In Proceedings of the
International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 5571–5580.

27. Cao, Z.; Shi, M.; Zhao, Z.; Ma, X. PooL: Pheromone-inspired Communication Framework forLarge Scale Multi-Agent Reinforce-
ment Learning. arXiv 2022, arXiv:2202.09722.

28. Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
29. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]
30. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,

V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [CrossRef]
31. Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double q-learning. In Proceedings of the AAAI Conference

on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30.
32. Oh, J.; Chockalingam, V.; Lee, H. Control of memory, active perception, and action in minecraft. In Proceedings of the International

Conference on Machine Learning, PMLR, New York, NY, USA, 20–22 June 2016; pp. 2790–2799.
33. Ji, S.; Xie, Y.; Gao, H. A Mathematical View of Attention Models in Deep Learning; Texas A&M University: College Station, TX, USA,

2019. Available online: https://people.tamu.edu/sji/classes/attn.pdf (accessed on 16 August 2022).
34. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008.
35. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
36. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations

using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.
37. Papoudakis, G.; Christianos, F.; Schäfer, L.; Albrecht, S.V. Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms

in Cooperative Tasks. In Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks (NeurIPS); PMLR:
New York, NY, USA, 2021.

38. Fujimoto, S.; Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods. In Proceedings of the
International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 1587–1596.

39. Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.; Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; et al. Soft actor-critic
algorithms and applications. arXiv 2018, arXiv:1812.05905.

https://smallwarsjournal.com/jrnl/art/military-drone-swarms-and-options-combat-them
https://smallwarsjournal.com/jrnl/art/military-drone-swarms-and-options-combat-them
https://github.com/koulanurag/ma-gym
https://github.com/koulanurag/ma-gym
http://dx.doi.org/10.1038/s41586-022-05172-4
http://www.ncbi.nlm.nih.gov/pubmed/36198780
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature16961
https://people.tamu.edu/sji/classes/attn.pdf

	Introduction
	Related Work
	Background
	Decentralized-Partially Observable Markov Decision Process (DEC-POMDP)
	Deep Q-Networks (DQN)

	Proposed Method
	Communication Framework
	Attention Module
	Training and Implementation Details
	Limitations

	Experiment
	Hyperparameters, Base Settings and Detailed Information of Environments
	Cooperation Confrontation Task
	Description of Combat Environment
	Result of Experiment in Combat Environment

	Pure Cooperation Task
	Description of Level-Based Foraging Environment
	Description of Switch Environment
	Cooperation Task on Reliable Channel
	Cooperation Task on Unreliable Channel


	Conclusions and Future Work
	References

