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Abstract: Neuromorphic systems are bio-inspired and have the potential to break through the
bottleneck of existing intelligent systems. This paper proposes a neuromorphic high-speed object
recognition method based on DVS and SpiNNaker and implements a system in which an OR logic
aggregation algorithm is used to acquire sufficient effective information and the asynchronous sparse
computing mechanism of SNNs is exploited to reduce the computation. The experiment’s results
show that the object detection rate of the designed system is more than 99% at the rotating speed
of 900~2300 rpm; its response time is within 2.5 ms; and it requires 96.3% less computation than
traditional recognition systems using the same scaled ANN.
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1. Introduction

High-speed object recognition has been widely used in various fields, including
autonomous driving, aerospace, sports photography and science experiments recording.
While deep neural networks based on frames have shown impressive performance in
high-speed object recognition [1–3], there are some limitations:

1. The frame-based camera suffers from motion blur, which decreases the accuracy
of recognition;

2. There is high power consumption due to high data throughput and a huge number of
multiply-add operations;

3. The computation of such a full matrix deep neural network takes a large amount of
time, which causes an unacceptable latency for high-speed recognition tasks.

An ideal high-speed object recognition system should have the characteristics of high
accuracy, low power consumption and low latency. Since information is delivered as
spikes, the third generation of neural networks, known as spiking neural networks (SNNs),
have the sparsity of asynchronous computing. In comparison to artificial neural networks
(ANNs), SNN’s utilization of bionic neurons allows the processing of information in the
manner of the human brain, and it has the advantages of low power consumption and low
latency, as well as a natural spatiotemporal information processing performance. However,
SNNs can only benefit from their low power consumption and low latency if they are
deployed on a neuromorphic computing platform [4–6]. At present, many neuromorphic
computing platforms such as SpiNNaker [7,8], Loihi [4] and TrueNorth [9] have been
developed. For data acquisition, high temporal resolution and low latency are required in
high-speed scenarios. Dynamic vision sensor (DVS) [10], a neuromorphic vision sensor, has
these characteristics, and the output is an asynchronous event stream rather than frames,
which matches the asynchrony of SNN.
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In this paper, we propose a novel high-speed object recognition method based on DVS
and SNN and implement the corresponding recognition system using a neuromorphic
computing platform. Experiments show that the system performs well at various speeds
and is easy to transfer across different platforms. The main contributions of this paper can
be summarized as follows:

1. We present a high-speed object recognition system built on DVS and SpiNNaker that
has a high level of adaptability to varied object speeds, high detection rate (more than
99%) and low latency (within 2.5 ms).

2. On the DVS-based dataset, there is no degradation in accuracy for the SNN on
SpiNNaker through comparative experiments, and the SNN running on SpiNNaker
reduces the number of FLOPs by 96.3% compared to ANNs of the same scale.

3. It is easy for the system to transfer to neuromorphic simulators without retraining.

The remainder of the paper is organized as follows: Section 2 introduces related work
about DVS and SNN; Section 3 presents the neuromorphic high-speed object recognition
method; Section 4 analyzes experiment results and evaluates the performance of the system;
Section 5 goes to conclusions of the paper.

2. Related Work

DVS is a novel neuromorphic vision sensor and records light intensity changes, whose
output is events. Compared with traditional frame-based cameras, DVS has advantages
of high temporal resolution (1 µm), high dynamic range (over 120 dB), ultra-low power
(1 mW), and high pixel bandwidth (kHz), which makes it more attractive than frame-
based cameras for processing vision tasks such as image reconstruction [11–13], video
frame interpolation [14,15], and object detection [16–18] in low light, high speed, and
other extreme environments. Tulyakov, S. et al. [14] demonstrated the advantages of
high temporal resolution and low latency of DVS to obtain better results in video frame
interpolation applications. Perot, E. et al. [16] proposed a high-resolution large-scale dataset
for object detection and demonstrated that DVS can perform comparable object detection
tasks without image reconstruction.

Considering the compatibility between DVS and SNN which are bio-inspired, the
study of combining them is an active research [19–24]. Liu, Q. et al. [21] extracted motion
features from the event stream and built a hierarchical SNN for action recognition. Zhang, J.
et al. [22] proposed an event-based object tracking method, in which SNN was introduced
for tracking temporal cues. Viale, A. et al. [23] applied SNN, combined with DVS, in
autonomous driving to recognize cars, and mapped the SNN on Loihi, which achieved
both low latency and low power consumption.

When it comes to the experimental scene, some research employed rotating fans to
simulate high-speed scenes and performed several computer vision tasks [25–28]. Zhao,
J. et al. [25] and Zheng, Y. et al. [26] applied a neuromorphic vision sensor in image
reconstruction of high-speed motion scenes. Zhang, S. et al. [28] presented an adaptive
framework for detecting high-speed moving objects by combining DVS with traditional
detection algorithms and showed that DVS could get sharp contours without motion blur,
which was helpful for feature extraction and recognition. In this paper, we employ DVS
to acquire data from a similar experimental scene and apply an SNN for recognition. By
combining asynchrony and sparsity, we significantly reduce the latency and computation.

3. Methodology
3.1. Events Aggregation Algorithm

The output of DVS is an event stream, and each event can be represented by a
4-dimensional vector (x, y, t, p), where x, y denote the pixel coordinate; t denotes the time
stamp; the polarity parameter, p, can has a value of 0 or 1, with 1 signifying an increase in
light intensity and 0 denoting a reduction. Figure 1 depicts the event stream.
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Figure 1. Illustration of event stream, where blue points represent positive-polarity events, and red
points represent negative-polarity events.

In order to acquire enough information for the recognition, the events within a par-
ticular time interval are aggregated along time dimension to produce an event slice. This
aggregation process can be expressed in Equation (1).{

Ei = {et′ |t′ ∈ [αi, α(i + 1))}
ESi = q(Ei)

(1)

where Ei is the set of events within the ith time interval; et′ is the event with time stamp
of t′; α is the length of time interval; ESi is the ith event slice; q(·) represents aggregation
functions [29], which includes accumulation aggregation [30], non-polarity aggregation [31],
OR logic aggregation [32], etc. All of these aggregation algorithms were compared in the
experiment, and OR logic aggregation achieved the best performance due to its more
stable features and less noise, which is shown in Figure 2. The whole process of OR logic
aggregation can be expressed in Equation (2).

ESi = sign
(
∑ et′

)
, t′ ∈ [αi, α(i + 1)) (2)

where sign(·) is defined as: sign(x) = 1, if x > 0; sign(x) = 0, if x = 0. In summary, if a
pixel produces at least one positive event in a certain time interval, the aggregation result
on its position is set to 1, otherwise the value is 0. Since OR logic aggregation results in a
binary image, it can be directly used as the input of SNN. In the experiment, we created a
DVS-based dataset using the event slices aggregated by OR logic aggregation algorithm
and evaluated its quality, which will be demonstrated in Section 4.2.
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Figure 2. Visualization of event slices aggregated by different algorithms. (A) is accumulation
aggregation; (B) is non-polarity aggregation; (C) is OR logic aggregation. Accumulation aggregation
generates intensity images while OR logical aggregation results in binary images with much less
noise than non-polarity aggregation.
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3.2. Spiking Neural Network Models

Various neuron models can be applied to construct SNNs. Hodgkin-Huxley model [33]
is a biologically interpretable model, which uses variable conductance to simulate the
opening and closing of ion channels on the membrane of biological neurons. However, since
its dynamic equation involves multiple coupled differential equations, the computation
is complex and not suitable for large-scale networks. Izhikevich’s model [34] greatly
simplifies Hodgkin-Huxley’s model and reduces the number of parameters, where the total
of twenty spike firing modes can be simulated with only four parameters. However, driven
by nonlinear differential equations, the Izhikevich model is still computationally intensive.
Therefore, the LIF [35] neuron model is used in this paper, which can be described by only
one first-order linear differential equation shown in Equation (3).

τm
dV(t)

dt
= −(V(t)−Vreset) + X(t) (3)

where V(t) is the membrane voltage; X(t) is the external input like the increment of voltage,
which is provided by neurons in the previous layer or external stimulations; τm is called
time constant, which is equal to the product of membrane resistance and capacitance,
describing the decay rate of membrane voltage; Vreset is the reset voltage.

The LIF neuron model needs to be manually reset after firing, and in practice, dis-
cretization for the dynamics is required. The charging, discharging, and resetting process
in the discretized model can be expressed by Equation (4).

H(n) = f (V(n− 1), X(n))
S(n) = Θ(H(n)−Vthreshold)
V(n) = H(n)(1− S(n)) + VresetS(n)

(4)

where n is the time step index; H(n) is the hidden state of neurons, which represents the
instantaneous state of neurons before firing spikes; f (·) is the state update function of
neurons; S(·) represents the spike train; Θ(·) is the step function; Vthreshold is the threshold
voltage. The state update function of the LIF neuron used in this paper can be derived by
Euler method to obtain its discrete form as shown in Equation (5).

f (V(n− 1), X(n)) = V(n− 1) +
1

τm
(−(V(n− 1)−Vreset) + X(n)) (5)

For the network structure, this paper builds a fully connected SNN with two layers
using the LIF neurons defined above. Since the event slices generated by OR logic aggrega-
tion has clear features, experiments show that a two-layer SNN without hidden layers is
adequate to the recognition task. Furthermore, the network completes the computation in
just one time step, which lowers latency. The firing and propagation of spikes in SNN is
illustrated in Figure 3. When a sample is fed into the network, some specific input neurons
will send spikes to all output neurons, then the output neuron that represents a particular
class will fire a spike, thus completing the recognition.

In terms of network learning algorithm, the gradient-based backpropagation methods
cannot be utilized in SNN effectively because of its non-differentiability. At present, ANN-
to-SNN conversion methods [36–39] and surrogate gradient (SG) methods [40–44] can
overcome the problem and achieve the prominent performance. Since the SG methods train
SNNs with low latency, they are more suitable for high-speed object recognition scenarios.
This paper applies continuous sigmoid function S ≈ 1

1+exp(−U)
[45], and makes use of

its gradient to surrogate the gradient of step function in backpropagation. In addition,
during the process of backpropagation, partial derivatives in time and space are computed
separately.
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Figure 3. Illustration of the firing and propagation of spikes in the SNN. Each neuron in the network
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reset to Vreset after the neuron fires a spike to the connected neurons.

3.3. Deployment on SpiNNaker

SpiNNaker is a successful general-purpose neuromorphic computing platform based
on traditional hardware, which enables real-time, low-power and large-scale neural net-
work simulations, as well as supporting more types of neuron models than dedicated neuro-
morphic computing platforms. Therefore, this paper employs it to deploy the above SNN.

Because neuron models provided in SpiNNaker are connected by synapses, which will
convert spikes into electrical currents when transferring them, the computation of SNNs
on SpiNNaker is different from that on CPU/GPU in Section 3.2. Furthermore, the currents
will be affected by related parameters of neurons, hence the charging and discharging
process in Equation (4) should be adjusted, resulting in Equation (6).

I(n) = W lSl−1(n)
H(n) = I(n)R− e−

∆t
τ (I(n)R + Vreset −V(n− 1)) + Vreset

V(n) = H(n)
(

1− Sl(n)
)
+ VresetSl(n)

(6)

where I(n) denotes the input current; R denotes the membrane resistor; W l denotes weights
of synapses in the lth layer; ∆t denotes the simulation time step; Sl denotes the spike train
fired by neurons in the lth layer; τ is a constant which is related to τm in Equation (3), and
can be expressed in Equation (7).

τ = 1
/

ln
(

τm

τm − 1

)
(7)

In summary, for data acquisition, DVS is used to acquire an asynchronous event
stream, and the event stream will be aggregated to slices using OR logic aggregation. For
recognition, a trained SNN is deployed on SpiNNaker, and the recognition result can be
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obtained by monitoring the spike fired by output neurons. The flow chart of the whole
method is shown in Figure 4. In practice, in order to exclude invalid and redundant inputs,
a selection strategy is introduced in data acquisition, which will be explained in Section 4.2.
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in output layer will fire corresponding spikes, which refers to the recognition result. 

  

Figure 4. Flow chart of the proposed neuromorphic high-speed object recognition method based on
DVS and SpiNNaker. During the training and deployment process, the output of DVS converts to
event slices through OR logic aggregation algorithm, and a specific dataset can be created via these
slices. Then an SNN is trained through this DVS-based dataset and deployed on SpiNNaker after that.
For the inference process, the stream of events acquired in real-time is aggregated into consecutive
event slices and fed into SpiNNaker as spikes. After the computation of the SNN, the neurons in
output layer will fire corresponding spikes, which refers to the recognition result.

4. Experiments and Analysis
4.1. Implementation of System

In this section, a neuromorphic high-speed object recognition system using the pro-
posed method was implemented. The whole system is shown in Figure 5. The specific
hardware used in the system is Prophesee Gen 4 and a SpiNNaker 101 machine. Through a
USB link, the host configures and controls DVS by a data acquisition program. To configure
relevant runtime parameters and download the trained SNN model onto the board, the
host and SpiNNaker board communicate via Ethernet. The monitor program running on
the host supervises the firing activity of output neurons in real time.

In the experiment, we built a fully connected SNN with 2 layers, including an input
layer with 1600 LIF neurons (the size of input event slices is 40 × 40) and an output layer
with 5 LIF neurons (5 classes). Each input neuron was one-to-one correspondent to an
event position, and each output neuron represented a class. When an event slice was
input into the SNN, only the target output neuron would fire a spike. Compared with
traditional ANNs, the proposed network was independent of specific classification layers
like argmax, softmax, etc., thus able to recognize objects much easier and faster. The
experiment showed that some parameters of LIF neurons had impact on the performance
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of SNNs in both training and inference. The main parameters and models used in the
system are shown in Table 1.
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Figure 5. Photograph of the designed neuromorphic high-speed object recognition system based
on DVS and SpiNNaker. In the system, DVS and SpiNNaker are both configured, controlled and
monitored by a laptop.

Table 1. Parameter values and model types used in the experiment.

Parameter or Model Value or Type

Constant τ 5 ms
Vreset 0 mV

Vthreshold 12 mV
Synaptic dynamics model delta-decay-type

Synaptic conduction model current-type

4.2. Data Acquisition and Evaluation

Under laboratory conditions, this paper used a speed-adjustable fan as the high-speed
scenario and recognized the letters on the blades, which is shown in Figure 6. There were
5 letters to recognize and the range of the rotating speed of the fan is from 900 rpm to
2500 rpm. In order to only acquire one letter at a time, an ROI would be automatically set
in advance, and only events in the area were taken into account. The steps to set the ROI
are shown in Figure 6.
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Figure 6. Illustration of setting a ROI. First, the events over a long period of time are aggregated,
and due to the rotation of the fan, a ring will be formed. The image is then filtered and clustered to
remove noise, and two concentric circles are fitted. Finally, a square ROI is anchored just above the
center of the circle with the radius difference between the two circles as the side length.

Data acquisition was implemented in two steps: aggregation and selection. For
aggregation, the event stream within a certain interval was aggregated to generate an event
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slice by OR logic aggregation algorithm. The experiment showed that when time interval
was set to 500 us, event slices were able to contain sufficient information of letters. Some
aggregated event slices are visualized in Figure 7, where the pixel with value equal to 1,
namely white pixel, is called “event pixel”. When a slice was fed into the SNN, event pixels
would activate, instructing their corresponding neurons in the input layer to fire spikes.
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Figure 7. RGB images captured by a frame-based camera and event slices captured by the DVS at
different speeds. Event slices aggregated by OR logic aggregation algorithm contain clear letter edges
at all rotating speeds, while for RGB images, the motion blur gets worse as the rotating speed rises.

For selection, since there were lots of useless event slices generated in aggregation
step, a selection strategy was introduced to filter out invalid and redundant slices, which is
illustrated in Figure 8. Experiments show that the number of event pixels in aggregated
event slices is statistically significant under a fixed environment, as shown in Figure 8A.
When letters rotate to the center of the ROI, the number of event pixels gradually increases;
when letters rotate out of the ROI, the number of event pixels gradually decreases. In this
paper, a Gaussian mixture model is used to fit the change in the number of event pixels,
and then the event slices containing letters can be detected, as shown in Figure 8B. In order
to avoid repetitive recognition of an identical letter in different locations, only slices with
the letter in their center were selected to feed into the network after resizing to 40 × 40. In
this manner, each letter would only be recognized once for each revolution of the fan.
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Figure 8. Illustration of the selection strategy. (A) is the change in the number of event pixels in the
ROI over time when the fan rotates. (B) is the result of using the Gaussian Mixture Model to separate
out event slices containing letters. We discard invalid event slices that do not contain letters, and
select only one event slice per letter for recognition.

Then a DVS-based dataset was created using the selected event slices, which totally
contained 49,032 slices for 5 letters at different rotating speeds. In fact, the event slices were the
trails of letter edges, and there was some noise if the event stream was aggregated directly.
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4.3. Results Analysis

In the experiment, we evaluated the performance of the SNN-based system in terms
of detection rate, response time and power consumption. Furthermore, in order to demon-
strate the superiority of the neuromorphic system, we conducted some comparison experi-
ments, including different platforms, datasets, and neural networks. In addition, we also
verified the portability of the system on a simulator.

4.3.1. Performance Evaluation

The real-time performance of the designed system was evaluated under conditions
similar to those of the DVS-based dataset. For the detection rate of the system, it is the
product of the selection strategy success rate and the network recognition accuracy. After
testing, when the fan speed was below 2300 rpm, our selection strategy worked well and
the success rate remained above 99%; when the rotating speed exceeded 2300 rpm, the
success rate of the selection strategy dropped rapidly, and we considered the strategy a
failure. For recognition accuracy, since DVS could acquire clear letters at all speeds, the
recognition accuracy of the SNN after training remained above 99% in the experiment,
which is shown in Table 2. Here we take the rotating speed of 1600 rpm for example.

Table 2. Comparison of the SNN/ANNs on the DVS-based/RGB datasets.

DVS+SN
(SpiNNaker)

DVS+SNN
(CPU) RGB+FCNN RGB+VGG16 DVS+FCNN

Accuracy 99.98% 99.98% 79.64% 100% 99.97%
Computation <890 / 72,000 473 m 24,000

Response time mainly includes aggregation time and computing time. The aggregation
time interval is 0.5 ms, as mentioned above, and the computing time is equal to 1 ms or
2 ms, which is shown in detail in Figure 9.
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Figure 9. Computing time of SpiNNaker at different rotating speeds. (A) is computing time at
900 rpm; (B) is computing time at 1600 rpm; (C) is computing time at 2500 rpm. The computing time
is basically kept at 1 ms at all speeds, except for some outliers of 2 ms.

In the experiment, computing time was measured through the internal clock in SpiN-
Naker with the highest precision of 1 ms. Theoretically, because SpiNNaker’s interlayer
computation required one delay of 1 ms and our network only had input and output layers,
the computing time should always be 1 ms. However, as shown in Figure 9, there were
some outliers with value of 2 ms. By analyzing the relationship between computing time
and the number of event pixels that shows in Figure 10A–C, as well as conducting repetitive
experiments shown in Figure 10D–F, we found that these outliers might occur when event
pixels (i.e., input spikes) were more than 150. The reason was that, in SpiNNaker, when a
neuron received a large number of spikes in one time step, it would receive these spikes
in batches, which prolonged the computing time accordingly. However, not all inputs in
the experiment with more than 150 event pixels produced outliers, because the clock’s
precision was 1 ms and if the starting point and the end point fell in adjacent time intervals
while measuring the computing time, the final reading would be 1 ms.
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Figure 10. Computing time along with number of event pixels and the number of event pixels in
outliers in repetitive experiments. (A–C) are computing time at 900 rpm, 1600 rpm and 2500 rpm,
respectively; (D–F) are the number of event pixels in outliers at 900 rpm, 1600 rpm and 2500 rpm, re-
spectively. Outliers with computing time of 2 ms probably occur when event pixels are more than 150.

Considering these outliers, the maximum response time was 2 + 0.5 = 2.5 ms, meet-
ing the requirement of the fastest speed of 2500 rpm in the experiment, i.e., completing
recognition within 4.8 ms. And according to the configuration of the experiment, 2500 rpm
amounted to about 105 km/h.

4.3.2. Comparisons and Analysis

We conducted comparative experiments in three aspects: deployment platforms,
datasets and neural networks. For the deployment platform, we deployed the SNN on an
i7-9700 CPU for recognition. For the dataset, we created an RGB dataset using an iPhone 13
pro max at 240 FPS in the same experimental scenario, which contained 21,430 samples.
For neural networks, we built a fully connected neural network (FCNN) with the same
scale as the SNN (1600 × 5) and introduced a VGG16 network as well. The comparison
results are listed in Table 2.

For SNN, whether it was deployed on CPU or SpiNNaker, its recognition accuracy
could reach almost 100%. However, due to its unique computing mechanism, SNN was
incompatible with the ordinary CPU architecture, and the benefits of its asynchronous
sparse computing in terms of power consumption could only be realized on a dedicated
computing platform. In fact, in SpiNNaker, floating point numbers were emulated by
fixed point numbers with the highest precision of 2−15, while that in CPU was 2−31. Hence
there would be loss of numerical value in networks while deploying the trained SNN on
SpiNNaker. But in the experiment, this loss did not affect the final recognition accuracy of
the system, because our network had only two layers, and the loss would not accumulate
in computation.

When the RGB camera was employed as the acquisition device, motion blur destroyed
the original image features. For FCNN, its recognition accuracy could only reach about
80%, because its expressive power could not effectively extract and recognize features,
even if the original features were very simple. The VGG16 had much stronger expressive
power, so it could extract features and successfully recognize even images that heavily
suffered from motion blur. However, it would involve a lot of computation, which required
more than 473 million FLOPs. When the DVS was used as the acquisition device, event
slices had a high image quality without motion blur, hence a 1600 × 5 FCNN was adequate
to this recognition task, where 24,000 FLOPs were involved (8000 multiplications and
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16,000 additions). For our solution of DVS+SNN (SpiNNaker), since only the input neurons
corresponding to event pixels sent spikes, the computation of the network would decrease
greatly. In the experiment, the maximum number of event pixels was 178, so there were
up to 178 × 5 connections involved in computation with the amount of 890 FLOPs (only
additions). Compared with the same scaled FCNN, the computation of the neuromorphic
system declined by 96.3%, resulting in high energy efficiency.

4.3.3. Portability Analysis

Brian2 is a simulator for spiking neural networks. To verify the repeatability of our
system, we reproduced the trained SNN on Brian2, and tested its recognition accuracy
and computing time using the DVS-based dataset. The experiment result is shown in
Table 3. It could achieve the same recognition accuracy of the SNN on SpiNNaker, while
its computing time is over 100 times longer because Brian2 simulates the computing of
SNN based on the ordinary CPU architecture and is not comparable with neuromorphic
computing platforms. During the simulation, the membrane voltages of five neurons in
the output layer were also recorded, as shown in Figure 11. According to Figure 11, when
the samples were fed into the SNN in sequence, the output neurons fired spikes in turn,
which was consistent with the experimental expectations. This experiment showed that the
system could transfer to an SNN simulator without retraining.

Table 3. Recognition accuracy and computing time of the SNN on Brian2.

Rotating Speed Recognition
Accuracy

Max. Computing
Time/ms

Min. Computing
Time/ms

Avg. Computing
Time/ms

1600 rpm 99.98% 452 102 156
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Figure 11. Membrane voltages of five neurons in the output layer. It takes one time step (1 ms) to
recognize an input, and the neuron representing the recognition result will fire a spike. Additionally,
the membrane voltage is reset to Vreset (0 mV ) at each time step to eliminate the memory of the
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5. Conclusions

This paper presents a neuromorphic high-speed object recognition method and system,
which applies OR logic aggregation algorithm to acquire enough effective information, and
utilizes SNNs to reduce computation in recognition, where the SNN uses LIF neurons and
is trained through a surrogate gradient method. The asynchrony and sparsity of DVS and
SpiNNaker are used in the implementation of the system to achieve both high-speed data
acquisition and computation.

In the experiment with rotating speed from 900 rpm to 2300 rpm, the system achieves
the detection rate of more than 99%, and the response time of each letter is within 2.5 ms. In
addition, due to the computing mechanism of SNN and SpiNNaker, the number of FLOPs
of the system were reduced by 96.3% compared with that using the same scaled ANN.
Furthermore, our system can be directly transferred to other neuromorphic simulators
without retraining. In future work, FPGA is to be considered as a micro-controller to further
decrease data communication and power consumption.
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