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Abstract: In this paper, a 20 GHz wireless data transfer (WDT) interface for implantable applications
is proposed. The proposed WDT utilizes a small-form factor off-chip antenna to transfer data through
a human body. By using the implantable antenna, the biomedical WDT system occupies a smaller
chip size, which is suitable for future biomedical applications. The proposed WDT system with a
small-form factor patch antenna and near-threshold VCO operates at 20 GHz, has a data rate of
1.8 Gb/s and consumes only a low power of 5.4 pJ/b.
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1. Introduction

Biomedical implants such as wireless brain sensors [1] can greatly improve the quality
of healthcare for the continuous monitoring of vital signs. Advances in semiconductor
technology have helped to improve the key performance of biomedical applications [2–6].
The most important challenge in future implantable medical devices (IMDs) is to provide a
power-efficient small-form factor and higher bandwidth. The most important factor is to
design a high-sensitivity antenna and a high-performance wireless data transfer (WDT)
microsystem. Conventional IMDs typically use frequency bands such as the medical
implant communications service (MICS) band (i.e., 400 MHz) and the industrial, scientific
and medical (ISM) bands (i.e., 900 MHz, 2.4 GHz and 4.8 GHz) [7]. However, those
traditional implantable antennas have a large footprint and a low gain value due to the low
operation frequency. Furthermore, RF transceivers for biomedical devices have a higher
power consumption. For example, the high-performance oscillator usually consumes
high power for RF carrier (de)-modulation and carrier synchronization [8]. In recent
years, the operating frequency of biomedical antennas and WDT systems exceeded the
aforementioned MICS and ISM bands (i.e., 10 GHz [9,10], 15 GHz [11], 22 GHz [12] and
94 GHz [13]) for versatile biomedical applications such as skin or implantable cancer
detection. Therefore, designing small-form factor implantable antennas and ultra-low-
power WDT transceivers is the most important design factor. However, there are the key
trade-offs between the antenna geometry (i.e., size) and radiation efficiency when the
antenna size gets smaller and smaller. In this paper, we proposed a high-performance
and small-form factor biomedical patch antenna by utilizing two combinations of notches
and slots to improve the surface current distribution and radiation efficiency significantly.
In addition, the proposed biomedical WDT system is also analyzed and designed by
incorporating an ultra-low-power oscillator which operates at a near-threshold voltage
(NTV) to reduce the power consumption of the overall system. The proposed antenna
works at 20 GHz with a smaller size (i.e., 15.9 mm2) and a higher antenna gain (5.5 dBi).
The WDT system has an improved power efficiency (i.e., 5.4 pJ/b.)

Figure 1 shows the block diagram of a general wireless biomedical microsystem. The
neural data inside the body can be communicated by a neural link which is composed
of a spike detector, sampled by an ADC and fed into a digital signal processing (DSP)
unit and RF transceiver for wireless data and power transfer systems [3]. The neural
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data can be transceived by the RF transmitter (RFTX), receiver (RFRX) and biomedical
antenna. The RFTX can amplify the neural signal and modulate the signal into an RF carrier,
and the implantable antenna can transmit the carrier signal wirelessly. The RFRX can act
as an envelope detector to de-modulate the modulated RF carrier signal to a baseband
original signal [14]. The most important factors in bio-telemetry systems are the energy
efficiency and small-form factor. Our proposed bio-telemetry system including a biomedical
antenna utilizes a VCO using near-threshold supply voltage to reduce power consumption
significantly and also uses a bio-compatible compact patch or loop antenna for robust
biomedical data communication.
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Figure 1. A wireless data link between a patch antenna for biomedical applications.

2. Biomedical Patch Antenna
2.1. Proposed Implantable Notch Antenna Design

Figure 2 shows the block diagram of the proposed biomedical compact patch antenna
with slots. The proposed biomedical antenna consists of a square patch with an inset-feed
line with an FR4 substrate. The most important factor of a patch antenna has advantages
such as its (1) light weight, (2) low cost, (3) enhanced flexibility of polarization, (4) easy
implementation of multi-band operation and (5) easy integration with microwave circuits.
The patch antenna is composed of a 7.6 mm-wide ground plane with a 0.5 mm-thick
substrate layer and is also fed by a 50 Ohm inset-fed line. The radiation efficiency can be
optimized by the key parameters of antenna geometry; Wp, Lp and Wf are the width, the
length of the patch and the feed line width, respectively. Ws and Ls are slot width and slot
length, respectively. To design the optimal antenna with a wider bandwidth and enhanced
radiation efficiency, the width, length and slot shapes are analyzed and verified.
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Figure 2. Proposed patch antenna model. (a) Cross-section of the layer structure, (b) proposed patch
antenna with notches and (c) antenna design parameters.
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2.2. Patch Antenna Optimization

Figure 3 shows the structure of a typical patch antenna and a patch antenna with
notches and slots for high-gain operation. The slot size variables can change the effective
patch antenna size and also improve the target resonance frequency characteristics [15]. The
proposed antenna design with optimal slot shapes is applied to acquire a scalp-implantable
patch antenna at 20 GHz. The optimized antenna with slots can further be adjusted in
terms of slot length (or width) in order to overcome this effect while preserving excellent
impedance matching characteristics.
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Figure 4 shows the optimal return loss with the patch antenna with the desired
resonant frequencies. The optimal patch antenna can achieve a return loss below −40 dB,
and the simulated −10 dB bandwidth at 20 GHz is 940 MHz. The miniaturized feed line is
also further optimized to provide good impedance matching characteristics and achieve a
small-form factor.
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The proposed antennas with the optimal slot geometry exhibit bandwidths (defined
at −10 dB) of approximately 940 MHz and also show improved far-field gain radiation
patterns, as shown in Figure 5. For example, our proposed antenna with and without
notches provides 5.5 dB and 4.7 dB, respectively. The proposed notch-based antenna
structure can provide a much higher radiation gain efficiency (17% higher with the notch-
based antenna).
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Figure 6 shows the surface current distribution of different biomedical patch antennas
using a 3D EM simulator (i.e., HFSS). As shown in Figure 6b, the surface current density
can be significantly enhanced by using the proposed notch-antenna at a 20 GHz operation
frequency. The hybrid combination of two different notch patterns for the proposed antenna
can further increase the surface current distribution and improve the antenna radiation
efficiency [16]. Because the dielectric properties between the outside (i.e., air) and inside
body could be different, the antenna outside the body has more design flexibility and
notch-based geometry in order to increase the surface current redistribution and improve
the antenna radiation efficiency.
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antenna efficiency.

2.3. Performance of the Proposed Notch-Based Patch Antenna

Figure 7 shows the antenna configuration for a wireless biotelemetry system with
a 10 mm air gap and E-field distribution of the antenna inside the body. The power
pattern can be changed because the power pattern depends on the deflections and variation
of the power distribution caused by the different depths of biomedical layers and the
heterogeneous combination of biomedical layers [17]. Table 1 provides the dielectric
properties of the human brain and other biomedical layers at higher frequencies because
the absorption ratio and EM radiation pattern can be slightly affected depending on higher
operation frequencies [12,13,18,19].
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Table 1. Dielectric properties of human tissue at higher frequencies [12,13,18,19].

Layer Skin Fat Skull Brain

εr 33.04 9.35 8.12 31.8
∆ (S/m) 6.27 1.32 2.14 10

Thickness (mm) 0.5 1 8 4

Figure 8 shows the 3D EM HFSS modeling with the spherical human head models
and implantable patch antennas. To enhance the accuracy of the radiation pattern analy-
sis, the accurate parameters of biomedical layers such as the dielectric constant (εr) and
conductivity (δ) at higher frequencies are derived from the prior works [12,13,18,19].
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The air gap might influence the power gain of the antenna [20]. Typically, the air gap
of a biomedical WDT system is 10 mm. However, the different air gap that is 10~30 mm
was modeled and analyzed to verify the proposed WDT transceiver. For example, the
air gap that is 30 mm has a severe power loss (i.e., −27 dB at 20 GHz). However, the
low-noise amplifier (LNA) with a higher gain can easily recover the weakened signal.
Figure 9 shows the result of simulated S21 frequency characteristics at different antenna
gap distances. The loss of S21 is different at different antenna gap widths, but the center
frequency is maintained. Therefore, the weakened neural signal through the wireless
channel can be reconstructed using the proposed WDT transceiver capable of amplifying
the signal waveform.
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Table 2 provides a comparison between the previously implantable CP antennas
and the proposed antenna. The results show that our patch antenna has a smaller size
and a wider bandwidth using a higher frequency than the others. Moreover, it is certain
that, regardless of frequency, miniaturized size or return loss, our antenna has the advan-
tage of a higher antenna gain among the published implantable antennas at the targeted
resonance bands.
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3. Wireless Data Transfer (WDT) System for Biomedical Applications
3.1. Proposed WDT Transmitter Design

Figure 10 shows the proposed architecture of a wireless data transfer (WDT) transceiver
for compact biotelemetry devices. A near-threshold voltage (NTV)-based oscillator is
utilized to generate the desired differential LO for driving a modulator for a transmitter side.
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The total power consumption of the NTV oscillator can be reduced significantly from
6.9 mW to 1.6 mW (i.e., almost four times lower power). Furthermore, the supply voltage
of the NTV oscillator is 0.6 V, which provides better voltage headroom for the next-stage
modulator and enhances the signal integrity of the transmitter. The power amplifier (PA)
is designed using a class AB amplifier with a 50 Ω impedance feeding transmission line
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between the PA and the patch antenna for better signal integrity. The differential mutual
mixer was utilized to down-convert the modulated carrier signal. Finally, an output buffer
amplifies the mixer output.

Figure 11 shows the WDT transmitter and critical signal waveforms at each stage. The
RF-band transmitter (RFTX) is composed of an input buffer, an LC tank VCO, a modulator
and a power amplifier (PA). The LC-VCO uses a near-threshold supply to reduce the
power consumption of the RFTX significantly. In the RFTX, the VCO first generates a local
oscillator (LO) signal at 20 GHz, and the modulator up-converts by mixing the LO signal
and the data input signal for ASK communication. A PA delivers an RF-modulated signal
into a patch antenna for a higher power conversion [26].
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(a) The output signal of the input-buffer, (b) the output signal of the modulation and (c) the output
signal of the WDT TX.

3.2. Proposed WDT Receiver Design

Figure 12 shows the WDT receiver with a patch antenna and critical signal waveforms
at each stage. The RF-band receiver (RFRX) demodulator uses a non-coherent direct down-
conversion scheme to reduce the power consumption of the receiver significantly. The
RFRX is composed of an LNA, a band-selective transformer, a self-feeding mixer and an
output buffer. The LNA utilizes a CS stage configuration which integrates an inductive load
to sustain a smaller DC voltage drop than a passive element [27]. Because the inductor can
provide LC resonance with a loading and coupling capacitance, higher frequency operation
can be better than a simple resistively loaded LNA. Furthermore, the LNA has another
input inductor for a robust input-matching network [28]. This enhances the gain of the
LNA because of the minimization of the signal loss of the RF-modulated carrier. At the next
stage, a highly band-selective on-chip transformer is utilized to obtain an enhanced voltage
gain through a higher coupling factor of k between the primary and secondary coil with an
optimal turn ratio. Therefore, optimal n and k is the most important factor to design an
on-chip transformer. A differential mutual-mixer which is composed of a self-mixer and a
resistor-feedback amplifier down-converted the RF carrier signal into the baseband data
D1 (RF). An output driver amplifies the recovered original BB data signal.
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Figure 13 shows the layout of the WDT transmitter (TX) and receiver (RX). The
proposed WDT circuits have been implemented in 28 nm CMOS technology. The chip sizes
of the WDT transmitter and receiver are 0.038 mm2 and 0.198 mm2, respectively.
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3.3. Performance Results of the Proposed WDT System

Figure 14 shows the Monte Carlo simulation results of the proposed WDT system. The
simulation is performed to evaluate the high-volume manufacturing (HVM) mismatch’s
impact on our WDT by taking the process, temperature and voltage (PVT) variation into con-
sideration. The main performance, such as the power efficiency and LNA input swing, is in-
vestigated. The PVT variation’s impact on the key performance of the power efficiency (i.e.,
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112.17 uW = 37.39 uW × 3 @ 3σ) and LNA input swing (i.e., 29.88 mV = 9.96 mV × 3 @ 3σ)
could be negligible.
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Table 3 shows the performance comparison of the proposed WDT system with prior
works [19–22,29]. The proposed WDT interface utilizing an NTV VCO scheme could
provide a much higher power efficiency (i.e., 5.4 pJ/b) and data throughput (i.e., 1.8 Gb/s)
to biotelemetry systems.

Table 3. Performance comparison of the proposed wireless data transfer.

Parameter
TICAS-II

2018
[30]

TICAS-I
2018
[31]

MWCL
2018 [32]

JETCAS
2018 [33]

TMTT
2020 [34]

JSSC 2017
[35] This Work

CMOS technology 180 nm 130 nm 65 nm 65 nm 65 nm 28 nm 28 nm
Modulation OOK OOK OOK OOK OOK OOK OOK

Freq. band (GHz) 6 4.5 4.1 8 60 4.5 20
Data rate (Mb/s) 200 1000 200 10 12.5 27.24 1800
Power supply (V) 1.8 1.2 1 1.2 NA 0.55 1

Energy (pJ/b) 20 5 4.3 21.6 2.65 14 5.4

4. Conclusions

A wireless data transfer (WDT) system with a biomedical patch antenna is pro-
posed. The proposed WDT system with a notch-based biomedical patch antenna and
near-threshold VCO operates at 20 GHz. By integrating the high-performance antenna
with the notch and slot patterns to enhance the surface current distribution of the patch
antenna, a broader bandwidth radiation pattern can be implemented, and by using the NTV
oscillator, the power consumption can be reduced significantly. By utilizing the implantable
antenna with 20 GHz, the WDT interface occupies a smaller chip size which is suitable
for future biotelemetry system applications and enables a promising solution for future
implantable devices.
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