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Abstract: Fatigue driving behavior recognition in all-weather real driving environments is a challeng-
ing task. Accurate recognition of fatigue driving behavior is helpful to improve traffic safety. The
facial landmark detector is crucial to fatigue driving recognition. However, existing facial landmark
detectors are mainly aimed at stable front face color images instead of side face gray images, which
is difficult to adapt to the fatigue driving behavior recognition in real dynamic scenes. To maxi-
mize the driver’s facial feature information and temporal characteristics, a fatigue driving behavior
recognition method based on a multi-scale facial landmark detector (MSFLD) is proposed. First,
a spatial pyramid pooling and multi-scale feature output (SPP-MSFO) detection model is built to
obtain a face region image. The MSFLD is a lightweight facial landmark detector, which is composed
of convolution layers, inverted bottleneck blocks, and multi-scale full connection layers to achieve
accurate detection of 23 key points on the face. Second, the aspect ratios of the left eye, right eye
and mouth are calculated in accordance with the coordinates of the key points to form a fatigue
parameter matrix. Finally, the combination of adaptive threshold and statistical threshold is used to
avoid misjudgment of fatigue driving recognition. The adaptive threshold is dynamic, which solves
the problem of the difference in the aspect ratio of the eyes and mouths of different drivers. The
statistical threshold is a supplement to solve the problem of driver’s low eye threshold and high
mouth threshold. The proposed methods are evaluated on the Hunan University Fatigue Detection
(HNUFDD) dataset. The proposed MSFLD achieves a normalized mean error value of 5.4518%, and
the accuracy of the fatigue driving recognition method based on MSFLD achieves 99.1329%, which
outperforms that of state-of-the-art methods.

Keywords: deep learning; facial landmark detector; fatigue driving recognition; multi-scale

1. Introduction
1.1. Background

Fatigue driving refers to the phenomenon of psychological and physiological dysfunc-
tion of drivers due to excessive mental and physical exertion during long-term driving.
When a driver is fatigued, the physiological function, recognition, and control ability de-
cline, and the driver cannot respond to the sudden accident in time, thus seriously affecting
safe driving. According to a research by the World Health Organization, about 1.24 million
people in the world die from road safety accidents every year, causing economic losses
of tens of billions of dollars [1]. The Statistical Yearbook of Traffic Accidents estimates
that about 17% of road traffic accidents are related to driver fatigue. A survey in Canada
reported that 20% of fatal collisions involved fatigue [2]. Another survey in Pakistan re-
ported 34% of road accidents were related to fatigue [3]. According to a US survey, 20% of
fatal accidents are caused by drowsy drivers [4]. In the EU, fatigue driving leads to 20% of
commercial transport crashes [5]. If drivers are reminded half a second in advance, nearly
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60% of traffic accidents can be effectively avoided. Therefore, it is necessary to accurately
recognize the fatigue driving state of drivers and issue warnings in time for traffic safety.

1.2. Motivation

Researchers around the world have carried out various studies on fatigue driving
identification. From the dataset perspective, available datasets includes the yawning detec-
tion dataset (YawDD), the multi-facial action yawning dataset (MFAY), and NTHU drowsy
driver detection dataset (NTHU-DDD) [6–8]. YawDD is a public yawning detection dataset,
which includes normal, talking/singing, and yawning driving behaviors. Vehicles are
stationary in the YawDD dataset. In terms of recognition methods, deep learning methods
have been used to recognize fatigue driving behavior, and achieved high accuracy [9,10].
Given that fatigue driving behavior is a fine-grained activity, the focus should be on areas
such as eyes and mouth. Savas et al. proposed a multi-tasking convolutional neural net-
work model to detect driver fatigue. The Dlib algorithm is used to identify a driver’s eye
and mouth information [9]. Then, the system determines the fatigue parameters through
a multi-task ConNN model. Finally, the duration of eye closure and the frequency of
yawning are calculated, which can be used to determine the driver’s fatigue level. Liu et al.
proposed a multi task cascaded convolutional neural network (MTCNN) to detect the face
and locate key points [10]. Then, the fatigue parameters of eyes and mouths are calculated
through key points. Finally, two fatigue characteristic parameters are fused to judge the
fatigue of drivers according to the PERCOS criterion and the fuzzy reasoning principle.
However, enhancing the accuracy of fatigue driving behavior recognition is insufficient
owing to the following reasons:

(1) The existing fatigue driving behavior recognition methods obtain the opening and
closing state of eyes and mouths through the annotation frames or calculate the aspect
ratio of eyes and mouth by annotating key points. If the detection accuracy of facial
key points is low, then the recognition accuracy of fatigue driving behavior becomes
low. Therefore, it is necessary to design a high-accuracy facial landmark detector.

(2) Most existing fatigue driving decision models use fixed thresholds to recognize drive
fatigue. However, under the condition of fatigue driving, the aspect ratios of the eyes
and mouths of different drivers vary. Therefore, the threshold value of the aspect ratio
of the eyes and mouth of each driver in the fatigue driving state is different, requiring
dynamic changes in the threshold value.

(3) At present, the public datasets of fatigue driving behavior mainly focuses on yawning
behavior and rarely involves dozing behavior. The public dataset of facial key point
detection rarely contains driver behavior images, and the task of manually marking
68 or 98 key points is arduous. Therefore, a dataset of driver behavior images needs
be built. The dataset should consider reducing the number of key points manually
marked in each image and various driving behavior types, including dozing, yawning,
talking and normal.

1.3. Our Contributions

This study proposes a deep learning method to improve the detection accuracy of
facial key points and applies it to the recognition of fatigue driving behavior. The main
contributions of this study are outlined below.

(1) A novel deep learning framework called Multi-scale Facial Landmark Detector (MS-
FLD) is proposed to perform facial 23 key point detection. The MSFLD model replaces
all the bottleneck layers in the traditional facial landmark detector with inverted
residual blocks and increases the number of multi-scale fully connected layers, which
reduces the number of model parameters. Thus, the proposed MSFLD can improve
the detection accuracy of facial key points while keeping the detection speed constant.

(2) A MSFLD-based method is proposed for fatigue driving behavior recognition. The
proposed method uses a spatial pyramid pooling and multi-scale output (SPP-MSFO)
detection model to obtain the face region, detects 23 key points through MSFLD, calcu-
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lates the fatigue parameter matrix according to the key points, and uses the combination
of adaptive threshold and statistical threshold to determine the driver’s fatigue status.
This method not only improves the accuracy of fatigue driving behavior recognition, but
also reduces the workload of labeling facial key points in dataset images.

(3) In the proposed fatigue driving recognition method, a driving behavior judgment
strategy combining an adaptive threshold and statistical threshold is presented. The
adaptive threshold addresses the problem of differences in the aspect ratio of the
eyes and mouth of different drivers. The statistical threshold solves the problem that
the adaptive threshold of the eyes is too low or the adaptive threshold of the mouth
is too high. The combination of the two can avoid misjudgment and improve the
recognition accuracy of driving behavior.

(4) The Hunan University Fatigue Driving Detection Dataset (HNUFDD) is built. The
HNUFDD dataset includes yawning, dozing, talking, mouth closed and normal driving
behavior types, and annotates 23 key points in the driver’s face area. The proposed
method is evaluated on the HNUFDD dataset, and the results show the superior perfor-
mance of the proposed methods in comparison with state-of-the-art methods.

The rest of this study is organized as follows: Section 2 reviews related work. Section 3
proposes a fatigue driving recognition method based on multi-scale facial landmark detec-
tor. Experimental verification is given in Section 4. Section 5 concludes this study.

2. Related Work

In this section, the methods of facial landmark detection and fatigue driving recogni-
tion are described.

2.1. Facial Landmarks Detection

Facial landmark detection is one of the key elements of fatigue driving recognition,
and the object is to obtain key information about eyebrows, eyes, mouth and nose in fatigue
driving recognition [11,12]. In recent years, many researches have been carried out on facial
landmark detection [13–15]. With the superior performance of deep learning, Sun et al.
first introduced a cascaded convolutional network for facial key point detection [16]. The
proposed method only recognizes five facial key points, although its speed is fast. To
improve the precision of facial key point recognition, Zhang et al. proposed a deep cascaded
multitask convolutional neural network (MTCNN), which can realize face detection and
key point detection from coarse to fine [17]. However, the operation of this algorithm
is complicated. Deng et al. proposed a robust single-stage facial landmark detector,
which adopts a multi-task learning strategy to predict face boxes, facial landmarks, and
correspondence of each facial pixel simultaneously [18]. However, the size of the model
increases when the ResNet50 network is used to train the retina face model. Guo et al.
proposed a practical facial landmark detector, which consists of two subnets: a backbone
network and an auxiliary network [19]. The proposed method is an end-to-end single-stage
network capable of predicting 68 key points. However, 68 key points must be manually
annotated for each image in the dataset. Liu et al. proposed a Densely U-Nets Refine
Network (DURN), which is composed of DU-Net and Refine-Net, for facial landmark
localization [20]. The proposed method can predict 106 key points, which contains more
structural information than 68 key points; however, 106 key points must be manually
annotated for each image in the dataset. Hassaballah et al. proposed a deep learning-based
method using cascaded regression for coarse-to-fine detection of facial landmarks [21]. This
proposed mothod is called coordinate regression with heatmap coupling (CR-HC). The
method is composed of two-stage cascaded CNNs that are coupled with a heatmap module.
The results show the performance of the method.

The above methods validate its performance on public datasets such as 300 W, AFLW,
WIDER FACE, FDDB, and WFLW, but these datasets have few images of driver behaviors.
Training network models based on these public datasets is not good for detecting the key
points in driver behavior images. Therefore, a dataset including driver behavior images
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need to be constructed. Such dataset should consider reducing the number of manually
annotated key points in each image, and can calculate the fatigue driving parameters.

2.2. Fatigue Driving Recognition

Fatigue driving recognition can be divided into five categories based on input features:
subjective report, biological, physical, vehicular, and hybrid [22]. The subjective report
recognition method is based on a questionnaire survey of drivers, and a fatigue level is
obtained after analysis and comparison according to the main symptoms of the respondents
and the number of occurrences of various symptoms [23]. The advantage of this recognition
method is that no invasive problems occur, and the disadvantage is that the process of
measuring fatigue is not synchronized with the driving process and is easily affected by
the subject’s emotional and physical condition. The recognition method based on the
driver’s biological features usually has high accuracy, but the recognition process requires
special equipment to measure biological signals such as electroencephalography [24],
electrocardiogram [25], electro-oculography [26], and surface electromyogram [27]. The
cost of the equipment is high, and the contact-type signal acquisition method is available.
However, such equipment causes certain interference to drivers when driving, and most
drivers hardly receive these devices. The recognition method based on vehicular features
uses indicators such as steering wheel movement and lane offsets for recognition [28].
It only needs to obtain vehicle information and does not cause any interference to the
driver. However, this recognition method is affected by road conditions and driver skills.
The recognition method based on physical features uses image processing methods to
detect the changes of the driver’s individual features such as eyes, mouth, head, and
facial expressions, to monitor the driver’s fatigue states [29]. With the advantages of high
accuracy and non-contact detection, this recognition method has become the mainstream of
current research. However, the performance of this method is affected by objective factors,
including light, shielding of glasses or masks, and vehicle movement. As a result, the
recognition accuracy varies greatly in different environments, and its robustness is low.
Moreover, user facial data needs be collected during the detection process, which involves
user privacy issues. The recognition method based on hybrid features fuses various features
for fatigue detection.

In the past few years, the deep learning methods on fatigue driving recognition have
been developed with the success of computer vision [30–34]. Li et al. proposed a fatigue
driving detection algorithm based on facial multi-feature fusion [30]. In this method, the
improved YOLOv3-tiny convolution neural network is used to capture the face area, and
the evaluation parameters of eye feature vector and oral feature vector are introduced. The
driver’s eye closure time and yawning frequency are calculated through the driver fatigue
evaluation model to evaluate the driver’s fatigue state. Du et al. put forward a multi-
mode fusion recurrent neural network model by integrating the three characteristics of
heart rate, mouth opening degree and eye opening degree, which can accurately recognize
the fatigue driving state [31]. Raja et al. proposed a fatigue detection system based on
multi-task cascaded convolutional neural networks [32]. The method uses a multi task
cascaded convolutional neural network to predict the facial boundary box and five key
points and infers the fatigue level of drivers by the percentage of closed eyes to pupils and
the frequency of yawning and nodding. Jia et al. proposed a fatigue driving recognition
algorithm based on deep learning and facial multi-index fusion [33]. The algorithm uses
an improved MTCNN to detect the key points of the face, then determines the driver’s
eyes and mouth area according to the key points of the face, and finally judges the driver’s
fatigue state through E-MSR Net.

However, the existing methods for extracting fatigue features, such as eyes and mouth,
are not accurate enough, and most of them ignore the time information of fatigue features
and the relationship between features, thus reducing recognition accuracy. In contrast to
simple static image classification and recognition, fatigue driving behavior is a continuous
action. Simply using a single static image for classification and recognition loses impor-
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tant temporal information. Therefore, the recognition of fatigue driving behavior should
consider not only the opening and closing state of the eyes and the opening degree of the
mouth, but also the duration or number of these actions.

3. Fatigue Driving Recognition Method Based on MSFLD

In this section, a fatigue driving recognition method based on the multi-scale fa-
cial landmark detector is proposed, including the overall architecture of the proposed
method, the SPP-MSFO detection model, the MSFLD model and its learning algorithm, the
parameter matrix of facial fatigue features, and driving behavior decision.

3.1. Overview of Architecture

The fatigue driving recognition method based on the MSFLD is mainly composed
of four parts: the SPP-MSFO detection model, the MSFLD model, facial fatigue feature
parameter matrix, and driving behavior decision module. The architecture overview
diagram of the proposed method is shown in Figure 1. First, the input test video is framed,
and the face region image is obtained through the SPP-MSFO detection model. Then, the
MSFLD model is used to obtain the coordinates of 23 key points, and the aspect ratios of the
left eye right eye and mouth are calculated in accordance with the coordinates of the key
points to form a fatigue parameter matrix. Finally, the driving behavior decision module is
used to judge whether the driver is fatigue driving, and the decision result is obtained as
the output.
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Different from the existing facial key point detection techniques, this study proposes
a method of using 23 key points. The facial key points are detected using the MSFLD
model, and the number of key points is 23 instead of 68. The reasons for this are as follows:
(1) Fatigue characteristic parameters, such as eye aspect ratio, and mouth aspect ratio can
be calculated by using 23 key points. (2) Any model commits errors when detecting key
points. The more key points, the greater the accumulated error when calculating fatigue
characteristic parameters. That is, the number of facial key points has an effect on the
accuracy of fatigue driving behavior recognition. (3) Marking facial key points is time-
consuming. It is estimated that the workload of labeling 68 key points in the facial images
of a dataset is nearly 3 times that of labeling 23 key points. Can fatigue driving detection
be achieved without compromising accuracy using 23 key points? To our knowledge, this
is the first time to use 23 key points for fatigue driving detection.

3.2. SPP-MSFO Detection

SPP-MSFO detection uses the SPP-MSFO model to detect facial regions from framed
images. The SPP-MSFO model is a lightweight, single-stage object detection model. It
consists of a backbone module, a spatial pyramid pooling (SPP) module and multi-scale
feature output (MSFO) module, as shown in Figure 2.
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Figure 2. Structure of the SPP-MSFO model.

The SPP-MSFO model is based on the YOLOV3 tiny detection model with three
innovations: (1) At the end of the backbone module, a convolutional operation with
512 channels and a convolution kernel of 3 × 3 is added. Branches are introduced from the
maximum pooling layer of the sixth layer and the convolution layer of the ninth layer of the
backbone module to facilitate subsequent feature fusion. (2) After the backbone module,
the SPP module is added to realize the fusion of local features and global features, increase
the size of receptive field, and enrich the expression ability of the feature map. (3) Adding
the third scale (52 × 52) output of the characteristic map makes the receptive field smaller
and improves the detection accuracy of the acquired face region image.

3.3. Model of The MSFLD and Its Learning Algorithm

The object of the multi-scale facial landmark detector is to detect facial key points for
judging driving fatigue from the SPP-MSFO, including the key points of eyes and mouth.
In this part, the MSFLD model and its learning algorithm are proposed.
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3.3.1. The MSFLD Model

The MSFLD model is used to predict landmark coordinates, and the framework is
shown in Figure 3. First, an image with a size of 112 × 112 × 3 is input into the model, and
one pointwise convolution and one depth-wise convolution are performed. The results pass
through four inverted bottleneck blocks and two convolution layers, greatly reducing the
amount of computation and speeding up the operation of the model. Then, four average
pooling layers and multi-scale fully connected layers are conducted. In this manner, the
receptive field is increased. Thus, the global information of the face can be better obtained
and the positioning accuracy of the model can be improved. Finally, the coordinates of
23 key points are obtained as the output of the MSFLD model.
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Figure 3. Architecture of the MSFLD model.

Table 1 lists the configuration of each module of the MSFLD model. Each line rep-
resents a sequence of identical layers, repeating n times. All layers in the same sequence
have the same number c of output channels. The first layer of each sequence has a stride s.
The expansion factor t is always applied to the input size. p is for padding. As shown in
the table, the convolution kernel size is 3 × 3 in the first two convolutions. In the inverted
bottleneck blocks, convolution kernels of size 3 × 3 and 7 × 7 are used. The scales of the
four pooling layers are 56 × 56, 28 × 28, 14 × 14 and 7 × 7, respectively.

Table 1. MSFLD network configuration.

Input Operator t c n s p

112 × 112 × 3 Conv 3 × 3 − 64 1 2 1
56 × 56 × 64 Depth wise Conv 3 × 3 − 64 1 1 1
56 × 56 × 64 Inverted bottleneck 2 64 3 2 1
28 × 28 × 64 Inverted bottleneck 3 96 3 2 1
14 × 14 × 96 Inverted bottleneck 4 144 4 2 1
7 × 7 × 144 Inverted bottleneck 2 16 1 1 1
7 × 7 × 16 Conv 3 × 3 − 32 1 1 1
7 ×7 × 32 Conv 7 × 7 − 128 1 1 0

(S1) 56 × 56 × 64 Avg pool − 64 1 2 1
(S2) 28 × 28 × 64 Avg pool − 96 1 2 1
(S3) 14 × 14 ×96 Avg pool − 144 1 2 1
(S4) 7 × 7 × 144 Avg pool − 128 1 1 0
(S5) 1 × 1 × 128 − − 128 − − −
In_feature = 496 Full connection − 46 1 − −
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3.3.2. Learning Algorithm of the MSFLD

The 23 key points of the driver’s face are obtained by the trained MSFLD. The training
strategy of the MSFLD is proposed on the basis of the above analysis, as shown in Algorithm 1.

Algorithm 1: Training strategy of MSFLD

Input: Given training samples 17441 face region images of size 112 × 112,
X = {X1, X2, . . . , XM} and their 23 key point annotations, Y = {Y1, Y2, . . . , YM}.
Output: The well trained model MSFLD
1: Construct the MSFLD model shown in Figure 3;
2: Initialize the parameters θ(w, b, α), set the batch size (i.e., 96);
3: Repeat
4: Randomly select a batch instances Xb from X;
5: Forward learn training samples through the MSFLD model;
6: Compute the loss function L2 by Equation (1);
7: Propagate the error back-through MSFLD and update the parameters of MSFLD;
8: Find L2 by minimizing L2 with Xb;
9: Until end condition is satisfied.

The key details are illustrated as follows:

(1) In Line 1, the structure of the MSFLD model is constructed. This model consists
of convolutions, inverted bottleneck blocks, average pooling, and multi-scale fully
connected layers. The overview of the MSFLD architecture is illustrated in Figure 3.

(2) In Line 2, parameters of the MSFLD model, including the weight value w, bias b,
learning rate α, and batch size, are initialized. The initialization scheme for these
parameters is described in detail in Section 4.

(3) In Lines 3–9, the strategies of forward learning and backward propagation are used to
train the MSFLD model. In the backward propagation, the model uses Adam to optimize
parameters. In Line 6, the loss function L2 is defined as shown in Equation (1).

L2 =
1
M

M

∑
m=1

N

∑
n=1

wn‖dm
n ‖2

2 (1)

where M denotes the number of training images in each process, N is the pre-defined
number of landmarks to be detected for each face, wn is the weight, ‖dm

n ‖ designates a
certain metric to measure the distance of the n-th landmarks of the m-th input [14].

(4) In Line 9, model training is completed until the end condition is met. The iteration
limit and early stop policy are used as the end conditions. At the end of the training,
the MSFLD model with optimal parameters for 23 key point detection is obtained.

3.4. Facial Fatigue Feature Parameter Matrix

The parameter matrix of facial fatigue feature is the basis for judging driver fatigue,
and its value is calculated according to facial key points obtained from the MSFLD model.
This part presents the feature extraction of eye fatigue, the feature extraction of mouth
fatigue, and the calculation of fatigue parameter matrix.

3.4.1. Feature Extraction of Eye Fatigue

The eyes are an important fatigue characterization parameter and can indicate whether
the driver is dozing off according to the degree of eye opening and closing. Based on
23 key points obtained by the MSFLD, 8 points are selected to extract eye closure features,
including 4 in the left eye and 4 in the right eye. The coordinates of the four key points of
the left eye are (x6, y6), (x7, y7), (x8, y8), (x13, y13). The coordinates of the four key points
of the right eye are (x9, y9), (x10, y10), (x11, y11), (x12, y12). It is noted that x represents the
abscissa and y represents the ordinate. The left eye aspect ratio (EAR) EARl and the right
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eye aspect ratio EARr are used to judge the driver’s eye opening and closing state. EARl
and EARr are calculated as Equations (2) and (3), respectively.

EARl =
y13 − y7
x8 − x6

(2)

EARr =
y12 − y10
x11 − x9

(3)

where x6, x8, x9, and x11 are the abscissas of the key points of the left eye and the right eye,
respectively. y7, y13, y10, and y12 are the vertical coordinates of the key points on the face
of the left eye and the right eye, respectively.

3.4.2. Feature Extraction of Mouth Fatigue

The mouth feature is also an important fatigue characterization parameter. By judging
the opening degree of the mouth, it can be judged whether the driver is in a yawning state.
The mouth usually has three states: closing, talking and yawning. The driver yawns with
his mouth wide open. That is, when yawning, the height of the mouth increases and the
width decreases. The mouth aspect ratio MAR is used to judge the driver’s mouth opening
and closing state, and is computed as Equation (4).

MAR =
y21 − y19
x20 − x18

, (4)

where x18, x20 are the abscissas of the two key points on the left and right of the mouth,
y19, y21 are the ordinates of the two key points above and below the mouth.

3.4.3. Calculate the Fatigue Parameter Matrix

On the basis of the coordinates of facial 23 key points in each frame, the aspect
ratios of the left eye, the right eye and the mouth can be calculated in accordance with
Equations (2)–(4). The fatigue parameter matrix is constructed by using EARl, EARr, and
MAR of each frame, as shown in Equation (5). In Equation (5), the first column represents
the number of frames, the second, third and fourth columns represent the aspect ratio of
the left eye, right eye and mouth in the corresponding frame, respectively.

t1 EARl1 EARr1 MAR1
t2 EARl2 EARr2 MAR2
...

...
...

...
tn EARln EARrn MARn

, (5)

3.5. Driving Behavior Decision Module

Based on the above parameter matrix, the method of combining adaptive threshold
and statistical threshold is proposed for fatigue driving decision.

3.5.1. Adaptive Threshold Calculation

The adaptive threshold is obtained by calculating the eye aspect ratio and mouth
aspect ratio of the first p frames of each test video and then taking the average value, where
p is an integer. The adaptive threshold of eyes EARat and the adaptive threshold of mouth
MARat are calculated as shown in Equations (6) and (7). The value of adaptive threshold is
dynamical, which effectively deals with the problem of different aspect ratio of eyes and
mouth of different drivers.

EARat =

1
p ∑

p
1 EARl +

1
p ∑

p
1 EARr

2
(6)
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MARat =
1
p

p

∑
1

MAR (7)

3.5.2. Statistical Threshold Calculation

The statistical threshold is an average value based on different driving behavior types
and different drivers. It mainly solves the problem wherein the adaptive threshold may have
a low eye threshold and a high mouth threshold when testing fatigue driving behavior videos.

The steps of statistical threshold are as follows: First, the average of the eye aspect
ratio and mouth aspect ratio for normal, closed mouth, and talking driver behavior are
calculated. Normal, closed mouth, and talking are non-fatigue driving behavior, and 23 key
points have been manually marked in the dataset. Then, the eye aspect ratio of doze driving
behavior and the mouth aspect ratio of yawn driving behavior are computed. Finally, the
eye aspect ratio of non-fatigue driving behavior and the eye aspect ratio of doze driving
behavior are averaged. The result obtained is the statistical threshold of eyes, denoted as
EARst. EARst is calculated as shown in Equation (8).

EARst =
1
m ∑m

1 EARnormal +
1
n ∑n

1 EARcm + 1
u ∑u

1 EARtalk +
1
k ∑k

1 EARdoze

4
(8)

where EARnormal, EARcm, EARtalk, and EARdoze are the eye aspect ratio for normal, closed
mouth, talking, and doze driving behavior, respectively. m, n, u and k are the number of
samples of normal, closed mouth, talking and dozing in the dataset marked with 23 key
points, respectively.

Similarly, the statistical threshold of the mouth MARst is obtained by averaging the
mouth length width ratio of non-fatigue driving behavior and the mouth width ratio of
yawn driving behavior, as shown in Equation (9).

MARst =
∑m

1 MARnormal +
1
n ∑n

1 MARcm + 1
u ∑u

1 MARtalk +
1
v ∑v

1 MARyawn

4
(9)

where MARnormal, MARcm, MARtalk, and MARyawn are the mouth aspect ratio for normal,
closed mouth, talking, and yawn driving behavior, respectively. m, n, u and v are the
number of samples of normal, closed mouth, talking and yawning in the dataset marked
with 23 key points, respectively.

3.5.3. Fusion Strategy of Adaptive and Statistical Thresholds

When the test video is input to the model, the driving behavior type is unknown. If
the input test video is a dozing driving behavior, the adaptive threshold of the eyes is
too low. In this case, it will lead to errors in the judgment of driving behavior. Therefore,
the threshold of the eye aspect ratio of fatigue driving behavior is obtained by taking the
maximum value of the adaptive threshold and the statistical threshold, which can avoid
misjudgment. The combined threshold of eyes EARct was shown in Equation (10).

EARct = max{EARat , EARst}. (10)

Similarly, if the input test video input is a yawning driving behavior, the adaptive
threshold of the mouth is too high. This will also lead to misjudgment of driving behavior.
Thus, the threshold of the mouth aspect ratio of fatigue driving behavior is obtained by
taking the minimum value of the adaptive threshold and the statistical threshold, which
can avoid misjudgment. The combined threshold of mouth MARct is calculated as shown
in Equation (11).

MARct = min{MARat , MARst}. (11)
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4. Experiments

In this section, the effectiveness of the proposed approach is evaluated on the HNUFDD
dataset, including the convergence and parameter sensitivity of the models and the accuracy
in comparison with existing methods.

4.1. Settings

This subsection describes the datasets, experimental conditions, metrics and baselines.

4.1.1. Dataset Description

The HNUFDD dataset was used in our experiments. To collect the HNUFDD dataset,
our group carefully configured the following components: camera, environment, partici-
pants, and videos. The driving behavior video acquisition system, which was provided
by Kunshan Stellate Ship Intelligent Technology Co., Ltd. (Kunshan, China) was installed
in the front right side of the driver in the car. The videos were collected using an infrared
camera with fill light at a resolution of 1920 × 1080 pixels, 24-bit depth, and 25 frames per
second. To reflect varying illumination conditions, the videos were recorded from early
morning until sunset and sometimes into the evening. Moreover, the weather varies from
sunny to rainy. To reflect a real driving environment, we recorded some driving behavior
videos while the car was moving. The participants were asked to sit in the driver’s seat and
wear their seat belts. The dataset contained videos of 34 male and 16 female volunteers
with different ages and facial characteristics. People with and without glasses, different
hairstyles and different clothing participated. In the dataset, most participants were filmed
with videos of five categories of driving behavior, i.e., normal, dozing, yawning, mouth
closed, and talking. The videos lasted about 15 s. This dataset has a total of 346 videos.

4.1.2. Dataset Preprocessing

The data obtained from the real scene is collected into the dataset through the process
of framing, selection, marking. First, each video was converted into images by framing
processing. Then, images that correspond to each type of driving behavior were manually
selected and retained. The dataset contained five categories: normal, dozing, yawning,
closed-mouth, and talking driving behavior, with a total of 22,007 images, including
17,441 images in the training set and 4566 images in the test set. Finally, the eyebrows, eyes,
nose, and mouth of the driver image were labeled with 23 key points by “labelme” software
(version 5.0.1), as shown in Figure 4, to create a labeled dataset.
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4.1.3. Experimental Conditions

The experiments were conducted on a 64-bit Ubuntu 20.04 platform with Intel x299
Core i9-10900X CPU @ 3.7 GH, NVIDIA GeForce RTX 3090 and 48 GB memory. Python
language and PyTorch framework were used.

The size of the input face region images is 112 × 112 × 3, where 3 is the number of
channels of images, and the height and width of the image are 112. Parameter initialization
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in forward pass and backward fine-tuning is important for model training. In this study,
the weights between layers were initialized randomly and obeyed uniform distribution.
All biases were initialized as zero. Model optimization used stochastic gradient a with
momentum of 0.9, learning rate of 0.0001, and batch size of 96. All the deep learning models
were trained with the same optimization scheme.

4.1.4. Evaluation Metrics

To evaluate the performance of the proposed methods, normalized average error
(NME) and accuracy are used. NME is used to measure the performance of the proposed
MSFLD model, which is a common evaluation index for facial key point detection. NME is
the average of the normalized error of all annotation landmarks, and is defined:

NME =
1
N

N

∑
k=1

‖pk − gk‖
2
2

d
, (12)

where pk and gk are the coordinates of the kth predicted key point and the real key point,
respectively. d is the Euclidean distance between the key points of the two outer eye corners.
The smaller the NME value, the better the detection performance of the model.

Accuracy is an important index to measure fatigue driving recognition performance,
and its definition is shown in Equation (13).

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

where TP is the number of true positives, TN is the number of true negatives, FN is the
number of false negatives, and FP is the number of false positives. In performing the
evaluation experiments, if the input model is a “doze” or “yawning” video, and the test
result shows “fatigue”, MSFLD successfully detected fatigue driving behavior, i.e., the
detected result is a true positive; otherwise, the test result is classified as a false negative.
If the input model is “closed” or “normal” or “talking” video and the test result does not
display “fatigue”, the test result is classified as a true negative; otherwise, the test result is
classified as a false positive.

4.1.5. Baselines

The proposed method is compared with MTCNN [17], Retina Face [18], PFLD [19],
and DURN [20]. The detailed descriptions of the state-of-the-art methods are as follows.

MTCNN [17]: MTCNN is a multitask cascaded convolutional network, which is
composed of a proposal network (P-Net), refine network (R-Net), and output network
(O-Net), which can realize face detection and key point detection from coarse to fine. The
image pyramid of MTCNN can transform the size of the initial image. The P-Net model
is used to generate numerous candidate target regions, and the R-Net model is used to
select and regress the target regions, excluding most of the negative examples, The O-Net
model discriminates and regresses the remaining target region boxes to achieve face region
detection and key point detection.

Retina Face [18]: Retina Face is a robust single-stage facial landmark detector, which
uses a multi-task learning strategy to predict face scores, face boxes, facial landmarks, and
3D position and correspondence of each facial pixel simultaneously. Retina Face is designed
on the basis of the feature pyramids with independent context modules. The Mobile0.25
network or the Resnet50 network is used to train the Retina Face model.

PFLD [19]: PFLD is a practical facial landmark detector, which consists of two sub
subnets, i.e., the backbone network and the auxiliary network. The backbone network is
composed of two convolutional layers, four bottleneck layers, and three fully connected
layers, which are used to predict the location of feature points. The auxiliary network is
composed of four convolutional layers and two fully connected layers, which are used to
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predict face pose. The model is trained for face key point detection on the 300 W and AFLW
datasets. The size of the PFLD model is 6.6MiB.

DURN [20]: DURN is a densely U-nets refine network for facial landmark localization,
which is composed of DU-Net and Refine-Net. The DU-Net model consists of three DU-Net
cascades, each of which contains four multi-scale intermediate supervisions. The DURN
model uses MobileNetv3 as the backbone to extract features, performs feature fusion
through PAN and SSH, performs multi-scale prediction on three scales (1/8, 1/16, 1/32),
and adds integral regression to obtain the face box and key point coordinates.

4.2. Experimental Results

In this subsection, the effectiveness of the proposed method is evaluated in terms of
model convergence and compared with baselines.

4.2.1. Convergence Analysis of the MSFLD

To observe the convergence of MSFLD, the training process was analyzed. In the
experiment, we set parameter initialization. The task is to detect 23 key points of faces
from the HNUFDD dataset. During the training process, the Adam optimizer was used
to update the parameters, the batch size was set to 96, the initial learning rate was 0.0001,
and a total of 300 epochs were trained. Figure 5 illustrates the curve of the training loss
with respect to the number of epochs. The curve becomes flat as the number of training
epochs increases. Starting from the 64th epoch, the train loss of MSFLD stabilized. This
result indicates the convergence of MSFLD.
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4.2.2. Ablation Study of the MSFLD

We conducted experiments on the HNUFDD dataset using different configurations
of Bottleneck, Inverted bottleneck and fully connected layers of different scales. The
experimental results are shown in Table 2. As can be seen from Table 2, the size of the
model is reduced by 0.5MiB by replacing Bottleneck with Inverted bottleneck, indicating
that the model reduces the amount of parameters; on the basis of Inverted bottleneck, a
56 × 56 and 28 × 28 multi-scale fully connected layer is added, that is, increasing from
3 scales to 5 scales, the NME value is reduced by 0.9327%, indicating that the localization
accuracy of the facial landmark detector is improved. This result demonstrates the validity
of the MSFLD model design.
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Table 2. Effectiveness of using different configuration in the MSFLD model on the HNUFDD dataset.

Formulation NME (%) Model Size (MiB)

Bottleneck + S1 + S2 + S3 6.4803 6.6
Inverted bottleneck + S1 + S2 + S3 6.3845 6.1

Inverted bottleneck + S1 + S2 + S3 + S4 + S5 (MSFLD) 5.4518 6.2

4.2.3. Facial Key Point Detection

To verify the performance of the proposed MSFLD, experiments on facial key point
detection were carried out on the HNUFDD dataset. The detection results with 23 key
points are shown in Figure 6 and Table 3 shows the comparison results on the HNUFDD
dataset for facial key point detection.
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Table 3. Comparison of different methods on the HNUFDD dataset for facial key point detection.

Method NME (%) Model Size (MiB) Excution Time (s)

MTCNN [17] 9.0951 1.97 10.72
Retina Face _Resnet50 [18] 5.7063 104.7 8.18

PFLD [19] 6.4803 6.6 4.29
DURN_ Mobilenetv3 [20] 9.1648 3.6 6.02

MSFLD 5.4518 6.2 4.82

As can be seen from Table 3, the NME value using the MSFLD is 5.4518%, which is
lower than that of other methods. This result may benefit from using the inverse residual
blocks instead of the traditional convolution operations and increasing the number of
multi-scale fully connected layers. Such results indicate that the MSFLD is suitable for
face key point detection. For example, the NME value using the PFLD model is 6.4803%,
and that using the MTCNN model is 9.0951%. The NME of the proposed method is
1.0285% lower than the former and 3.6433% lower than the latter. The NME value using the
Retina_Resnet50 model is 5.7063%, and the model size is 104.7MiB. The NME value and
model size value of our proposed MSFLD model are 0.2545% lower, and the model size
value 98.5MiB lower than those of the Retina_Resnet50 model, respectively. To measure the
feasibility of the proposed MSFLD method, the execution time is calculated by detecting
images in the test set. As can be seen from Table 3, the MSFLD method has low execution
time for facial key points detection. Such results indicate that the proposed MSFLD is more
effective than state-of-the-art methods in real scenes for face key point detection.

4.2.4. Fatigue Driving Recognition

To evaluate the performance of the proposed fatigue driving recognition method, this part
carried on the experiments from aspects of parameter sensitivity and threshold combination.

This experiment is to explore the influence of adaptive threshold with changing p value
on fatigue driving decision performance. The adaptive threshold of the video is obtained
by calculating the eye aspect ratio and mouth aspect ratio of the first p frames of each test
video and then taking the average value. Table 4 shows the results with different adaptive
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thresholds on the HNUFDD dataset for fatigue driving behavior recognition. When p is 30,
the accuracy rate is up to 90.4624%, which was higher than that of other p values.

Table 4. Comparison with different adaptive thresholds on the HNUFDD dataset for fatigue driving
behavior recognition.

p Accuracy (%)

30 90.4624
35 89.5954
40 89.0173
50 87.8613

This experiment investigates the impact of different statistical thresholds on fatigue
driving decision performance. The statistical thresholds are formed as follows: in the
dataset with 23 key points manually marked, the average values of the eye aspect ratio
and mouth aspect ratio of 4616 images under the three driving behaviors of normal, mouth
closed and talking were 0.3729 and 0.4559, respectively. Then, the average eye aspect ratio
of the 1833 images under the dozing driving behavior was 0.2452; the average mouth
aspect ratio of the 1539 images under the yawning driving behavior was 0.8299. Lastly, the
statistical thresholds of the eyes and the mouth were 0.3091 and 0.6429, respectively. Table 5
shows the recognition accuracy of fatigue driving behavior when EAR and MAR take
different values. When EAR = 0.3091 and MAR = 0.6429, the accuracy rate is 94.5087%,
which is higher than that of other EAR and MAR values.

Table 5. Comparison with different statistical thresholds on the HNUFDD dataset for fatigue driving
behavior recognition.

EAR MAR Accuracy (%)

0.2452 0.8299 83.5260
0.3729 0.4559 44.5087
0.3091 0.6429 94.5087

This experiment discusses the performance of the proposed method with the dif-
ferent combination thresholds. The driver’s eye state can be judged in accordance with
Equation (10). EARct is set to the maximum value of adaptive threshold and the statistical
threshold. When the aspect ratio of the driver’s eye is lower than EARct, the driver’s eyes
is considered closed at this moment. If it is higher than EARct, it is considered that the
driver’s eyes are open at this moment. Similarly, the driver’s mouth state is judged in
accordance with Equation (11). The combined threshold of mouth MARct was set to the
minimum of the adaptive threshold and the statistical threshold. When the aspect ratio of
the mouth is higher than MARct, driver’s mouth is considered as yawning at this moment.
When it is lower than MARct, it is considered that the driver’s mouth is closing or talking
at this moment. In more than 55% of the images in the test video, if the eye aspect ratio is
less than the set threshold EARct, or the mouth aspect ratio is greater than the set threshold
MARct, the video is judged to have fatigue driving. Different combination thresholds are
obtained when p, EAR, and MAR take different values. The recognition accuracy of fatigue
driving behavior on the HNUFDD dataset is shown in Table 6. When p = 30, EAR = 0.3091
and MAR = 0.6429, the recognition accuracy of the proposed method with the combined
threshold is 99.1329, which is higher than that of other combined thresholds.
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Table 6. Comparison with different combination thresholds on the HNUFDD dataset for fatigue
driving behavior recognition.

p EAR MAR Accuracy (%)

30 0.3091 0.6429 99.1329
35 0.3091 0.6429 97.9769
40 0.3091 0.6429 97.1098
50 0.3091 0.6429 95.9538

This experiment is to study the impact of the proposed method with different threshold
strategies on the performance of fatigue driving recognition. As can be seen from Table 6,
the best result is obtained when p = 30, EAR = 0.3091 and MAR = 0.6429. In this
experiment, the methods of fatigue driving recognition with adaptive threshold, statistical
threshold and combined threshold are conducted according to this set of values. Table 7
shows the comparison of the fatigue driving recognition methods with different thresholds
on the HNUFDD dataset. The result shows that the accuracy of the method using combined
threshold is higher than the other two methods.

Table 7. Comparison with different thresholds on the HNUFDD dataset for fatigue driving be-
havior recognition.

Threshold Strategy Accuracy (%)

Adaptive threshold 90.4624
Statistical threshold 94.5087

Combination threshold 99.1329

This experiment is conducted to compare the performance of the proposed method
with existing methods for fatigue driving recognition. Table 8 shows the comparison results
on the HNUFDD dataset for fatigue driving behavior recognition. The MSFLD achieves
the accuracy of 99.1329%, which is higher than that of other four methods. Such results
indicate that the proposed MSFLD is more effective than the state-of-the-art method in real
scenes for fatigue driving behavior recognition.

Table 8. Comparison with existing methods on the HNUFDD dataset for fatigue driving be-
havior recognition.

Research Methodology Accuracy (%)

Liu et al. [10] MTCNN 68.2081
Deng et al. [18] Retina Face _Resnet50 82.3699
Guo et al. [19] PFLD 73.4104
Liu et al. [20] DURN_ Mobilenetv3 67.9191

Proposed method MSFLD 99.1329

5. Conclusions

In this study, we have presented a fatigue driving recognition method based on
the MSFLD. The proposed method is composed of face region detection, facial key points
detection, parameter matrix construction, and fatigue driving decision. The MSFLD method
based on deep learning are proposed to adaptively detect facial key points. For fatigue
driving decision, the method of combining with adaptive threshold and statistical threshold
is proposed to avoid misjudgment of fatigue driving in the real scenario. The propsed
MSFLD method achieves NME of 5.4518 for facial 23 key points detection, and the proposed
fatigue driving recognition method obtains an accuracy of 99.1329% on the HNUFDD
dataset. Thus, the proposed method based on the MSFLD improves the performance of
fatigue driving recognition while reducing the workload of labeling facial key points.
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In our future work, multimodal data (i.e., head posture, vehicle driving speed, ac-
celeration) will be considered to expand the fatigue parameter features to enhance the
robustness of the system. Based on these data features, the driving behavior decision
method can be improved to meet the fatigue driving detection accuracy in complex scenes.

Author Contributions: Data curation, B.S.; Funding acquisition, H.L.; Investigation, Z.M. and B.S.;
Methodology, Z.M.; Project administration, H.L.; Software, W.X. and C.S.; Writing—original draft,
W.X.; Writing—review & editing, W.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
(Grant Nos. 61971182 and 62173133) and by Natural Science Foundation of Hunan Province (Grant
No. 2021JJ30145).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Health Organization. Global status report on road safety 2013: Supporting a decade of action. Inj. Prev. 2013, 15, 286.
2. Road Safety in Canada. Available online: https://www.tc.gc.ca/ (accessed on 24 March 2022).
3. Azam, K.; Shakoor, A.; Shah, R.A.; Khan, A.; Shah, S.A.; Khalil, M.S. Comparison of fatigue related road traffic crashes on the

national highways and motorways in Pakistan. J. Eng. Appl. Sci. 2014, 33, 47–54.
4. AAA Foundation for Traffic Safety. Available online: https://www.aaafoundation.org (accessed on 10 January 2022).
5. Fatigue. Available online: https://ec.europa.eu/transport/roadsafety/ (accessed on 21 January 2022).
6. Abtahi, S.; Omidyeganeh, M.; Shirmohammadi, S.; Hariri, B. YawDD: A Yawning Detection Dataset. In Proceedings of the ACM

Multimedia Systems, Singapore, 19 March 2014; pp. 24–28. [CrossRef]
7. Yang, H.; Liu, L.; Min, W.; Yang, X.; Xiong, X. Driver Yawning Detection Based on Subtle Facial Action Recognition. IEEE Trans.

Multimed. 2021, 23, 572–583. [CrossRef]
8. Köstinger, M.; Wohlhart, P.; Roth, P.M.; Bischof, H. Annotated Facial Landmarks in the Wild: A large-scale, real-world database

for facial landmark localization. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Barcelona,
Spain, 6–13 November 2011; pp. 2144–2151. [CrossRef]
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