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Abstract: Deep learning-based medical image analysis is an effective and precise method for identify-
ing various cancer types. However, due to concerns over patient privacy, sharing diagnostic images
across medical facilities is typically not permitted. Federated learning (FL) tries to construct a shared
model across dispersed clients under such privacy-preserving constraints. Although there is a good
chance of success, dealing with non-IID (non-independent and identical distribution) client data,
which is a typical circumstance in real-world FL tasks, is still difficult for FL. We use two FL algo-
rithms, FedAvg and FedProx, to manage client heterogeneity and non-IID data in a federated setting.
A heterogeneous data split of the cancer datasets with three different forms of cancer—cervical, lung,
and colon—is used to validate the efficacy of the FL. In addition, since hyperparameter optimization
presents new difficulties in an FL setting, we also examine the impact of various hyperparameter
values. We use Bayesian optimization to fine-tune the hyperparameters and identify the appropriate
values in order to increase performance. Furthermore, we investigate the hyperparameter optimiza-
tion in both local and global models of the FL environment. Through a series of experiments, we find
that FedProx outperforms FedAvg in scenarios with significant levels of heterogeneity.

Keywords: federated learning; non-IID; heterogeneity; Bayesian optimization; FedAvg; FedProx

1. Introduction

Recent technological improvements have altered intelligent healthcare powered by
artificial intelligence (AI). Nevertheless, AI systems necessitate centralized data gathering
and processing, which may be impractical in realistic healthcare contexts due to the scala-
bility of modern healthcare networks and the need for data privacy. Federated Learning
(FL), an emerging distributed collaborative AI paradigm, is particularly suitable for smart
healthcare by coordinating the training of numerous clients, that is, in healthcare institutes,
without the exchange of private data [1]. Deep learning, an AI technique, has proven its
significant potential in medical image analysis for the early detection of chronic diseases by
managing large amounts of health data to facilitate the delivery of healthcare services [2].

Smart healthcare systems have historically relied on cloud-based centralized AI func-
tions for health data analytics. In light of the ever-increasing quantities of health data, this
centralized system is inefficient because of the inherent delays in transmitting raw data,
and the centralized system cannot accommodate substantial growth in network traffic.
Furthermore, depending on a centralized server creates severe privacy risks [3]. This is of
paramount importance, particularly in e-healthcare, where patient records are considered
extremely confidential and protected by laws. In order to overcome the issues of data gov-
ernance and privacy, FL trains algorithms cooperatively without exchanging the data itself.
Compared to conventional machine learning methods, FL offers greater advantages [4] as
listed below:
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i. Data diversity: heterogeneous data from multiple clients;
ii. Real-time learning: models are continuously updated with data from clients;
iii. Data security: the data are not sent to the central server and are kept only by

the clients;
iv. Hardware efficiency: FL does not need a complex central server to analyze.

Multiple clients work together using FL to tackle a machine-learning challenge. The
central server builds and improves its model (global). This model is trained by the updates
it receives from the clients. During training, the clients fine-tune local models using data
they have. Instead of bringing data to the central server, like in traditional deep learning,
the central server maintains a global shared model. Each client has its local model and
sends the local model’s weight or error gradient to the server. The central server then
updates the global model based on the performance of the local models. This method
iterates until the global model is trained.

1.1. Applications of FL

FL has numerous business applications, including traffic prediction and monitoring,
healthcare, communication, IoT, transportation, autonomous vehicles, medical AI, and
more [5]. In all of these applications, FL facilitates the collaborative learning of several
devices utilizing a shared model. Thus, utilizing information from a wide variety of sources
makes FL a practical tool. Once gathered, these data are used to update the model. These
devices will only transmit the information collected from the local model updates to the
server. Thus, FL is used where a secure transmission of private information is necessary.
Below, we present a few domains where FL finds its application.

FL in healthcare
Because HIPAA and other rules make it difficult to share sensitive health information,

healthcare is one of the industries that can gain the most from federated learning. A
significant amount of data from diverse healthcare databases and devices can be used to
develop AI models that adhere to regulations.

FL in Autonomous Vehicles
Because of its ability to make accurate predictions in real-time, FL is used in the devel-

opment of autonomous vehicles. Information about current road and traffic circumstances
might be added in real-time, facilitating faster learning and better decision-making. This
could lead to a safer and more satisfying experience with autonomous vehicles. Hence,
the automotive industry has great potential for the application of FL. However, at the
present time, nothing but studies are being done in this area. These studies have shown
that training time for predicting the angle at which a vehicle’s wheels would turn when
autonomously driving may be reduced through the use of FL.

FL in IoT:
For the development of smart and privacy-enhanced IoT systems, the notion of FL

has recently been proposed [6]. For data training, FL is a distributed collaborative AI
approach [7] that coordinates several devices with a central server without sharing actual
datasets. To train a neural network, for instance, an intelligent IoT network may employ a
group of IoT devices to act as “workers” communicating with a central server.

1.2. Our Approach

In this attempt, we use two FL algorithms to classify three types of cancer, namely
cervical, lung, and colon cancer, and consider ten subclasses of these three types. The
FL environment has an aggregation server and ten clients, each client has a local model
that classifies each subclass of three types of cancer. The local model updates local weight
parameters upon receiving updates from the global model, which runs on the aggregation
server. The local model executes the FedAvg and FedProx algorithms to update their
weight parameters and sends the updated weights to the aggregation server. The server
aggregates the local weights and sends back the updated weight to the local models for
further updates. This process is iterated until convergence. To tune hyperparameters in
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both clients and the server, we use Bayesian optimization search to find appropriate values
of the hyperparameters. Further, the local models send the local updates to the server if
only it finds an improvement in performance.

1.3. Research Focus and Contributions

The purpose of this research is to evaluate the performance of FL algorithms against
non-IID datasets. To enhance the performance, we use hyperparameter optimization
techniques in both local and global models. As the number of communication rounds
between the server and the clients, and the training methodology play a significant role in
performance, we plan to address the following questions:

RQ1. Can we reduce communications between server and client models by tuning
a hyperparameter locally before the federation process in the context of FL for a non-IID
classification task?

RQ2. How much longer would the training take if the global model sent updates to
every client instead of just a few clients who are chosen at random?

RQ3. What effect do various FL algorithms have on performance?
To address these research questions, we developed an FL framework that classifies

non-IID datasets. For the development of the framework, the following contributions
were made:

1. We applied the FedAVg and FedProx algorithms to different model architectures
(MobileNet-V3, Xception-V3 and ResNet201) and presented the result of extensive
experiments on three major types of cancer.

2. We used non-IID datasets to compare and evaluate the performance of FedAvg and
FedProx algorithms.

3. We used Bayesian optimization to tune the hyperparameters of both local and global
models to achieve better convergence.

4. We conducted numerous experiments using various computer vision tasks having
different types of cancer.

To the best of our knowledge, FL has not yet been applied to classifying multiple
types of cancer. The unique contribution is that the hyperparameter tuning process is
implemented at both the server and the clients. Further, a client will send its update to the
server only if it shows improved performance.

This article is further organized as follows: Section 2 presents a detailed report on the
present FL research attempts. The proposed methodology along with the procedures in
both client and server is described in Section 3. The experimental settings are recapitulated
in Section 4. The results of extensive experiments are presented in Section 5, and this section
also reports on the findings from these experiments.

2. Review of Literature

In the past decade, large-scale machine learning, especially in data center settings,
has prompted the development of several distributed optimization algorithms [8]. As
the power and popularity of electronic gadgets such as wearable devices, smart mobile
phones, etc., increase, it becomes increasingly attractive to learn statistical models locally in
networks of distributed devices, as opposed to sending the data to a central server. Such
learning addresses the challenges of privacy issues, the heterogeneous nature of data and
devices, and the distributed environment. This section examines current FL research efforts
and emphasizes the contributions made by each.

IID vs. Non-IID Datasets

In general, real-world data are non-independent and identically distributed (non-IID).
In contrast, the majority of existing analytical and machine-learning techniques rely on IID
data. Therefore, a suitable method is required to manage such types of real-world datasets.
When a sample is said to be identically distributed, there are no overarching patterns,
no fluctuations in the distribution, and each item is drawn from the same probability
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distribution. Independent means that the sample items are all independent events. In other
words, there is no relationship between them at all. Each subsample differs substantially
and fails to accurately represent the dataset’s underlying distribution if the data is non-IID.

The performance of the global model on non-IID federated data has been shown to be
substantially poorer than that of IID [9–11]. Most of the present FL techniques frequently
merely ignore the distribution divergence. The performance fairness is also made worse by
the distribution divergence of non-IID data [12], which means that the established model
produces noticeably varied local performance for various clients. This encourages us to use
a non-IID FL approach by coordinating the local optimization goals for many clients. FL
lets AI models train using private information without compromising privacy and helps to
achieve better results in the healthcare field when there is a scarcity of data. It has paved
the way for a lot of research [13].

He et al. [6] reconstructed FL as the FedGKT, a group knowledge transfer training
algorithm, to train small CNNs on edge nodes and transfer their information through to a
central server. FedGKT devises a variation of the alternating minimization technique. The
authors used three different datasets (CIFAR-10, CIFAR-100, and CINIC-10) and their non-
IID variations to train CNNs based on ResNet-56 and ResNet-110. Their findings indicate
that FedGKT can achieve equivalent or perhaps slightly greater precision than FedAvg. A
few studies have also attempted to investigate FL’s benefits, drawbacks, and potential uses.
The benefits and drawbacks of FL in IoT systems, as well as the ways in which it paves the
way for a wide range of IoT applications, were explored by Zhang et al. [14]. Specifically,
the authors presented seven major obstacles to FL in IoT platforms and discussed some
new, promising solutions to these problems. In [2], the authors summarized the recent
improvements of FL learning towards enabling FL-powered IoT applications, and they
employed a set of measures, including sparsification, robustness, quantization, scalability,
security, and privacy, to rigorously evaluate these developments. In addition to outlining
various research questions and potential answers, [2] also developed a taxonomy for FL
across IoT networks.

For non-IID FL, Zhang et al. [15] presented unified feature learning and an optimiza-
tion objectives alignment approach (FedUFO). Extensive trials showed that FedUFO is
superior to state-of-the-art techniques, including the competitive one data-sharing method.
Sahu et al. [8] presented a system called FedProx to handle heterogeneity in federated
networks in their study. According to them, FedProx may be thought of as a general-
ization and reparameterization of FedAvg. The authors have shown that, across several
realistic federated datasets, FedProx enables more robust convergence than FedAvg. In
order to better understand the effects of various hyperparameter optimization strategies
in an FL system, Holly et al. [16] conducted extensive research. In an effort to reduce
the overhead, the authors looked into a local hyperparameter optimization strategy that,
unlike a global one, provides each client control over its own hyperparameter setting. The
algorithms were tested on the MNIST data set with an IID partition and on an Internet of
Things sensor-based industrial data set with a non-IID partition to determine how well
they performed.

In [17], the authors described Auto-FedRL, a reinforcement learning-based federated
hyperparameter optimization approach, where an online agent may dynamically alter
the hyperparameters of each client depending on the current training status. Multiple
search techniques and agents have been examined through extensive tests. Validation was
performed on two real-world medical image segmentation datasets, one for COVID-19
lesion segmentation in chest CT and one for pancreas segmentation in abdominal CT, to
ensure the effectiveness of the proposed technique.

Wang et al. [6] paid special attention to image processing applications that ensure the
confidentiality of training data. Autonomous diagnosis of COVID-19 using deep learning
algorithms has lately been a subject of research by scientists all around the world. It is true
that several data-driven deep-learning approaches have been developed to make COVID-19
identification easier, but these data are still scarce due to patient privacy concerns. Under



Electronics 2022, 11, 4117 5 of 22

this circumstance, the solution is FL, which allows many organizations to work together to
create a powerful deep-learning model without having to share sensitive data.

Zhu et al. [18] analyzed the impact of non-IID data on parametric and non-parametric
machine learning models for use in horizontal and vertical FL in great detail. Both the pros
and cons of existing methods for dealing with the difficulties posed by non-IID data in
federated learning were examined. In addition, several studies on detecting COVID-19
using FL were found throughout the current literature analysis [19–24]. These studies
proved that an FL approach may successfully detect COVID-19-related CT abnormalities
using external validation on patients from various healthcare institutes.

Using differential privacy, Beguiere et al. [25] suggested a method for FL training
of genomic cancer prediction models. They showed that it is possible to achieve a good
trade-off between accuracy and privacy by training a supervised model for the prediction of
breast cancer using genomic data, which is split across two virtual centers while preserving
data privacy with regard to model transfer through DP. Choudary et al. [26] presented an
FL framework capable of learning a centralized model using decentralized health data
stored in many places. There are two tiers of privacy in this framework. For one, it does not
involve any data transfer or central server use when training the model. As a second line
of defense against privacy breaches, the model employs a differential privacy mechanism.
The authors proved that FL architecture might increase privacy while retaining global
model’s usefulness. A stratified Cox model was created by Hansen et al. [27] and validated
at three different locations in different countries using FL. Claiming their models are
well-calibrated with high power of discrimination, they demonstrated exceptional overall
survival prediction for patients with laryngeal cancer who were treated with curative
radiotherapy in three separate cohorts.

Furthermore, we also reviewed a few recent attempts based on FL for health cases. A
new federated learning framework was proposed [28] that can develop predictive models
through peer-to-peer collaboration without raw data exchanges, and this work uses a
distributed algorithm to solve a binary supervised classification issue to predict hospital-
izations for cardiac events. Kumar and Singla [29] demonstrated how well FL approaches
may be adapted to the healthcare system and how they function, particularly in the ar-
eas of medication discovery, clinical diagnostics, digital health monitoring, and various
illness forecasts and detection systems. This work [29] also includes comparative analysis,
which compares various FL algorithms for various health sectors using metrics including
accuracy, the area under the curve, precision, recall, and F-score. In an attempt by [30],
the way in which FL can facilitate the growth of an open health ecosystem with the use
of AI was described. This work also covers current issues with FL and potential remedies.
Antunes et al. [31] presented a systematic review of the research on FL in the context of an
electronic health record for healthcare applications. In their analysis, they highlighted the
most important research topics, proposed solutions, case studies, and ML methods. The
article also presented a general architecture for applying FL to healthcare data.

To summarize, from the literature survey, we understand that only very few attempts
have been carried out using non-IID data in an FL environment, and these works have
focused on COVID-19 detection only. These works update the global models irrespective of
the local model result. Thus, in the current research attempt, we use three types of cancer
that are distributed across the clients in a non-IID fashion and implement FL algorithms.
In the proposed work, a client updates the weights to the global model if the current local
model parameters provide improved performance.

3. Proposed Methodology

In this section, we present FL approaches to diagnosing cervical, lung, and colon cancer
from CT, and MRI scan images. FL solves problems with data collection and aggregation
by only sharing model updates [8]. In this paper, we improve data security by splitting
a model into two parts. We chose a natural split for CNN architectures: a shared part
with general information about the feature domain and an unshared part with information
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about the user’s task. Here, the shared part represents the aggregation server, and the
clients have their own private, unshared data. With such a split, important issues such as
data confidentiality, access rights, data protection, and access to heterogeneous data can be
easily addressed. Table 1 presents the notations used in the article with short descriptions.

Table 1. Terminologies used in the work.

Notation Descriptions

Wg
(t) Global weight parameter at time ‘t’

Wl
(t − 1) Local weight parameters received by a client at time ‘t − 1′

Wl
(t),ω Local weight parameters updated by a client at time ‘t’

N Number of clients

‘l’ A local model

E Number of epochs

Fl Loss function

µ Proximal term

FL is a technique for distributed and secure deep learning that permits the construction
of a shared model without compromising the confidentiality of the underlying data. An FL
system is made up of two basic parts, the first of which is a local model that is executed
on each client and the second of which is a global model that is executed on an aggregate
server. In the following sections, a comprehensive explanation of both models is presented.

3.1. Local (Client) Models

The procedure adopted in client units is as follows:

LocalModelUpdate(N,l, Wg
(t))://Run at each client ‘N’

Wl
(t−1)←Wg

(t)//Receive Wl
(t−1) from the central server

For each epoch 1 to E
For each batch ‘e’ of images

Take a batch of images ‘e’ from the local dataset;
Tune the hyperparameters using the Bayesian optimization search
Train the CNN model, find the weight updates as ∆Wl

(t−1)
Calculate the accuracy (LMUacc)
Find the loss function (Fl) using the federated learning algorithms (FedAvg and FedProx)
Update the weights, Wl

(t)←Wl
(t−1) ± ∆Wl

(t−1)
Copy ω←Wl

(t) (for FedProx algorithm)
If LMUacc is greater than the accuracy before training, then

Send the updated weights, Wl
(t), to the server

3.2. Global (Server) Model

For training the global model, we used the following procedure.

Initialize global model: Wg
(0)

t = 0
Repeat until performance is satisfied
{

For each local model ‘l’ in N
W l

(t+1)← LocalModelUpdate(N,l, Wg
(t))

Tune the hyperparameters using the Bayesian optimization search
Evaluate the global model using test images
Update the weights (Wg

(t)), if needed
Wg

(t+1)←Wg
(t) ± (1/N) summation (Wl

(t+1))
Send the updated weights Wg

(t+1) to the clients
t = t + 1

}



Electronics 2022, 11, 4117 7 of 22

3.3. Federated Learning Schemes

We present two popular FL strategies in this section [2,8,32,33]. The difficulties in
addressing the data heterogeneity among the datasets employed in the present work are
taken into account by these two systems in distinct ways. Unbalanced local datasets and
non-IID data among end devices are examples of data heterogeneity. The federated learning
algorithms are explained below:

FedAvg
Federated averaging (FedAvg) is the most common and easiest way to aggregate

data. There are several rounds of learning. At the end of each round, the server sends
the current global model updates to each client. The clients then update the parameters
of their local copy of the model by using SGD for several epochs to optimize the loss (Fl)
on their local training data. At the end of the round, all of the local parameters are sent
to the server, which uses a weighted average to combine them. When all the parameters
are added together, they make up the global model for the next round. The steps are
enumerated below:

For each client n ∈ N,
For epochs in E

Find the minimal loss function Fl using the learning rate (η)
Wl

(t)←Wl
(t−1) + ∆Wl

(t−1)//Update Wl
(t) using Stochastic Gradient Decent

Send the updated Wl
(t) to the aggregation server

FedProx
As an alternative, FedProx is a generalization of FedAvg with minor tweaks to account

for data and system heterogeneity. Once again, the learning occurs in cycles. The server
updates the clients with the latest global model at the beginning of each round. In contrast
to FedAvg, clients optimize a regularized loss containing a proximal term. To be more
specific, the new function to minimize is Fl(ω) +(µ/2) (||ω −Wl (t − 1)||)2, where Fl is
the loss,ω are the local parameters to optimize, and Wl (t − 1) is the global parameters at
time t. This strategy requires that local settings be uploaded to a central location, where
they can be averaged with data from other users.

For each client n ∈ N,
For epochs in E

Compute the loss function Fl using the objective function as,
Fl(ω) + (µ/2) (||ω−Wl

(t−1)||)2

Wl
(t)←Wl

(t−1) + ∆Wl
(t−1)

Send the updated Wl
(t) to the aggregation server

Each client trains their model independently in FL. In other words, each client under-
goes a unique model training procedure. To integrate and feed the aggregated main model,
only newly learned model parameters are provided to the aggregation server. Then, the
server sends the combined global model back to all the clients, and this process is repeated.
All of these parameters differ from one another since the global model’s parameters and
the parameters of every local model inside each client are randomly initialized. The entire
process of FL is enumerated below:

1. Before local models in the nodes are trained, the global model communicates its
parameters to the nodes.

2. Using these settings, client nodes begin to train their own local models on their
own data.

3. While building its local model, each client fine-tunes the parameters using a
Bayesian search and updates it.

4. Each node delivers its local model parameters to the global model after updating
the local parameters.

5. The global model calculates its new weight parameters by averaging these values,
then sends them back to the clients for the subsequent iteration.

6. To enhance the FL model’s performance, repeat steps 1 through 5.
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Figure 1 shows the proposed architecture. As can be seen from Figure 1, there are ten
clients each with a dataset for one of the subtypes of cervical, lung, and colon cancer.

Figure 1. Proposed FL framework.

Figure 2 shows the training process in a local model. Apart from the FL algorithms
used in this work, there are a few other FL algorithms proposed in different research
attempts such as clustered FL [34,35], prototype-based FL [36,37], knowledge distillation-
based FL [38,39], and pretrained FL [40,41]. In clustered FL [35], gradient descent has been
used for optimizing the parameters of the local models. In [34], a multi-center aggregation
wherein the local model’s parameters are aggregated at multiple local models having
smaller intra-cluster distance was proposed. The FL server learns a lightweight generator
to ensemble user information in a data-free manner as part of the data-free knowledge
distillation approach [38,39]. This information is then disseminated to clients for additional
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training. In our work, we used FedAvg and FedProx. The rationale for using these two
algorithms include that FedAvg is one of the traditional vanilla FL algorithms formulated
by Google and is simple to implement. The survey of these two FL algorithms demonstrates
that FedProx is substantially better at handling non-IID data than FedAvg is, and it also
converges to a higher accuracy in less training cycles [42]. Hence, we propose using these
two FL algorithms.

Figure 2. Training process in a client.

4. Experimental Settings

The implementation of FL was carried out using cervical, lung, and colon cancer
datasets containing MRI and CT, images. We built a Keras and TensorFlow-based FL
training framework and placed it in a cloud-based, distributed system. The entire system
was built with Tensorflow. Large models can be trained on the server’s GPU (a DELL EME
740 with enough GPU memory) while 10 CPU nodes train smaller CNNs on the client side.

4.1. Dataset Description

CT/MRI images for the various body parts (tissues) were collected and compiled
from Kaggle containing the categories of cervical, lung and colon cancer lesions. Since
there were an unequal number of images in each class, we used image augmentation, a
method for creating new images from the current training dataset artificially. Rotation,
shifting, cropping, blurring, scaling, flipping both horizontal and vertical, and padding are
examples of image augmentation methods to aid in minimizing the model’s over-fitting. A
description of the dataset is presented in Table 2.
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Table 2. Dataset description.

Cancer Types Classes Number of Training Images Number of Testing Images

Cervical

Metaplasia 2000 500

Dyskeratotic 2000 500

Koilocytotic 2000 500

Parabasal 2000 500

Superficial–intermediate 2000 500

Lung

Lung benign tissue 2000 500

Lung adenocarcinoma 2000 500

Lung squamous cell carcinoma 2000 500

Colon
Colon adeno carcinoma 2000 500

Colon benign tissue 2000 500

The training task was the classification of different imaging techniques such as MRI
and CT scans having the traits of cervical, colon, and lung cancer. The research work
generated a dataset with traits of different types of cancer. Then, non-identically distributed
disjointed data collections were created from the generated dataset, i.e., IID. Each subset
only included instances of a subset of the entire class set. Thus, we constructed a systematic
partition of an initial data set such that the subsets were no longer IID and created the
non-IID variants by splitting training images into 10 balanced partitions. The test images
were used for a global test after each round. The dataset was divided into training and
test sets with a ratio of 80:20. The training set was further split among the ten clients, each
working on a type of cancer. This method of distribution provides a non-IID setting. It
is referred to as feature shift non-IID when local clients each store images with distinct
distributions from other clients. We considered local data to diverge from the feature space
distribution, and we refer to this as a feature shift. In many real-world situations, this kind
of non-IID data poses a serious difficulty, usually when the local devices are responsible for
a heterogeneity in the feature distributions. All the clients had two non-similar labels, i.e.,
the distribution of the name of the labels varies between different nodes.

4.2. Models

MobileNet-V3, Xception-V3, and ResNet201 were used to construct the classification
models. These CNN variations were chosen because ResNet is constructed by piling
residual blocks on top of one another and may have a larger number of layers, thereby
learning all the parameters from early activations deeper into the network. The use of global
average pooling in place of fully-connected layers makes ResNet significantly smaller. In
Xception, depth-wise separable convolutions were used in place of the original Inception
modules. For image classification, Xception surpasses Inception v3 by a small margin on the
largest dataset having 17,000 classes, and by a much greater margin on the ImageNet dataset.
Perhaps most significantly, it has the same amount of model parameters as Inception but is
more computationally efficient. MobileNet, being a lightweight deep neural network, is
both smaller in size and more accurate at classification.

4.3. Hyperparameter Tuning

We applied Bayesian optimization to optimize hyperparameters [43,44]. It uses Bayes’
theorem to find the minimum or maximum of an objective function. This study minimizes
the loss function. Bayesian optimization uses the Gaussian process (GP) to determine good
hyperparameter values. GP generates data from the hyperparameter search space and
formulates a hypothesis based on known parameters. The Bayesian strategy may take
longer to pick hyperparameters, but it takes less time to evaluate the objective function,
reducing the computational cost. The optimizer, learning rate, activation function, numbers
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of hidden layers, batch sizes, epochs, number of neurons, and communication rounds were
fine-tuned. Table 3 outlines our work’s hyperparameters and search spaces.

Table 3. Hyper-parameters and their search spaces.

Parameter Search Space

Optimizer Adam, RMSProp, SGD

Learning rate 1 × 10−3, 1 × 10−4, 1 × 10−5, 1 × 10−6

Activation function Relu, Elu, and Tanh

Number of neurons in customized layers 64, 128, 56, 512, 1024

Number of hidden layers 2, 3, 4, 5

Batch Size 32, 64, 128

Epochs 10, 20, 30, 40

Communication rounds 100, 150, 200, 250

5. Experimental Results
5.1. Performance Evaluation

Our evaluations include the comparison between the performance of FedAvg and
FedProx algorithms [2,8,32] and the hyperparameter optimization approaches mentioned
in Section 4. To train the proposed FL framework, at first, we split the training datasets
into 10 parts, each with images of a specific type of cervical/lung/colon cancer and loaded
them into ten clients. The clients use MobileNetV3, XceptionV3 and ResNet201 for the
classification of images. We ran the FL models using the values of the hyperparameters
shown in Table 3. The optimal values of these hyperparameters were obtained using
Bayesian optimization and are shown in Table 4.

Table 4. Hyperparameters and their optimal values.

Parameters Optimal Values

Optimizer SGD

Learning rate (client and server) 1 × 10−3 (client) and 1 × 10−4 (server)

Activation function (client) Relu

Number of neurons in customized layers (client) 128

Number of hidden layers (client) 4

Batch Size (client) 128

Epochs (client) 10

Communication rounds (between client and server) 150

We now present empirical results for the FedAvg and FedProx framework. We ran
the global model using the test data and present the results. Figure 3 shows the accuracy
obtained for the FedAvg FL algorithm for a varied number of communication rounds. The
values of the loss function for these runs are also depicted in Figure 4. The confusion matrix
obtained for FedAvg is shown in Figure 5.
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Figure 3. FedAvg—accuracy.

Figure 4. Cont.
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Figure 4. FedAvg—loss.

Figure 5. FedAvg—confusion matrix.
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We also ran the FedProx FL algorithm and obtained the classification results. The
accuracy and loss function values for different communication rounds are presented in
Figures 6 and 7. The confusion matrix obtained for FedProx is shown in Figure 8.

Figure 6. FedProx—accuracy.

In order to visualize the difference between the performance of FedAvg and FedProx,
we projected and showed the accuracy and loss of both algorithms in Figures 9 and 10.

After the models were developed, we evaluated the performance of the proposed FL
models in terms of accuracy, precision, recall, and F1 Score [43,44]. The values of these
metrics were determined using indices such as true positive (TP), true negative (TN), false
positive (FP), and false negative (FN). The results of the evaluation are presented in Table 5.
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Figure 7. FedProx—loss.
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Figure 10. FedAVg vs. FedProx—loss.

Table 5. FedAvg vs. FedProx.

Communication
Rounds

FedAvg FedProx

Precision Recall F1 Score Precision Recall F1 Score

250

93.79 88.51 91.08 91.78 90.72 91.25

95.14 84.99 89.78 91.96 88.16 90.02

78.33 80.65 79.47 79.06 86.53 82.63

78.68 79.2 78.94 80.54 76.6 78.52

74.55 81.01 77.64 75.65 77.27 76.46

46.49 80.37 58.9 49.85 74.24 59.65

89.55 86.78 88.14 85.16 85.71 85.44

83.18 87.25 85.17 82.95 87.59 85.21

82.73 66.28 73.59 82.14 70.12 75.66

75.67 71.99 73.78 78.37 68.44 73.07
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Table 5. Cont.

Communication
Rounds

FedAvg FedProx

Precision Recall F1 Score Precision Recall F1 Score

200

93.32 83.91 88.36 91.63 85.28 88.34

95.55 86.45 90.77 94.22 86.79 90.35

79.63 78.41 79.02 82.48 79.69 81.06

84.18 80.97 82.54 83.48 82.93 83.21

70.44 79.19 74.56 72.32 80.52 76.2

58.38 80.3 67.61 60.61 81.18 69.4

90 85.71 87.8 86.74 83.65 85.17

84.35 85.75 85.04 84.69 83.72 84.2

76.4 81.14 78.7 76.94 79.65 78.27

76.16 70.98 73.47 76.14 70.42 73.17

150

93.79 90.34 92.04 94.05 91.22 92.61

95.55 88.39 91.83 95.38 89.12 92.14

80.42 80.42 80.42 83.42 82.11 82.76

81.1 75.61 78.26 83.04 78.15 80.52

79.69 82.67 81.15 80.26 82.8 81.51

57.3 81.85 67.41 62.59 87.76 73.07

89.32 86 87.63 90.25 87.67 88.94

87.85 85.84 86.84 88.03 87.21 87.62

74.45 71.66 73.03 77.33 72.24 74.7

73.24 74.5 73.87 74.57 74.57 74.57

100

94.27 87.2 90.6 95.9 87.28 91.39

96.15 84.97 90.22 95.02 85.33 89.92

76.76 84 80.22 75.96 84.62 80.05

82.86 73.35 77.81 85.17 74.31 79.37

83.29 77.33 80.2 84.1 78.28 81.09

49.73 86.38 63.12 51.37 87.79 64.82

91.82 86.88 89.28 91.89 87.74 89.77

86.92 82.3 84.55 87.04 83.19 85.07

74.45 76.69 75.56 74.5 75.44 74.97

70.56 77.13 73.7 71.43 78.46 74.78

In Table 6, we present the testing accuracy of FedAvg and FedProx on our datasets
associated with the experiments discussed in Section 4.

Table 6. Performance comparison of FedAvg and FedProx on test data—accuracy.

Communication Rounds FedAvg FedProx

100 81.45% 82.05%

150 81.91% 83.313%

200 81.548% 81.667%

250 80.57% 80.73%
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5.2. Findings and Discussion

In this section, we intend to provide the findings of the above experimental results.
We noticed that the performance of FedProx was greatly affected by the value we chose for
µ. Using µ = 0.1, 0.2, 0.3, 0.01, and 1, we ran trials. It was deduced from these experiments
that while a large value of µ can hasten the convergence, it can also miss global minima.
However, convergence time increased for smaller values. Experiments showed that a
value of 0.2 for µ provides optimal performance. We also determined the training time for
FedAvg and FedProx algorithms, given that the global update was broadcast to all clients
simultaneously. The training period in this experiment was found to be marginally longer
than the FedAvg employed in [8], where a random selection of clients was selected by the
server to receive global updates to parameters. While this is true in FedAvg and helps to
reduce the training time, we discover that it may not carry out global updates as smoothly
as we would like. Furthermore, in our proposed FL architecture, only the clients who
obtained better accuracy for the newly calculated local weight parameters communicated
the global updates to the server for the subsequent rounds. Then, the necessary changes
were made to the global model.

Furthermore, we also compared the performance of the FL algorithms with that of
traditional deep learning models. For this trial, we ran the datasets on ten clients each
with a dataset of a specific type of cancer and found that the models on clients performed
well for the dataset on which they have been trained. But these models did not exhibit
good performance for the unseen type of cancer. Then, when run using FL algorithms we
obtained an improved performance as illustrated in Section 5. While analyzing the results
for different communication rounds, we found that when the number of communication
rounds increased, there was a degradation in the performance of the FL model. As we
increased the number of communication rounds, we understood that the updates in local
parameters had reduced the accuracy of the local model, which in turn impacted the
performance of the global model. We also found that FedProx outperformed FedAvg
in terms of all the performance metrics. Since, in FedProx, the local models use their
previous weight parameters along with global parameters to update the parameters for the
current iteration, it showed improved performance. This was achieved with the help of
the proximal term (µ). This term solves the problem of statistical heterogeneity by limiting
local updates to be closer to the global model. Even though it is still hard to make good
models with small datasets at each site [45], our model did better with proper training and
tuning of the hyperparameters.

Additionally, we also tested the performance of the proposed models on the benchmark
dataset MNIST. For this test, we used the IID version of the MNIST dataset (each client has
equal number of images and images with all class labels). During this evaluation, we found
that, for the MNIST dataset, our models had an accuracy of 87.16%. Since this dataset offers
a public benchmark extracted from over a million human-labelled and curated examples,
we believe that the results are appreciable.

To gain a better understanding of the difficulties inherent in implementing the FL, we
also looked at errors brought on by the algorithms. True positives, false positives, true
negatives, and false negatives are all categories for the outcomes of the classification models
on images. From the confusion matrix shown in Figure 5, we observed that true positive for
the class colon adenocarcinoma was 383. This means that out of 500 colon adenocarcinoma
images, 383 images were correctly classified, and the remaining 127 images were misclassi-
fied. However, there was a small increase in the proportion of correctly identified images
using the FedProx algorithm. While analyzing the reasons for misclassification, we found
that the similarity among benign and malignant cancer lesions was very high, and this led
to misclassification. Another reason could be the feature map learned by the algorithm.
Since a few benign images resembled malignant images, the feature maps generated for
both types were indistinguishable. Thus, making use of the incorrectly classified images
can assist in increasing classification precision.
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Intense interest has been generated by FL, a developing collaborative AI technique,
to achieve scalable and privacy-enhancing smart healthcare networks and applications.
In this study, we applied the FedAvg and FedProx FL algorithms to three heterogeneous
cancer types and found that FL models outperform conventional deep learning models
in terms of prediction accuracy. Out of these two algorithms, the FedProx FL algorithm
outperformed the FedAvg algorithm. We tested the FL algorithms with varying numbers of
communication rounds and understood that performance did not improve after a certain
number of rounds. In addition, because of the distributed nature of FL algorithms, the
training period is significantly longer.

Although our work does not address the privacy concern, we believe existing methods
such as differential privacy and multi-party computation can be used to extend our work.
We also plan to extend our work by considering more heterogeneous datasets. However,
the application of FL is still in its infancy and will quickly mature in the coming years to
provide intelligent and privacy-enhanced services.
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