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Abstract: The rapid development of Autonomous Vehicles (AVs) increases the requirement for the
accurate prediction of objects in the vicinity to guarantee safer journeys. For effectively predicting
objects, sensors such as Three-Dimensional Light Detection and Ranging (3D LiDAR) and cameras
can be used. The 3D LiDAR sensor captures the 3D shape of the object and produces point cloud
data that describes the geometrical structure of the object. The LiDAR-only detectors may be subject
to false detection or even non-detection over objects located at high distances. The camera sensor
captures RGB images with sufficient attributes that describe the distinct identification of the object.
The high-resolution images produced by the camera sensor benefit the precise classification of the
objects. However, hindrances such as the absence of depth information from the images, unstructured
point clouds, and cross modalities affect assertion and boil down the environmental perception. To
this end, this paper proposes an object detection mechanism that fuses the data received from the
camera sensor and the 3D LiDAR sensor (OD-C3DL). The 3D LiDAR sensor obtains point clouds of
the object such as distance, position, and geometric shape. The OD-C3DL employs Convolutional
Neural Networks (CNN) for further processing point clouds obtained from the 3D LiDAR sensor
and the camera sensor to recognize the objects effectively. The point cloud of the LiDAR is enhanced
and fused with the image space on the Regions of Interest (ROI) for easy recognition of the objects.
The evaluation results show that the OD-C3DL can provide an average of 89 real-time objects for
a frame and reduces the extraction time by a recall rate of 94%. The average processing time is
65ms, which makes the OD-C3DL model incredibly suitable for the AVs perception. Furthermore,
OD-C3DL provides mean accuracy for identifying automobiles and pedestrians at a moderate degree
of difficulty is higher than that of the previous models at 79.13% and 88.76%.

Keywords: autonomous vehicular safety; 3D object detection; convolutional neural networks; 3D
LiDAR sensor; camera sensor; fusing sensor data

1. Introduction

Autonomous Vehicles (AVs) safety and comfort of driving are significantly improv-
ing, howbeit decreasing the significance of common vehicles in the surroundings [1–3].
For developing such an AV, the sensor should keep track of the surrounding obstacles
while driving, including their position, size, orientation, and classification of the object’s
circumstances [4–6]. The Light Detection and Ranging (LiDAR) sensor and camera sensors
are used for this kind of environmental sensing [7–9]. To enhance object detection and
recognize the three-dimensional (3D) shape of the object, 3D LiDAR was introduced [10,11].

Recently, the 3D LiDAR attracted researchers as it is a prominent sensor that helps AVs
in their perception of the environment [12]. These sensors can recognize targets in the dark
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and have a large field of view, precise information, and provide depth information [13,14].
3D LiDAR holds significant benefits when compared with the camera sensors in object
detection, including the ability to determine the position and shape of objects [15,16].
Still, the scattered 3D point clouds evolve into sparse distribution when the 3D LiDAR
sensor [17–19] is distinct from the scan center, which turns out a concern in detecting certain
objects in the classification process [20].

The camera sensors in the AVs act as vision sensors and produce hi-spectral images for
classifying the images accurately. The classification techniques that are generally employed
are rooted in extended intelligence algorithms such as deep learning [21,22]. In general,
these methods use the design of an object to create boundary containers for recognizing the
objects based on the environment [23,24]. However, camera sensors suffer from various
lighting conditions levels and have insufficient knowledge of regions, directions, object
shape, and structure, resulting in inaccurate object-area identifications [25,26].

For obtaining good accuracy in location and classification of obstacles in driving
habitat, the feasible approach is to take the complementary data from the LiDAR sensor
and camera. The 3D LiDAR sensor captures the 3D shape of the object and produces
point cloud data that describes the geometrical structure of the object. The LiDAR-only
detectors may be subject to false detection or even non-detection over objects located at a
high distance. The sparse and chaotic distribution of the point clouds produced by LiDAR
may lead the object detection methodology to lack in identifying smaller objects. The
camera sensor captures RGB images with sufficient attributes that describe the distinct
identification of the object. The high-resolution images produced by the camera sensor
benefit the precise classification of the objects. When combining these two data, both
the attributes and the geometrical information of the object helps in detecting real-time
3D objects in a more promising way. For this purpose, we propose an object detection
mechanism that fuses the data received from the camera sensor and 3D LiDAR sensor (OD-
C3DL). The mechanism fuses the point cloud and enhances the data for precise detection of
the objects and we train the Convolutional Neural Networks (CNN) model with those data
for accurate precision. Our main concern is to reduce the accidents between our vehicle
and the pedestrians or the opposite vehicles around the driving environment.

The major contributions of the work are as follows

1. In OD-C3DL, the Point Cloud Augmentation (PCA) process estimates the depth
information from the camera sensor data and coordinates the spatial information of
the object, which enhances object identification to a greater extent.

2. The PCA process specifically uses the pre-trained Pyramid Stereo Matching Network
(PSMNet), which exploits the global contextual information and extends the pixel-level
features to region-level features with different scales of receptive fields to compute
the disparity map.

3. The OD-C3DL applies VGG16 to implement ROI pooling next to the convolutional
layers such as Conv3, Conv4, and Conv5, rather than just on the final convolutional
layer, in which a feature tensor of fixed size is produced by each layer.

4. The OD-C3DL standardizes the attribute tensor utilizing L2 standardization and con-
catenates all the standardized attribute tensors, which ensures the detection system’s
reliability and scales the attribute associations arising out of several convolution layers
to the equivalent size.

5. The OD-C3DL encompasses multiple task loss such as boundary container regres-
sion loss and classification loss functions for accomplishing object classification and
boundary container regression at the training stage.

The rest of the paper is organized as follows: A survey of earlier similar research
is presented in Section 2. A thorough explanation of the proposed OD-C3DL using data
from a LiDAR sensor is provided in Section 3. The evaluation results and performance
improvements of the OD-C3DL over the state-of-the-art methodologies are discussed in
Section 4. In Section 5, the conclusions made from the observations are drawn.
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2. Related Work

Typically, most object detection methodologies use cameras in 3D space to detect the
object, which heavily relies on the anchor-based system. This process is expensive and
causes delays in object detection in AV driving scenarios.

In [27], an anchor-free architecture is developed with 3D LiDAR object detection
and proposed a dynamical fusion technique to act on images with point features through
learning filters. Moreover, to investigate the overlapping region and for greater boundary
container optimization, the Intersection over Union (IoU) loss is proposed. However, the
model lacks in detecting small objects correctly such as pedestrians.

The authors in [28], tried to improve the object identifier of the Yolov5 model to
perform object detection of tiny objects on the actual roads. The approach modifies the
size of the output feature map and includes shallow high-resolution features so that the
performance will be significantly improved. However, the approach does not concern the
improvement of detection accuracy at night and under bad weather conditions. In [29], the
authors tried to improve the performance and accuracy of the Yolov3 model by integrating
self-attention and dilated convolution into the Yolov3 architecture. The approach is to
reconstruct the loss function based on Floor IoU and focal loss that in turn improves
the detection and the accuracy of Yolov3. By leveraging Vehicle-to-Infrastructure (V2I)
communication, a framework is proposed for identifying the objects in the vehicular driving
mode. However, the real-time performance of perception of the framework is poor [30]. A
visibility enhancement scheme is proposed in [31], which has illumination enhancement,
reflection component enhancement, and linear weighted fusion. The aim of the scheme is to
improve AV driving under aggressive weather conditions such as sandstorms, heavy rain,
or under heavy dust areas. The image restoration technique accompanied by the scheme
achieves a great performance with detection accuracy while maintaining the tracking
capability. However, the visibility enhancement scheme works better for recognizing
vehicles rather than pedestrians.

The authors of [32], contribute the AV driving by intimating the selective attention
mechanism of the human visual system. The authors used the Hidden Markov Model
(HMM) for the lane-changing intention. However, the spatial context is not considered in
the human visual system, which plays a major role in deciding the time at which the lane is
to be changed. The authors in [33] aimed to maintain a safe distance with the pedal cyclists.
With the help of the Received Signal Strength Indicator (RSSI) obtained from the Bluetooth
device, the system identified the pervasive cyclists and improved the awareness of the
situation to avoid collisions. It could be particularly useful in poor weather conditions
where the visibility is low. However, the pose of the cyclist can only be predicted with the
RSSI reference signals. The authors in [34] used exteroceptive sensors to detect the in-path
objects and avoid collisions while riding on the hills or on some curved roads. The system
used geo-referenced maps to identify the road geometrics and provide the desired velocity
on those roads. The drawback of this approach mainly depends on the quality of the
geo-referenced map. In [35], the Convolution-Transformer Network (CT-Net) is used as a
unique deep learning technique to detect small objects. The attention-enhanced transformer
block creates a multi-head self-attention system with enhanced features and improves the
feature extraction ability of the model. In addition, a direct future fusion structure is
presented to improve the detection accuracy of small objects and multi-scale objects.

The authors in [36] use millimeter-wave radar sensors for detecting the targets with
zero-Doppler. These radars can be used for both long-range and short-range targets.
The radars produce rage-angular azimuth radar images for long-range targets and 3D
radar images for shorter-range targets. However, the shortcoming of this work is, it
considered only the static targets. In [37], the authors proposed an off-the-shelf deep
neural network architecture that is capable of detecting and recognizing the types of traffic
signs and physical incidents. In [38], the authors aimed at detecting pedestrians using
Field Programmable Gate Array (FGPA) during AV driving with the normalization-based
validity index. Then, the Manhattan distance is calculated between the target histogram-
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oriented gradient features and pedestrian histogram features. In [39], the monocular camera
is used to detect the 3D object (M3D) by utilizing the deceptive depth and orientation
representation using deep learning methodology. In the 3D space, the key points are
detected from the object’s center point. However, the M3D methodology has a limitation in
detecting pedestrians and cyclists.

Thus, the existing system utilizes the merits of different sensors individually. However,
the fusion of two different sensors for accurate object detection still has a place in the
research. Moreover, the existing system lags in detecting the driving scenario objects
such as cyclists, pedestrians, and cars during rainy and fog conditions. Hence, this paper
fuses the 3D LiDAR sensor and camera sensor and proposes an effective object detection
methodology named OD-C3DL. The 3D point clouds obtained from the 3D LiDAR sensor
are used to identify the object region and its starting spot. The employed CNN extricates
the quantified attributes from the object region and recognizes the corresponding object.

3. Proposed Work

The proposed OD-C3DL fuses the 3D point cloud data obtained from the 3D LiDAR
sensor and image data obtained from the camera sensor. The overview of the proposed
OD-C3DL is represented in Figure 1. The 3D point cloud data and the image data are
considered as the input to the OD-C3DL. These data are fed into the PCA process, which
is followed by the extraction and removal of floor points. The OD-C3DL then creates the
outline of the object region and uses CNN for feature extraction and object classification
to generate the desired accurate object identification. The OD-C3DL is comprised of two
major components

Image data

3D Point Cloud data

Input to OD-C3DL

Region of
Interest

ROI Pooling

L2 Normalization

Concatenation

Output with
boundary
container

Convolutional Neural Networks

 
 
 
 
 
 
 

Accurate Object Identification

Point Cloud
Augmentation

Extraction and
Removal of Floor points

Non-Floor
Dismemberment

Outline of Object
Region Generation

Feature extraction and object
classification using CNN

Figure 1. Overview of the proposed object detection methodology from the camera sensor and 3D
LiDAR sensor data.

1. Augmentation of point clouds
2. Object region identification
3. Feature extraction and object classification using CNN
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3.1. Point Cloud Augmentation

The PCA process in OD-C3DL enhances object identification to a greater extent. The
PCA process estimates the depth information that is obtained from the camera sensor and
coordinates the spatial information of the object. Thus, the PCA process tried to create a
representation of the pseudo-object region from the images captured by the camera sensor
to improve the features of the raw 3D LiDAR data.

The PCA process specifically uses PSMNet, which requires two input pictures to
compute the disparity map of 375 × 1242. The PSMNet exploits the global contextual
information and extends the pixel-level features to region-level features with different
scales of receptive fields; the resultant combined global and local feature clues are used
to form the cost volume for reliable disparity estimation. Thus, the PSMNet reduces the
computational complexity. The following formulas are used to obtain each pixel’s 3D
coordinates from the left camera coordinate system,

p =
a ∗ (k− ek)

M(k, v)
(1)

q =
r ∗ (v− ev)

f v
(2)

r =
f h ∗ a
M(k, v)

(3)

where (p, q, r) stands for the 3D coordinate value that relates to each pixel (k, v) in the
image plane. The terms ek, ev represent the location of the pixel, M(k, v) display the
disparity map formed by PSMNet, f h, f v denotes the vertical and horizontal focal length,
and a is the horizontal balance between the pair of images.

The PCA then discards unusual height and reduces unnecessary noise interference
from the pseudo point by setting the reluctance for each point to 1.0. The produced pseudo
object region is represented by the notation (pi, qi, ri), where i = (1, ..., P), where P
represents the number of effective pseudo points (100 k∼400 k).

The generated dense pseudo object region is first sub-sampled in accordance with the
calibration matrix, and then it is concatenated point-wise as S = (p, q, r) ∈ RN×3 with the
LiDAR point clouds O = (x, y, z) ∈ RN×3. By taking into consideration the variations in
axes permutation such as S⊕O and O⊕ S, a dual N × 6 (here N represents the number
of points clouds) point vectors are fed as input into the separate fully-connected structure
to record global responses SW and OW in the high-dimensional feature space, respectively.
The PCA process exploits the most important feature information by concatenating and
compressing two 256-dimensional presentations into a single vector. The stimulator proba-
bility σ is used as a measuring variable to assess the feature channel’s differentiability. In
order to acquire the enhanced point output after segment-wise progress, then re-weight
both point features according to the product operation. The entire procedure may be
expressed numerically as,

SW = WS
2 (Ws

1(S⊕O)) (4)

OW = WO
2 (WO

1 (S⊕O)) (5)

DE = σ SW ⊕ (1 − σ ) OW (6)

where σ represents the softmax function, Ws
1 and WO

1 represent the weight variables for fully
connected layers, ⊕ represents segment-wise progression, and DE signifies the outcome of
enhanced point.

Thus, the pseudo point clouds give image semantics for the raw 3D LiDAR data
enhancement feature. More precisely, the PCA process may adaptively re-weight the
importance of various point channels, producing feature representations that are more
robust and discriminative.
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3.2. Object Region Identification (ORI) with 3D LiDAR Data

The proposed OD-C3DL uses the pseudo point clouds generated by the PCA process
and the raw data obtained from the 3D LiDAR for Object Region Identification (ORI). The
ORI module comprises three significant steps

1. Extraction and removal of floor points
2. Non-floor dismemberment
3. Outline of object region generation

3.2.1. Extraction and Removal of Floor Points

The floor points from the point cloud must be removed before object clustering to
develop the object region outline effectively. The distance of nearby rings is far more
susceptible than perpendicular displacement to the slope of the land.

The floor points in ORI are determined by the radius space between adjacent rings. To
prevent inconsistent modifications in the range difference of the adjacent rings received
through 3D LIDAR at unique sites, ORI employs the ratio of the differences of the actual
measurement to the estimated measurement. Additionally, the distance between adjacent
rings is not necessarily to be at a fixed position, it can be varied depending on the state of
the street. The fact that the point clouds are represented by Cartesian coordinates is one of
the great challenging issues. These point clouds require time-consuming operations such
as searching and indexing. As an alternative, we code a construction of a multiple passage
deep matrix N from a sparse point cloud P.

µ(ai,j) = (Gz, GI , Gα) (7)

Gα =
√

G2
x + G2

y (8)

where Gz, GI , Gα stands for a point’s altitude, intensity, and depth values, respectively.
It is assumed that, on a perfectly flat horizontal plane, the altitude of the LiDAR setup

and the floor points, and every laser joint pitch angle are been sensed easily. As a result, it
is possible to compute the expected intensity difference between the adjacent beams. With
increasing surface elevation, the distinction in this range becomes less obvious.

Assume that ai+1,j indicates a specific field in the matrix µ, and Gi+1,j
α indicates the

average intensity. The envisioned depth distinction of adjoining cells
(
ai,j
)

and
(
ai+1,j

)
in

the equal column of matrix N is represented by the notation Fd
(
ai,j, ai+1,j

)
. A concentric

circle will be formed by the LIDAR points of the nearby scan lines at the plane converting
Fd
(
ai,j, ai+1,j

)
as a steady whose cost depends on the set peak of LiDAR as well as the

pitch angle of the adjacent it i and i + 1th scan lines in the vertical route. Nd
(
ai,j, ai+1,j

)
represents the actual measured difference in depth between ai,j and ai+1,j.

The parameters involved in the process of extraction and removal of floor points, where
Fd is the anticipated range dissimilarity and Nd is the actual range dissimilarity among two
3D LiDARs, are represented in Figure 2. To calculate the apparent variation between the
measured and estimated intensity fluctuations, the depths of the 3D LiDAR points in the
fields ai+1,j of the matrix are shortened by the objects, which causes a quick drop in the
intensity distance of the two neighboring fields ai,j and ai+1,j. In order to establish whether
the field points ai+1,j are floor points or hurdle points, this model can analyze the values
of Fd

(
ai,j, ai+1,j

)
and Nd

(
ai,j, ai+1,j

)
. The LiDAR point cloud is almost evenly spread over

the floor, the greater the distance between adjoint bodies and the LiDAR base leads to the
better Fd

(
ai,j, ai+1,j

)
values. This span fluctuates depending on the role since the exact

difference between Fd
(
ai,j, ai+1,j

)
and Nd

(
ai,j, ai+1,j

)
lies between

[
0, Fd

(
ai,j, ai+1,j

)]
. It is

also challenging to determine an appropriate threshold for classifying the LiDAR factor
cloud; however, the proportionate range of Fd

(
ai,j, ai+1,j

)
and Nd

(
ai,j, ai+1,j

)
at any func-

tion is often [0,1]. In order to prevent fluctuations within the intensity differences of adjoint
3D LiDAR laser lines in unique places, we implement a proportional technique. Therefore,
using Equation (9), it is possible to compute the fundamental fact of the field ai+1,j.
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Fd

ai+1 ai

Nd

a1 a0

ri+1

w
ri

Rd

Figure 2. Parameters involved in the process of extraction and removal of floor points, where Fd is
the anticipated range dissimilarity and Nd is the actual range dissimilarity among two 3D LiDARs.

G
(
ai+1,j

)
=

Nd
(
ai,j, ai+1,j

)
Fd
(
ai,j, ai+1,j

) (9)

such that,
Nd
(
ai,j, ai+1,j

)
= Gi+1,j

α − Gi,j
α (10)

In order to make the OD-C3DL technique relevant to varied road environments, the
expanded line of the LiDAR axis is not always considered to be at the right angle to the
floor level when estimating the predicted depth distance of adjoining scanning lines. In this
case, the LiDAR extension line and the floor’s angle are referred to as varying parameters
that change with the AV’s tilt gradient. According to the AV’s pitch angle, a variable ρ is
defined to represent the angle between the floor surface and the LiDAR axis adjunct line.
Thus, Fd

(
ai,j, ai+1,j

)
can be estimated as,

Fd
(
ai,j, ai+1,j

)
sin∆τ

=
l

Sin ω̇
(11)

where ω̇ serves as the degree bounded by the i + 1th scan line and the floor surface, which
can be calculated using (12)

ω̇ = π − τi+1 − ρ (12)

where τi+1 represents the i + 1th scan line’s vertical pitch angle. The gradient bounded by
the floor area and the LiDAR axis adjunct line (ρ) can be computed as,

bi
sinρ

=
Bd

sinτi
(13)

B2
d = l2 + b2

i − 2lbicosτi (14)

where bi serves as the radical distance of the points in the field ai,j. From the above
equations, the value of Fd

(
ai,j, ai+1,j

)
can be estimated as,

Fd
(
ai,j, ai+1,j

)
=

bisin∆τ

sin
[

arc sin
(

lsinτi
2
√

l2 + b2
i − 2lbicosτi

)
− τi + 1

]



Electronics 2022, 11, 4203 8 of 19

Using the aforementioned method, the OD-C3DL model linearly extracts all the floor
field values from the matrix, and then we apply the following equations to convert each
floor field into a point cloud.

Gx =
Gz

sin(∆τ × ε)
× cos(∆τ × i)× cos(∆τ × j) (15)

Gy =
Gz

sin(∆τ × ε)
× cos(∆τ × i)× cos(∆τ × j) (16)

Gz = Gz (17)

3.2.2. Non-Floor Dismemberment

The remaining point clouds need to be further segmented after the floor points have
been changed. The traits of 3D LiDAR points include sparsity, disorder, and non-uniformity.
The likelihood of over-fit and under-fit partitioning of non-floor points will grow due to
the inadequate and the variance in the points.

The Non-Floor Dismemberment (NFD) in OD-C3DL depends on the azimuth se-
quence and the distance factors. The NFD initially divides the non-clustered points and
applies a threshold with minimal azimuth variations to cluster the non-clustered non-floor
points. The clustered non-floor points are then dismembered by using the robust threshold
mechanism. The process of dismembering the non-floor points is given in Algorithm 1.
At the beginning of the algorithm, the initialized points are grouped as the main cluster.
Since the 3D LiDAR scans and provides the information in azimuth sequence, the northern
degree of the LiDAR point striking a similar object is continually disseminated. Whenever
the dissimilarity in azimuth among the two locations is smaller than the limit, then it is
considered that they may have originated from identical objects. Thus, the NFD algorithm
initially groups the non-floor points into the cluster group CL = cl1, cl2, . . . , cln in
accordance with the azimuth alterations between factors. We then determine the exact
difference of azimuth ∆ϕ(Gi, Gj) and compare it to the alternate point Gj inside the point
set clk for a factor gi ∈ G(i > 1) that is not allocated to any alternate clusters. If the
variation is less than the similarity θς, we can attach point Gi to the cluster clk as both
the points are originated from the single northern region as similar the cluster cn. In all
other circumstances, a new cluster clk may be constructed and factor Gi added to it. Based
on the difference in azimuth between the points after each point, entire points persisted
into clusters.

The Euler distance in bounded with two points (Gi, Gj) in the cluster v(Gi, Gj) is
first evaluated. The distance is then compared with the threshold value dth, if it is lesser
then the point Gi will be included in the Te_cl cluster. If the value is greater, Te_cl will be
combined with the non-floor cluster R. Then, the points in the te_cl will be removed and Gi
will be included in te_cl to enable the dismembering of the new object. Thus, each cluster
in the set CL = cl1, cl2, . . . , cln will be dismembered into individual object.
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Algorithm 1 Cluster-based non-floor point dismemberment Algorithm.

Input: Non-floor points (Gnon− f loor) floor partitioning methodology, azimuth limit
difference (tΘsimilarity )
Output: Decisive set of cluster non-floor points (R)

1: Initialize a Cluster based on angular azimuth (cl)← ∅
2: Initialize a Cluster based on the list of angular azimuths (CL)← ∅
3: Initialize a Temporary non-floor point cluster (te_cl)← ∅
4: for Gi in G do
5: if Gi is the first non-floor point then
6: CL ← cl ∪ Gi
7: else
8: for Gj in c do
9: Θ ← ∆ϕ(Gi, Gj)

10: if θ < θς then
11: cl ← cl ∪ Gi
12: else
13: CL← {cl} ∪ CL
14: cl ← ∅
15: cl ← cl ∪ {Gi}
16: end if
17: end for
18: end if
19: end for
20: for cl in CL do
21: for Gi in cl do
22: for Gj in cl do
23: D ← v(Gi, Gj)
24: dth(Gi)← vth(Gi)
25: if d < dth(Gi) then
26: Te_cl ← te_cl ∪ {Gi}
27: else
28: R← {te_cl} ∪R
29: te_cl ← ∅
30: te_cl ← te_cl ∪ {Gi}
31: Eliminate Gi from cl
32: end if
33: end for
34: end for
35: end for

3.3. Feature Extraction and Object Classification Using CNN

The OD-C3DL uses CNN for extracting the features and classifying the objects from
the boundary containers generated from the ORI module. The main objective is to find
the objects that were caught under difficult circumstances with wildly different object
sizes. Although earlier regional CNN models, such as Fast-Regions with CNN features
(Fast-RCNN) [40], did not need the boundary containers to possess definite dimensions, it
is still challenging to robustly identify miniature objects using these models. This is mostly
because these models only display a Region of Interest (ROI) grouping in the final object
map. The final layer of convolutional components, however, has relatively insufficient
information about the object after several pooling and convolution procedures for the
aspirant region of the small object. In these conditions, even when an object is present in
the candidate locations, it is challenging to locate and recognize it based on this attribute.
Thus, OD-C3DL employs the CNN model not to apply the ROI pooling solely over the



Electronics 2022, 11, 4203 10 of 19

ending convolutional feature association. Instead, the ROI pooling process is carried out in
each layer after the region proposal is projected onto several feature map layers.

To implement ROI pooling next to the Conv3, Conv4, and Conv5 layers rather than just
on the final convolutional layer, OD-C3DL applies VGG16 [40], in which a feature tensor
of fixed size is produced by each layer. To ensure the detection system’s reliability and to
scale the attribute associations arising out of several convolution layers to the equivalent
size, the OD-C3DL standardizes the attribute tensor utilizing L2 standardization and
concatenates all the standardized attribute tensors. The workflow of the CNN architecture
in the proposed OD-C3DL is given in Figure 3. The input image is given to the CNN, which
has various convolutional layers. The 3D point cloud generates an object proposal region,
which then acts as the ROI. The ROI is fed into the convolutional layers 3, 4, and 5 as ROI
pooling. The pooled ROIs then undergo L2 normalization, which is concatenated to find
the output with the boundary container. Every pixel of the feature maps is subjected to
standardization, and each feature map is handled separately. This standardization process
is described as follows:

η =
η

‖η‖2
(18)

‖η‖2 =

√√√√ d

∑
i=1
|η2

i | (19)

where η denotes the real attributes and η denotes the normalized attributes.

zi = ηiλi (20)

where zi indicates the value of the rescaled attribute. The backpropagation principle states
that the measuring element λi is addressed as,

dh
dη

=
λ× dh

dz
(21)

dh
dη

= λ
dh
dη

(
I
||η||2

− ηη

||η||32
) (22)

dh
dλi

= ∑
zi

dh
zi

λi (23)

where z
[
z1, z2, . . . , zj

]T .
We utilize 1×1 convolution to minimize the linked feature dimensions and maintain

the ROI pooling feature map’s original size. The two fully connected linked layers are then
given the final feature tensor for use in object placement and recognition.

In order to accomplish object classification and boundary container regression in
favor of ROI at the training stage, the OD-C3DL encompasses the multiple task loss
(boundary container regression loss and classification loss) functions. Two components
make up the network model’s output. A vector with M + 1 dimensions represents the
likelihood dissemination of the classification to which the image sample is associated,
where q = {q1, q2, . . . ., qm}. The predicted location of the bounding container for each
of the M object classes is represented by a vector with four parameterized coordinates,
denoted as c =

{
cclx, ccly, cw, cl

}
in one of the other outputs. The notations cclx, ccly, cw,

and cl signify the two coordinates, the width, and the height, respectively, of the predicted
bounding container center. Thus, the proposed OD-C3DL identifies the objects effectively
in the AV environment.
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Figure 3. Workflow of the convolutional neural network architecture in the proposed OD-C3DL.

4. Evaluation of the Proposed Work

For effectively identifying the objects, the experiments were performed using the 2012
KITTI Object identification benchmark [41]. The evaluations are then used to assess the
effectiveness of the OD-C3DL. The dataset encompasses coincident images from the camera
sensor and 3D LiDAR images taken by the AV. The camera image is cropped and modified
pixel by pixel. In particular, 3D LiDAR images are acquired by the HDL-64E LiDAR sensor
with 68 scan lines capable of 400 scans. When the sensor rotates at a repetition of 11 Hz, it
can create more than 106 points at each second. The dataset gives 7484 images for learning
and 7528 images for evaluation. As the label was not disclosed in the test set, the learning
data was split into a subset to train a model (75%) and a subset to test a model (25%).
The learning data contains nine distinct classes with 51,962 labels: “AV”, “Pedestrian”,
“Cyclist”, “Van”, “Truck”, “Sitting Person”, “Road Surface”. “Public bus”, “Other”, "Never
care” and showed different AV circumstances. We categorized the object samples in the
KITTI dataset into ternary categories, namely low, medium, and hard levels of difficulty,
depending on the dimension of the 2D boundary container on the image environment and
in the obstruction circumstances. The object detection achieved from the trained CNN
model from the KITTI benchmark dataset is represented in Figure 4.

12 4 5 6 7
14

11 8910
13

12
3

Figure 4. Object detection from the trained CNN model from the KITTI benchmark dataset. The
object detection in this figure is represented using the boundary boxes that occupy the various objects
such as parking vehicles, moving vehicles.
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4.1. Performance Analysis of Proposed Methodology
4.1.1. Analysis of Precision Recall Curve

To evaluate the average accuracy and test time, we employed Fast-RCNN [42] that
learns the image features and assesses the performance of OD-C3DL in ORI. The precision–
recall curve obtained in the evaluation is displayed in Figures 5 and 6. The network was
optimized for object identification using the KITTI dataset as a training and validation
subset. Three categories such as AVs, persons, and environment were considered in
the training stage. We used IoU as the object detection criterion and followed KITTI’s
evaluation. If the detection’s boundary container in the image space overlapped the floor
truth by at least 50%, it was considered valid. For an average calculation accuracy, we used
the PASCAL VOC [43] evaluation toolkit.
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Figure 5. Three object classes with three varying degrees of complexity were examined using our
CNN model, the VGG16 model, and its Precision–Recall Curve.
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Figure 6. Three object classes with three varying degrees of complexity were examined using our
CNN model, the VGG16 model, and its Precision–Recall Curve.
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4.1.2. Analysis of Accuracy Gains

We evaluated a total of 7488 images from the KITTI validation and training datasets
to estimate the duration of OD-C3DL. We observe that the mean duration is relatively
64.79 ms, which indicates that the frame rate of OD-C3DL is higher than that of LiDAR.
This demonstrates that OD-C3DL can be applied for faster and online frames. On the KITTI
validation dataset, we then contrasted the performance of the OD-C3DL method with
a few state-of-the-art approaches, including Yolov5, Yolov4, Yolov3, CT-NET, and M3D.
Table 1 lists the average accuracy results of the difficulty levels of easy, hard, and medium
as well as the duration of each technique. We outperformed the majority of existing object
identification techniques with average accuracy values of 88.96% and 77.18% in a medium
level for AVs and persons, with a mean running time of approximately 65 ms. This is hard
evidence that the OD-C3DL strategy has performed better than state-of-the-art approaches
in terms of results. The proposed OD-C3DL approach may still perform accurate detection
while gathering the distance of the target information, despite the fact that there are some
strong obstacles and small objects in the image.

Table 1. The enhanced Three-Dimension detection capabilities offered by several LiDAR signals and
feature combination techniques on the KITTI dataset. The accuracy gains are indicated via brackets.

Components Car AP(%)

3D LiDAR Camera Fusion PCA Easy Moderate Hard

0 0 0 0 87.07 77.82 72.28
1 0 1 0 87.39(+0.39) 78.57(+1.20) 73.10(+0.95)
1 0 0 1 87.56(+0.52) 78.94(+1.23) 73.48(+1.33)
0 1 1 0 87.47(+0.42) 78.89(+0.99) 73.47(+1.22)
0 1 0 1 87.79(+0.59) 79.54(+1.42) 73.84(+1.67)

4.1.3. Analysis of Elapsed Epochs vs. Computed Loss for the CNN Model

Figure 7 shows the validation loss and training loss of CNN in the correspondence
of computed loss values vs elapsed epochs. From the figure, we can observe that the
validation loss and training loss are decreasing exponentially, which concludes that the
CNN has capable of identifying the objects effectively.
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Figure 7. Graph representing the Elapsed epochs Vs Computed loss for the CNN model used In
Object detection.
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4.1.4. Analysis of Object Detection under Various States

Table 2 demonstrates the 3D LiDAR and PCA combo achieves an extraordinary in-
crease in performance by 0.59%, 1.42%, and 1.67% in easy, moderate, and hard levels.
Using 3D LiDAR with PCA, the performance is slightly lower than OD-C3DL, which
means that the semantics of a channel in an image would be complementary to the 3D
LiDAR geometric information, and more advantageous than 3D object detection is the
pseudo signal. Additionally, the combination of the camera sensor with 3D LiDAR results
with straightforward feature chaining is increased slightly and illustrates how significance
weighting mechanisms or PCAs might be useful for improving detection accuracy and
learning to differentiate more features.

Table 2. Each component of the suggested method’s performance gain is listed between brackets. 1
means “enabled”, while 0 means “disabled”.

Components Car AP (%)

PCA with ORI CNN IoU Head Easy Moderate Hard

0 0 0 87.07 77.84 72.28
1 0 0 87.69(+0.57) 79.25(+1.42) 73.92(+1.56)
1 1 0 89.21(+2.09) 81.78(+3.94) 77.34(+4.85)
1 1 1 90.43(+3.33) 83.27(+5.41) 78.93(+6.73)

4.2. Comparative Analysis of Proposed Methodology

The performance of the ORI phase on the 2D callback of accurate interpretation was
first evaluated. The proposed item was projected onto the 2D picture plane using the
calibration file, and the out-of-image detection was ignored. The IoU metric is employed in
this instance to compare the results obtained from the object area on three different levels
of difficulty.

4.2.1. Comparative Analysis of Recall vs. IoU

In the evaluation, the OD-C3DL’s popularity results are compared to those of many
existing approaches, such as the Yolov5 [28], Yolov4 [44], Yolov3 [29], CT-Net [35], and
M3D [39]. When producing various object regions, we compared the recall rates of all
methods and displayed the results in Figure 8. The recall rate was plotted using the
proposal for a region of 1000 objects, which is the function of the IoU threshold. As seen,
the OD-C3DL solution offered a recall rate of greater than 95% across the board for IoUs.
The primary cause of this outcome is that all fundamental approaches produce proposals
for object areas from the 2D visual space, where it is challenging to identify the faraway
object regions because they frequently overlap. The object depth feature, however, allows
the object area to be differentiated in the 3D point cloud created by 3D LiDAR. Further, the
area where the outline is proposed based on visual information may provide the width
only a rough boundary container position. Therefore, the recognition value drops promptly
with increasing overlap, but the 3D LiDAR captures the pose and the laser scan effectively
uses the spatial coordinates of the object to determine the shape of the object that was
detected. It has a clear advantage over the camera in that it holds point clouds.
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Figure 8. Comparative analysis of OD-C3DL with existing mechanisms for measuring the recall by
varying the IoU.

4.2.2. Comparative Analysis of Average-Precision

Table 3 shows the Average-Precision (AP) calculated using earlier LiDAR- and image-
based techniques on the KITTI dataset. Our object-region design OD-C3DL produced
88 non-duplicate designs on an average per frame which is less than the designs produced
by existing methods as 2010 frames. We acquired an estimated average accuracy of 89%
for the car category using OD-C3DL which is greater than the achieved value using the
majority of state-of-the-art methods because it produced fewer errors and a faster recall
speed. At the same time, we greatly decreased computation time while outperforming
existing approaches in every intermediate-level category, with 90.8%, 72.7% for cars, and
73.7% for pedestrians. This demonstrates strongly that object-level object areas may be
precisely extracted from a 3D LiDAR point cloud. Using the produced region design as
input and the real VGG16 model as the default, we used CNN to assess the OD-C3DL
efficiency. The experiment used the KITTI dataset to train the proposed CNN model, and
the object categories were background, AVs, and pedestrians.

Table 3. On the KITTI dataset, Average-Precision (AP) (percent) was calculated using earlier LiDAR- and
image-based techniques. LiDAR and camera sensors are indicated by the letters Li and Ca, respectively.

Cars Pedestrians

Approach Sensor Easy Moderate Hard Easy Moderate Hard Run-Time (ms)

Yolov5 Li 88.01 78.16 77.97 - - - 167
Yolov3 Li 92.93 83.15 78.66 41.18 35.42 33.96 64
CT-Net Li 95.87 91.15 81.10 86.67 71.17 66.14 472
M3D Li+Ca 95.84 95.18 85.49 89.86 80.10 75.09 171
OD-C3DL Li+Ca 96.74 89.75 86.49 90.12 80.13 75.66 65

4.2.3. Comparative Analysis of Sensitivity and Average Precision

With each learning session, this approach is adaptively modified in accordance with the
slope of the loss function to quicken convergence. With batch sizes of 16 and a momentum
coefficient of 0.9, we utilized the Nesterian Accelerated Gradient (NAG) optimizer to
calibrate the CNN model, leaving the parameters of the first two sets of convolutional
layers untouched and adjusting the other layers with a maximum iteration count of 200,000.
We evaluated the item detection capabilities of models and the fundamental methodology
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on KITTI datasets after training with the industry-standard accuracy of the recall curve.
We used the evaluation tool PASCAL VOC AP calculation kit and applied it to the KITTI
grading benchmark. The average accuracy value is the area under the accuracy of the
recall curve. A comparison of the accuracy of recall curves demonstrates that OD-C3DL
consistently outperformed the existing approaches despite the increasing difficulty for each
degree of complexity with three object categories. The sensitivity vs false positive per frame
for OD-C3DL with the existing techniques is plotted in Figure 9. This result shows that
by layering more convolutional elements, information loss can be reduced. The results
also demonstrate that the integration of several convolution layers reduces the dropout
layer that nullifies the data and small objects can be identified more efficiently. The average
precision calculated against the threshold of IoU of the CNN model is plotted in Figure 10.
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Figure 9. Sensitivity vs. False Positive Per Frame for multiple models.
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Figure 10. Average precision vs. Threshold of Intersection over union for our CNN model.
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5. Conclusions

In this paper, using the complementary nature of the 3D LiDAR and camera sensor
data, we have suggested a unique and potent object identification method OD-C3DL that
successfully identifies various objects that are present in the surroundings of the AV. OD-
C3DL outperformed most of the existing approaches in terms of accuracy, and reachability
with 88.76% and 79.13%, respectively, for quite challenging detection of AVs and people
nearby. OD-C3DL, which refers to quick detection, had an average run time for a frame
of roughly 65ms. We achieved a better result when we implemented it online, and it is a
strong rival to other well-known models.

However, our proposed OD-C3DL lags in the prediction accuracy of cyclists with
various feature ambiguities. To address this problem in the future, we can include the
Probabilistic Neural Network (PNN) in the OD-C3DL approach for extracting the features
effective from each modality. In addition, image segmentation can be performed via a
clustering approach.
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Abbreviations
The following abbreviations are used in this manuscript:

AVs Autonomous Vehicles
LiDAR Light Detection and Ranging
3D LiDAR Three-Dimensional Light Detection and Ranging
ROI Regions of Interest
IoU Intersection over Union
CNN Convolutional Neural Networks
V2I Vehicle-to-Infrastructure
HMM Hidden Markov model
RSSI Received signal strength indicator
CT-Net Convolution Transformer Network
FGPA Field Programmable Gate Array
M3D Monocular camera is used to detect the 3D object
PCA Point Cloud Augmentation
PSMNet Pyramid Stereo Matching Network
ORI Object Region Identification
NFD Non-Floor Dismemberment
NAG Nesterian Accelerated Gradient
Fast-RCNN Fast-Regions with CNN
AP Average-Precision
PNN Probabilistic Neural Network

References
1. Lee, S.; Lee, D.; Choi, P.; Park, D. Accuracy–power controllable LiDAR sensor system with 3D object recognition for autonomous

vehicle. Sensors 2020, 20, 5706. [CrossRef] [PubMed]
2. Francies, M.L.; Ata, M.M.; Mohamed, M.A. A robust multiclass 3D object recognition based on modern YOLO deep learning

algorithms. Concurr. Comput. Pract. Exp. 2022, 34, e6517. [CrossRef]

https://paperswithcode.com/dataset/kitti
http://doi.org/10.3390/s20195706
http://www.ncbi.nlm.nih.gov/pubmed/33036476
http://dx.doi.org/10.1002/cpe.6517


Electronics 2022, 11, 4203 18 of 19

3. Gupta, B.B.; Gaurav, A.; Marín, E.C.; Alhalabi, W. Novel Graph-Based Machine Learning Technique to Secure Smart Vehicles in
Intelligent Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2022, 1–9. [CrossRef]

4. Prathiba, S.B.; Raja, G.; Anbalagan, S.; Dev, K.; Gurumoorthy, S.; Sankaran, A.P. Federated Learning Empowered Computation
Offloading and Resource Management in 6G-V2X. IEEE Trans. Netw. Sci. Eng. 2022, 9, 3234–3243. [CrossRef]

5. Zhang, X.; Xia, X.; Liu, S.; Cao, Y.; Li, J.; Guo, W. An Integrated Framework on Autonomous-EV Charging and Autonomous Valet
Parking (AVP) Management System. IEEE Trans. Transp. Electrif. 2022, 8, 2836–2852. [CrossRef]

6. Deb, S.; Carruth, D.W.; Hudson, C.R. How communicating features can help pedestrian safety in the presence of self-driving
vehicles: Virtual reality experiment. IEEE Trans. Hum.-Mach. Syst. 2020, 50, 176–186. [CrossRef]

7. Zhao, L.; Xu, S.; Liu, L.; Ming, D.; Tao, W. SVASeg: Sparse Voxel-Based Attention for 3D LiDAR Point Cloud Semantic
Segmentation. Remote Sens. 2022, 14, 4471. [CrossRef]

8. Prathiba, S.B.; Raja, G.; Anbalagan, S.; Arikumar, K.S.; Gurumoorthy, S.; Dev, K. A Hybrid Deep Sensor Anomaly Detection for
Autonomous Vehicles in 6G-V2X Environment. IEEE Trans. Netw. Sci. Eng. 2022, 1–10. [CrossRef]

9. Zhao, C.; Fu, C.; Dolan, J.M.; Wang, J. L-shape fitting-based vehicle pose estimation and tracking using 3D-LiDAR. IEEE Trans.
Intell. Veh. 2021, 6, 787–798. [CrossRef]

10. Song, W.; Li, D.; Sun, S.; Zhang, L.; Xin, Y.; Sung, Y.; Choi, R. 2D&3DHNet for 3D object classification in LiDAR point cloud.
Remote Sens. 2022, 14, 3146.

11. Iftikhar, S.; Asim, M.; Zhang, Z.; El-Latif, A.A.A. Advance generalization technique through 3D CNN to overcome the false
positives pedestrian in autonomous vehicles. Telecommun. Syst. 2022, 80, 545–557. [CrossRef]

12. Dai, D.; Wang, J.; Chen, Z.; Zhao, H. Image guidance based 3D vehicle detection in traffic scene. Neurocomputing 2021, 428, 1–11.
[CrossRef]

13. Prathiba, S.B.; Raja, G.; Dev, K.; Kumar, N.; Guizani, M. A Hybrid Deep Reinforcement Learning For Autonomous Vehicles
Smart-Platooning. IEEE Trans. Veh. Technol. 2021, 70, 13340–13350. [CrossRef]

14. Fernandes, D.; Afonso, T.; Girão, P.; Gonzalez, D.; Silva, A.; Névoa, R.; Novais, P.; Monteiro, J.; Melo-Pinto, P. Real-Time 3D Object
Detection and SLAM Fusion in a Low-Cost LiDAR Test Vehicle Setup. Sensors 2021, 21, 8381. [CrossRef] [PubMed]

15. Ye, X.; Shu, M.; Li, H.; Shi, Y.; Li, Y.; Wang, G.; Tan, X.; Ding, E. Rope3D: The Roadside Perception Dataset for Autonomous
Driving and Monocular 3D Object Detection Task. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, New Orleans, LA, USA, 19–20 June 2022; pp. 21341–21350.

16. Nebiker, S.; Meyer, J.; Blaser, S.; Ammann, M.; Rhyner, S. Outdoor mobile mapping and AI-based 3D object detection with
low-cost RGB-D cameras: The use case of on-street parking statistics. Remote Sens. 2021, 13, 3099. [CrossRef]

17. Wang, G.; Wu, J.; Xu, T.; Tian, B. 3D vehicle detection with RSU LiDAR for autonomous mine. IEEE Trans. Veh. Technol. 2021,
70, 344–355. [CrossRef]

18. Prathiba, S.B.; Raja, G.; Bashir, A.K.; AlZubi, A.A.; Gupta, B. SDN-Assisted Safety Message Dissemination Framework for
Vehicular Critical Energy Infrastructure. IEEE Trans. Ind. Inform. 2022, 18, 3510–3518. [CrossRef]

19. Zhang, X.; Li, Z.; Gong, Y.; Jin, D.; Li, J.; Wang, L.; Zhu, Y.; Liu, H. OpenMPD: An Open Multimodal Perception Dataset for
Autonomous Driving. IEEE Trans. Veh. Technol. 2022, 71, 2437–2447. [CrossRef]

20. Sengan, S.; Kotecha, K.; Vairavasundaram, I.; Velayutham, P.; Varadarajan, V.; Ravi, L.; Vairavasundaram, S. Real-Time Automatic
Investigation of Indian Roadway Animals by 3D Reconstruction Detection Using Deep Learning for R-3D-YOLOV3 Image
Classification and Filtering. Electronics 2021, 10, 3079. [CrossRef]

21. Rangesh, A.; Trivedi, M.M. No blind spots: Full-surround multi-object tracking for autonomous vehicles using cameras and
lidars. IEEE Trans. Intell. Veh. 2019, 4, 588–599. [CrossRef]

22. Prathiba, S.B.; Raja, G.; Anbalagan, S.; Gurumoorthy, S.; Kumar, N.; Guizani, M. Cybertwin-Driven Federated Learning Based
Personalized Service Provision for 6G-V2X. IEEE Trans. Veh. Technol. 2022, 71, 4632–4641. [CrossRef]

23. Li, Z.; Du, Y.; Zhu, M.; Zhou, S.; Zhang, L. A survey of 3D object detection algorithms for intelligent vehicles development. Artif.
Life Robot. 2021, 27, 115–122. [CrossRef] [PubMed]

24. Choi, J.D.; Kim, M.Y. A sensor fusion system with thermal infrared camera and LiDAR for autonomous vehicles and deep
learning based object detection. ICT Express 2022, in press. [CrossRef]

25. Li, G.; Lin, S.; Li, S.; Qu, X. Learning Automated Driving in Complex Intersection Scenarios Based on Camera Sensors: A Deep
Reinforcement Learning Approach. IEEE Sens. J. 2022, 22, 4687–4696. [CrossRef]

26. Hartley, R.; Kamgar-Parsi, B.; Narber, C. Using Roads for Autonomous Air Vehicle Guidance. IEEE Trans. Intell. Transp. Syst.
2018, 19, 3840–3849. [CrossRef]

27. Hata, A.Y.; Osorio, F.S.; Wolf, D.F. Robust curb detection and vehicle localization in urban environments. In Proceedings of the
2014 IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, MI, USA, 8–11 June 2014; pp. 1257–1262.

28. Xiao, B.; Guo, J.; He, Z. Real-Time Object Detection Algorithm of Autonomous Vehicles Based on Improved YOLOv5s. In
Proceedings of the 2021 5th CAA International Conference on Vehicular Control and Intelligence (CVCI), Tianjin, China, 29–31
October 2021; pp. 1–6.

29. Tian, D.; Lin, C.; Zhou, J.; Duan, X.; Cao, Y.; Zhao, D.; Cao, D. Sa-yolov3: An efficient and accurate object detector using
self-attention mechanism for autonomous driving. IEEE Trans. Intell. Transp. Syst. 2020, 23, 4099–4110. [CrossRef]

30. Duan, X.; Jiang, H.; Tian, D.; Zou, T.; Zhou, J.; Cao, Y. V2I based environment perception for autonomous vehicles at intersections.
China Commun. 2021, 18, 1–12. [CrossRef]

http://dx.doi.org/10.1109/TITS.2022.3174333
http://dx.doi.org/10.1109/TNSE.2021.3103124
http://dx.doi.org/10.1109/TTE.2022.3145198
http://dx.doi.org/10.1109/THMS.2019.2960517
http://dx.doi.org/10.3390/rs14184471
http://dx.doi.org/10.1109/TNSE.2022.3188304
http://dx.doi.org/10.1109/TIV.2021.3078619
http://dx.doi.org/10.1007/s11235-022-00930-1
http://dx.doi.org/10.1016/j.neucom.2020.11.060
http://dx.doi.org/10.1109/TVT.2021.3122257
http://dx.doi.org/10.3390/s21248381
http://www.ncbi.nlm.nih.gov/pubmed/34960468
http://dx.doi.org/10.3390/rs13163099
http://dx.doi.org/10.1109/TVT.2020.3048985
http://dx.doi.org/10.1109/TII.2021.3113130
http://dx.doi.org/10.1109/TVT.2022.3143173
http://dx.doi.org/10.3390/electronics10243079
http://dx.doi.org/10.1109/TIV.2019.2938110
http://dx.doi.org/10.1109/TVT.2021.3133291
http://dx.doi.org/10.1007/s10015-021-00711-0
http://www.ncbi.nlm.nih.gov/pubmed/34744502
http://dx.doi.org/10.1016/j.icte.2021.12.016
http://dx.doi.org/10.1109/JSEN.2022.3146307
http://dx.doi.org/10.1109/TITS.2018.2799485
http://dx.doi.org/10.1109/TITS.2020.3041278
http://dx.doi.org/10.23919/JCC.2021.07.001


Electronics 2022, 11, 4203 19 of 19

31. Hassaballah, M.; Kenk, M.A.; Muhammad, K.; Minaee, S. Vehicle detection and tracking in adverse weather using a deep learning
framework. IEEE Trans. Intell. Transp. Syst. 2020, 22, 4230–4242. [CrossRef]

32. Xia, Y.; Qu, Z.; Sun, Z.; Li, Z. A human-like model to understand surrounding vehicles’ lane changing intentions for autonomous
driving. IEEE Trans. Veh. Technol. 2021, 70, 4178–4189. [CrossRef]

33. Barnett, J.; Gizinski, N.; Mondragón-Parra, E.; Siegel, J.; Morris, D.; Gates, T.; Kassens-Noor, E.; Savolainen, P. Automated vehicles
sharing the road: Surveying detection and localization of pedalcyclists. IEEE Trans. Intell. Veh. 2020, 6, 649–664. [CrossRef]

34. Waqas, M.; Ioannou, P. Automatic Vehicle Following Under Safety, Comfort, and Road Geometry Constraints. IEEE Trans. Intell.
Veh. 2022. [CrossRef]

35. Ye, T.; Zhang, J.; Li, Y.; Zhang, X.; Zhao, Z.; Li, Z. CT-Net: An Efficient Network for Low-Altitude Object Detection Based on
Convolution and Transformer. IEEE Trans. Instrum. Meas. 2022, 71, 1–12. [CrossRef]

36. Cai, X.; Giallorenzo, M.; Sarabandi, K. Machine learning-based target classification for MMW radar in autonomous driving. IEEE
Trans. Intell. Veh. 2021, 6, 678–689. [CrossRef]

37. Levering, A.; Tomko, M.; Tuia, D.; Khoshelham, K. Detecting unsigned physical road incidents from driver-view images. IEEE
Trans. Intell. Veh. 2020, 6, 24–33. [CrossRef]

38. Li, T.; Ma, Y.; Shen, H.; Endoh, T. FPGA implementation of real-time pedestrian detection using normalization-based validation
of adaptive features clustering. IEEE Trans. Veh. Technol. 2020, 69, 9330–9341. [CrossRef]

39. Haq, M.; Ruan, S.J.; Shao, M.E.; ulHaq, Q.; Liang, P.J.; Gao, D.Q. One Stage Monocular 3D Object Detection Utilizing Discrete
Depth and Orientation Representation. IEEE Trans. Intell. Transp. Syst. 2022, 23, 21630–21640. [CrossRef]

40. Liang, X.; Yu, X.; Chen, C.; Jin, Y.; Huang, J. Automatic Classification of Pavement Distress Using 3D Ground-Penetrating Radar
and Deep Convolutional Neural Network. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22269–22277. [CrossRef]

41. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 2013, 32, 1231–1237.
[CrossRef]

42. Zhang, Y.; Zhang, Z.; Fu, K.; Luo, X. Adaptive Defect Detection for 3-D Printed Lattice Structures Based on Improved Faster
R-CNN. IEEE Trans. Instrum. Meas. 2022, 71, 1–9. [CrossRef]

43. Kj, J.; Rajasegaran, J.; Khan, S.; Khan, F.S.; N Balasubramanian, V. Incremental Object Detection via Meta-Learning. IEEE Trans.
Pattern Anal. Mach. Intell. 2021, 44, 9209–9216. [CrossRef]

44. Wang, R.; Wang, Z.; Xu, Z.; Wang, C.; Li, Q.; Zhang, Y.; Li, H. A Real-Time Object Detector for Autonomous Vehicles Based on
YOLOv4. Comput. Intell. Neurosci. 2021, 2021, 9218137. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TITS.2020.3014013
http://dx.doi.org/10.1109/TVT.2021.3073407
http://dx.doi.org/10.1109/TIV.2020.3046859
http://dx.doi.org/10.1109/TIV.2022.3177176
http://dx.doi.org/10.1109/TIM.2022.3165838
http://dx.doi.org/10.1109/TIV.2020.3048944
http://dx.doi.org/10.1109/TIV.2020.2991963
http://dx.doi.org/10.1109/TVT.2020.2976958
http://dx.doi.org/10.1109/TITS.2022.3175198
http://dx.doi.org/10.1109/TITS.2022.3197712
http://dx.doi.org/10.1177/0278364913491297
http://dx.doi.org/10.1109/TIM.2022.3200362
http://dx.doi.org/10.1109/TPAMI.2021.3124133
http://dx.doi.org/10.1155/2021/9218137
http://www.ncbi.nlm.nih.gov/pubmed/34925498

	Introduction
	Related Work
	Proposed Work
	Point Cloud Augmentation
	Object Region Identification (ORI) with 3D LiDAR Data
	Extraction and Removal of Floor Points
	Non-Floor Dismemberment

	Feature Extraction and Object Classification Using CNN

	Evaluation of the Proposed Work
	Performance Analysis of Proposed Methodology
	Analysis of Precision Recall Curve
	Analysis of Accuracy Gains
	Analysis of Elapsed Epochs vs. Computed Loss for the CNN Model
	Analysis of Object Detection under Various States

	Comparative Analysis of Proposed Methodology
	Comparative Analysis of Recall vs. IoU
	Comparative Analysis of Average-Precision
	Comparative Analysis of Sensitivity and Average Precision


	Conclusions
	References

