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Abstract: Automatic, precise, and accurate heart rate control during treadmill exercise is an interesting
topic among researchers. The human heart is a highly nonlinear system. Conventional control
techniques are not sufficient and it is difficult to accurately model the human heart. Two different
robust controllers were designed for this nonlinear system. Firstly, sliding mode control (SMC)
was implemented; SMC is robust against parametric uncertainties and external disturbance but
its robustness is not guaranteed during the reaching phase, especially in heart rate control, and
implementation of SMC requires the linear parameters of the system (human heart rate model).
In this research, the signal compression method (SCM) was used for approximately linearized
modeling of the human heart rate. The extraction of the human heart rate model using SCM requires
experiment and computation. Furthermore, it was observed in this research that SCM is not a precise
method. Therefore, integral sliding mode control (ISMC) was designed and implemented to overcome
these difficulties. By introducing an auxiliary sliding surface, the reaching phase and effect of the
perturbation on an actual sliding surface were eliminated; furthermore, implementation of ISMC does
not require the linear parameters of the system. Simulations were performed in MATLAB/Simulink
and experiments were conducted in a hospital. Six clinical subjects participated in this experiment.
Both forms of control logic were implemented during the desired heart rate tracking test. Results
showed that the desired heart rate tracking of ISMC is better than that of SMC. The tracking error
of ISMC is smaller than that of SMC. However, ISMC control output has chattering, which needs to
be reduced.

Keywords: auxiliary sliding surface; actual sliding surface; integral sliding mode control; perturbation;
sliding mode control

1. Introduction

In recent years, mortality caused by heart issues and disease has increased in South
Korea. Different advanced countries are developing community health care departments
to predict disease and health issues in advance to reduce illness rates. Similarly, statistical
analysis of different diseases and their corresponding effects provides a generic overview of
areas that require human attention. The recent statistical data indicate that cancer, followed
by heart disease, are major causes of death in South Korea [1].

The number of patients with heart disease has steadily increased. The rehabilitation of
heart patients is important for their life. Currently, there are different heart rehabilitation
centers all over the world. The main function of these centers is, through exercise, to
improve the physical health of patients, which has been damaged by heart disease. These
exercises include walking, running, cycling, and swimming. Rehabilitation centers provide
treadmills for running exercises. In South Korea, there are 11 different centers for heart
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patient rehabilitation, in which trained manpower is limited compared with the centers
in developed countries. These centers use manual techniques to achieve the desired heart
rate (prescribed by the doctor) during treadmill exercise. Due to constraints on operations,
these exercises are not safe for heart patients. Therefore, it is required that heart rates are
controlled by some automated algorithm to ensure safe implementation.

The human heart is a highly nonlinear system and it is a difficult task to develop a
precise model. In the past, different researchers have proposed unique techniques to extract
a human heart model, each having advantages and disadvantages [2–12]. Yalcinkaya
et al. [13] proposed a human heart model by considering it as a hydro-electromechanical
system. They simulated the human heart based on three main functions: hydraulic, electri-
cal, and mechanical parameters. The developed hydro-mechanical system was transformed
into an electrical domain. The corresponding simulation was carried out according to
the mathematical model or formulations obtained using the Laplace transform. Cheng
et al. [14] proposed a unique idea to obtain a nonlinear model of the human heart through
feedback interconnected systems. Recently, researchers have undertaken mathematical
modeling using artificial intelligence techniques, but these require more time to achieve a
model of the human heart rate. Li et al. [15] proposed a novel method to obtain a human
heart rate model with a reduced time span. They used the signal compression method
(SCM) to obtain a human heart rate model. In this research, SCM was used to extract an
approximately linearized human heart rate model [16].

The human heart is a nonlinear system and the design of a controller to track the
reference heart rate during treadmill exercise is a challenging task. Thus, researchers have
proposed different control algorithms to achieve this task [17–20]. Su et al. [18] proposed
a fuzzy neural network to control the treadmill speed during exercise. Cheng et al. [14]
proposed feedforward and feedback techniques to track the desired heart rate trajectory.
Su et al. proposed another method based on H infinity control approaches for human heart
rate control during treadmill exercise [19]. It is not easy to implement the above-mentioned
control techniques because of their computational complexities. Kim et al. [17] presented
linear control (PI) for human heart rate control during exercise. It is easy to implement PI
control but the heart rate tracking error is large. Because the heart rate system is nonlinear,
a robust control algorithm is needed to reduce output error and ensure stability.

In this research, robust controllers were designed for human heart rate control during
treadmill exercise. Initially, sliding mode control (SMC) was derived for a specific dynami-
cal system. SMC [21] is a variable structure control that utilizes a switching control law to
alter the plant dynamics such that the plant states slide along the sliding surface [22–32].
SMC has two phases, which are the reaching phase and the sliding phase. In the reach-
ing phase, the plant states are forced to move towards the sliding surface with the help
of the switching gain as the system states reach the sliding surface. In the next phase,
which is known as the sliding phase, they slide along the origin. In the sliding phase, the
system remains insensitive to uncertainties and external disturbances. However, during
the reaching phase, robustness of SMC is not guaranteed. In SMC, actual sliding surface
dynamics are affected by perturbation [33]. In addition, the design of SMC requires linear
parameters of the system (human heart rate model). In this research, SCM was used to
extract a linear dynamic model from the human heart rate one. Experiment and computa-
tion are required to extract the linearized human heart rate model using SCM. Therefore,
this research requires two different experiments: the first is to extract the human heart
rate model (system identification experiment), and the second is to track the desired heart
rate trajectory (control experiment). To overcome the above-mentioned problems, integral
sliding mode control (ISMC) was implemented [33]. An auxiliary sliding variable in ISMC
was designed by introducing the integral term in the conventional sliding surface. This
auxiliary sliding variable can eliminate the reaching phase [34,35]. Therefore, actual sliding
surface dynamics have no perturbation effect. The controller design of ISMC does not
require the human heart rate model. The control inputs in ISMC are divided into two parts.
The first part compensates for the perturbation plus system dynamics, and the second part
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forces the system state to move towards the origin in a satisfactory time. The designed
controllers were implemented in MATLAB for simulation purposes and later applied to
the real system, and corresponding data and results were obtained. The experiments were
conducted on clinical subjects after receiving the permission of the institutional review
board (IRB # H-1904-016-077) at Pusan National University Hospital, Busan, South Korea.
These subjects are healthy but they have greater chance of heart disease in the future. The
results show that ISMC performance is better than that of SMC. In this study, the main focus
was to design a robust controller for desired human heart rate tracking. A brief review
of human heart rate modeling is presented in this manuscript based on the mathematical
model designed by Li and Lee [15].

This manuscript is organized as follows: Section 2 presents the experimental details
and mathematical formulation of the human heart rate model. Section 3 presents the
proposed control methods for human heart rate control. Section 4 provides the simulation
details, experimental results, and comparisons. Section 5 comprises the concluding remarks
of this study.

2. Experimental Setup and Human Heart Rate Modeling

This section presents the experimental setup and human heart rate modeling.

2.1. Experimental Setup

A HERA 9000 model treadmill exercise machine manufactured by HEALTH ONE CO,
LTD, Korea, was used in the experiment. The maximum speed of the treadmill is 20 km/h
and inclination can be adjusted up to 16 percent. A heart rate monitor sensor is equipped
on the left arm of the treadmill, and discreetly measures the heart rate of the clinical subject.
Additionally, the control panel of the treadmill allows for the user to input the desired heart
rate and the inclination of the platform. The designed treadmill controller in this study
can control the desired heart rate. It was observed during the experiment that holding the
handle is difficult for the clinical subjects due to sweating. Furthermore, sweating also
caused noise in the heart rate measurement sensor installed on the treadmill handle. Thus,
an additional sensor for heart rate measurement was attached to the index finger and wrist
of the clinical subject with the permission of the hospital advisory committee. There is a
stop button in the treadmill control panel in case of an emergency.

The sensor was connected with a controlled PC through Bluetooth and the data were
discreetly saved for further processing. Furthermore, the treadmill system was exogenously
controlled through the PC, and the corresponding diagram is shown in Figure 1. This
connection was made through a communication wire.
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Figure 1. Experimental setup block diagram.

The heart rate measurement sensor is a NONIN 350, which measures the heart rate
and oxygen saturation level in the blood. A graphical user interface (GUI) was designed
in the control PC, and was implemented in C#. This GUI was used to visualize results
and analyze data, and had the capability of input by the user. The visual display of the
GUI showed the treadmill velocity, pulse oximetry data, input/output parameters, and the
stop/run command block, as shown in Figure 2.
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Figure 2. GUI generated using Microsoft Visual Studio. (Korean: Pusan National University, Mea-
surement and Control Lab).

2.2. Human Heart Rate Modeling

In this research, the heart rate models of six different Korean clinical subjects were
extracted using the signal compression method (SCM) [15]. The experiments were con-
ducted in Pusan National University Hospital, Busan, South Korea to observe/measure
the required data for heart modeling. The data corresponding to the cardiopulmonary
exercise testing (CPET) of each subject are displayed in Table 1 and were provided by the
hospital. Currently, the subjects are healthy but they have greater chance of heart disease
in the future. The estimated linear term’s parameter of the human heart rate model can
be derived in Table 2. The corresponding second-order heart rate model of each subject is
assumed and derived through a general second-order system (1):

G =
ω2

n
s2 + 2·δ·ωn·s + ω2

n
, (1)

where ζ is the damping ratio and ωn is the natural frequency of the system.

Table 1. Data of clinical subjects who participated in the experiment.

Clinical Subject Data

Age Gender Rest Heart Rate Maximum Heart Rate Decay Heart Rate

A 54 F 88 190 23

B 61 M 59 151 24

C 28 F 74 172 36

D 41 F 73 152 8

E 54 F 70 152 20

F 62 F 73 149 17
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Table 2. Estimated heart rate model parameter using SCM.

Clinical Subject Subject Information

δ ωn Correlation (%)

A 4.3 0.5 82

B 4.5 0.5 86

C 5.7 0.6 83

D 4.3 0.5 85

E 7 0.6 84

F 5.6 0.6 79

3. Controller Design

This section presents the controller design; SMC and then ISMC are discussed. The
performance characteristics of ISMC are presented in detail.

3.1. Sliding Mode Control

A sliding mode control (SMC) is a variable structure control that is used for nonlinear
systems due to its invariance to both parametric uncertainties and external disturbances. In
SMC, the main idea is to design the sliding surface (σ):

σ =
.
e + c·e, (2)

where c is the constant and e is the error between the actual and desired value (e = xd − x).
SMC consists of two different control inputs:

u = usw + ueq, (3)

where usw forces the system state to reach towards the designed sliding surface. Once the
error reaches the sliding surface, then it converges to zero. ueq keeps the error at the sliding
surface. There are two phases in SMC: the reaching phase and the sliding phase. During
the reaching phase, the switching control forces the system state (initial error) to move
towards the sliding surface in finite time. Once the error reaches the sliding surface, then it
moves towards the origin (zero). A general second-order system including disturbances is
represented in (4):

..
x + f

(
x,

.
x, t
)
+ ∆ f

(
x,

.
x, t
)
+ d = u, (4)

where u is the control input, x represents the system states, f
(
x,

.
x, t
)

represents the system
linear dynamics, ∆ f

(
x,

.
x, t
)

represents the uncertainties in dynamics, and d is the external
disturbance. The controller task is to move the system states to a desired value in a satisfac-
tory time. System uncertainties and external disturbance are considered as a perturbation
in (5), and (6) is derived using (4) and (5):

Ψ
(
x,

.
x, t
)
= ∆ f

(
x,

.
x, t
)
+ d, (5)

..
x = u− f

(
x,

.
x, t
)
−Ψ

(
x,

.
x, t
)
. (6)

To reach the sliding surface (σ = 0), the Lyapunov stability criterion should be satisfied:

σ· .
σ ≤ 0. (7)

To satisfy Lyapunov stability:

.
σ = −Ksat(σ), (8)
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where K is the switching gain and sat(σ) is the saturation function, defined as:

sat(σ) =
{

σ/|σ|, if |σ| > εcs
σ/εcs, if |σ| ≤ εcs

, (9)

where εc is the boundary layer thickness. The control input can be derived using (2), (6),
and (8):

u = Ksat(σ) + f
(
x,

.
x, t
)
+ c· .e + ..

xd, (10)

usw = Ksat(σ), (11)

ueq = f
(
x,

.
x, t
)
+ c· .e + ..

xd. (12)

To achieve finite-time convergence, the magnitude of the switching gain (K) should be
greater than the upper bound of perturbation:

K > |Ψ|. (13)

Theorem 1. For the second-order system described by (4), the Lyapunov stability criterion (7) can
be achieved under the condition (13).

Proof. It must be noted that for the system described by (4) with proposed control law (10),
the system stability (7) can be achieved by enforcing the condition (13):

σ· .
σ ≤ σ

(..
e + c· .e

)
≤ 0, (14)

Using (2), (6) and (10), (14) can be rewritten as:

σ· .
σ ≤ σ

( ..
xd − Ksat(σ)− f

(
x,

.
x, t
)
− c· .e− ..

xd + f
(
x,

.
x, t
)
+ Ψ

(
x,

.
x, t
)
+ c· .e

)
≤ 0, (15)

After solving the above relation:

σ· .
σ ≤ σ

(
−Ksat(σ) + Ψ

(
x,

.
x, t
))
≤ 0. (16)

To keep the system stable, the gain K should be greater than the absolute magnitude
of perturbation (Ψ). The sliding surface dynamics during the reaching phase can be
calculated as:

.
σ = −Ksat(σ) + Ψ

(
x,

.
x, t
)
. (17)

As can be observed in (17), the sliding surface dynamics are affected by the perturba-
tion (when σ 6= 0). Therefore, the system stability is not guaranteed during the reaching
phase. The drawbacks of the SMC in the desired heart rate control application are discussed
in the following. �

3.1.1. Sensitive to Perturbation

As can be observed in Figure 3a, during the reaching phase, the robustness of SMC is
not guaranteed due to effects of perturbation on sliding surface dynamics (

.
σ = −Ksat(σ) + Ψ),

if K < |Ψ|. This perturbation is the sum of parametric uncertainties, nonlinearity, and
external disturbances. This means that the stability of the system is not guaranteed during
the reaching phase because the system stability can be only achieved by satisfying the
stability condition (13). It is very difficult to model the human heart accurately. In this
paper, the technique used to model the human heart was developed by Li et al. [15]. It is
worth mentioning that this technique has a limitation because it can only estimate linear
parameters. It is not possible to estimate the nonlinearity and parametric uncertainties;
therefore, in this study, ISMC was proposed to eliminate the effect of the perturbation on

.
σ

dynamics during the reaching phase.
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3.1.2. Identification of Linear Parameters to Apply SMC

The control input of SMC can be observed in (10), where the control input requires the
information about the dynamics of the plant ( f

(
x,

.
x, t
)
). This is described in the human

heart rate modeling part, which is limited as approximately linearized dynamics. The
identification of linearized dynamics requires experiments to determine the equivalent
impulse response and further processing to achieve better estimation of parameters through
a cross-correlation coefficient, which is time consuming. The controller design requires a
nominal model of the system ( f

(
x,

.
x, t
)
), as shown in Figure 4. It is a challenge to extract

the nominal model of the system. Therefore, ISMC was designed in this study because the
controller output does not require information about system dynamics.
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3.2. Integral Sliding Mode Control (ISMC)

To overcome the mentioned problems, ISMC was used for the desired heart rate
tracking. The main idea was to design the auxiliary sliding surface (s), which always
remains at zero (s = 0) [36–38]. The auxiliary sliding surface can be presented as:

s = σ− z, (18)

z = −
∫

w·σ, (19)

where σ is the actual sliding surface and w is the positive gain. Initial condition (20) should
be enforced in order to keep auxiliary sliding surface at zero (s = 0):

s0 = σ0 − z0 = 0, (20)

σ0 = z0. (21)

In ISMC, the control input consists of two different parts:

u = u1 + u2, (22)

u1 = ρsat(s), (23)
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where ρ is the switching gain and sat(s) is the switching function, defined as:

sat(s) =
{

s/|s|, if |σ| > εci
s/εci, if |σ| ≤ εci

, (24)

where εc is the boundary layer thickness. The second control input u2 in (22) is given by:

u2 = w·σ, (25)

where w is a positive constant; u1 compensates the system perturbation and system dy-
namics, whereas u2 forces the error to converge to zero in a satisfactory time. Using (18),
auxiliary sliding surface dynamics (

.
s) can be calculated as:

.
s = −u1 + Ψ

(
x,

.
x, t
)
. (26)

As can be seen, the
.
s dynamics are affected by perturbation, and the control u1

compensates for this perturbation. During the auxiliary sliding mode (s = 0), the equivalent
control can be calculated as (

.
s = 0):

.
s = −u1eq + Ψ

(
x,

.
x, t
)
= 0, (27)

u1eq = Ψ
(

x,
.
x, t
)
. (28)

The actual sliding surface dynamics can be calculated as:

.
σ = −u2. (29)

As can be observed in (29), the actual sliding surface dynamics (
.
σ) is perturbation-free.

Therefore, the system stability is guaranteed throughout compared with SMC (17).

Theorem 2. For the second-order system described by (4), ISMC always satisfies the Lyapunov
stability criterion (7) during the auxiliary sliding mode (s = 0) as its sliding surface dynamics is free
of perturbation (

.
σ = −u2).

Proof. It must be noted that for the system described by (4) with the proposed control
law (22), the system is always stable. There is no need to fulfill any condition such as the
upper bound of perturbation of (13) in ISMC. After putting the sliding surface dynamics
(

.
σ = −u + Ψ

(
x,

.
x, t
)
) in (7), there is derived as

σ· .
σ ≤ σ

(
−u + Ψ

(
x,

.
x, t
))
≤ 0, (30)

In ISMC, the control input is defined as (22). During the auxiliary sliding mode (s = 0),
the control input u1 becomes the equivalent control (28):

σ· .
σ ≤ σ

(
−Ψ

(
x,

.
x, t
)
− u2 + Ψ

(
x,

.
x, t
))
≤ 0, (31)

u1 has compensated for the perturbation:

σ· .
σ ≤ −σ·u2 ≤ 0, (32)

After putting (25) in (32):

σ
.
σ ≤ −w·(σ)(σ) ≤ 0. (33)

As can be observed in (33), the sliding surface dynamics is free of perturbation, so
the system is stable throughout. Therefore, the performance characteristics of ISMC are
better than those of the conventional SMC. The advantages of ISMC over SMC in heart rate
control are presented in the following. �
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3.2.1. Insensitive to Perturbation

As can be observed in Figure 3b, during the reaching phase (σ 6= 0), the actual sliding
surface dynamics is not affected by perturbation (29). Therefore, the system always satisfies
the stability condition (7). In ISMC, the system states easily converge (σ = 0) to the designed
sliding surface (Figure 3b), as explained in Theorem 2. The stability of ISMC is guaranteed
throughout, whereas in conventional SMC, the sliding surface dynamics is perturbed (17).

3.2.2. ISMC of Model-Free

As can be observed in (22), the implementation of ISMC does not require information
about the plant dynamics. In human heart rate control, it is difficult and a tedious job to
identify and estimate an accurate heart rate model; in addition, the estimation of the human
heart rate requires long time. As can be observed in Figure 4b, the control design does not
require information about the nominal model of the system. Therefore, ISMC is a feasible
option to track the desired heart rate.

4. Simulations and Experimental Results

This section consists of two parts: first, simulation results are presented, and second,
experimental results are explained in detail.

4.1. Simulation and Discussion

Simulation was performed using MATLAB/Simulink (Figure 5), and a second-order
system was considered. A constant input was given as a reference input. Both forms
of control logic, SMC and ISMC, were implemented to track the reference trajectory in
the presence of disturbance as shown in Figure 6. The disturbance consists of the sum of
the white noise, sine wave, and the constant terms. The heart rate model, assumed as a
second-order system of the subject, was estimated using the signal compression method,
which is listed in Table 3. The controller’s parameters are listed in Table 4. Using relation
(1), the corresponding second-order transfer function of a clinical subject X was derived
as (34):

Gs =
30.25

s2 + 6.6s + 30.25
. (34)
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Table 3. Heart model parameter of X.

Clinical Subject Subject Information

Age Wn δ Correlation (%)

X 26 5.5 0.6 82

Table 4. Controller parameter for simulation.

Number Controller Parameter

SMC ISMC

1 Constant input Constant input

2 c = 5 c = 5

3 K = 250 w = 20, ρ = 120

4 εc = 1 εci = 1

4.1.1. Better Trajectory Tracking

A constant input was given to the system in the presence of disturbance. The compara-
tive patterns of an output response corresponding to SMC and ISMC are shown in Figure 7.
ISMC output (solid blue line) tracking is better than that of conventional SMC (dotted red
line). The SMC output has a fluctuation, whereas ISMC output has a smooth performance.
The tracking output of SMC has a fluctuation because the actual sliding surface dynamics
are affected by the perturbation (17); by comparison, the output tracking of ISMC is smooth
compared with that of conventional SMC because the actual sliding surface of ISMC (29) is
free of perturbation effects.
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4.1.2. Fluctuating Sliding Surface

The sliding surface of SMC a has large fluctuation (dotted red line), as shown in
Figure 8, because of the presence of the disturbance in (17). By comparison, the fluctuation
in ISMC is almost negligible (solid blue line) compared with that of the SMC.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 17 
 

 

 

Figure 8. The actual sliding surface of both control schemes. 

4.1.3. Auxiliary and Actual Sliding Surface 

The auxiliary sliding variable as shown in Figure 9a always starts from zero by en-

forcing the initial condition (21). It was assumed that initial conditions are known: 

𝑥̇𝑑0 = 0, 𝑥̇0 = 0, 𝑥0 = 0, 𝑥𝑑 = 1 (35) 

𝜎0 can be calculated as: 

𝜎0 = 𝑒̇0 + 𝑐𝑒0, (36) 

After putting the initial conditions (35) in (36): 

𝜎0 = 5, (37) 

𝜎0 = 𝑧0 = 5. (38) 

 
(a) 

 
(b) 

Figure 9. Sliding surface behavior in ISMC: (a) auxiliary sliding surface (s), (b) actual sliding sur-

face (𝜎). 

Figure 8. The actual sliding surface of both control schemes.

4.1.3. Auxiliary and Actual Sliding Surface

The auxiliary sliding variable as shown in Figure 9a always starts from zero by
enforcing the initial condition (21). It was assumed that initial conditions are known:

.
xd0 = 0,

.
x0 = 0, x0 = 0, xd = 1 (35)

σ0 can be calculated as:
σ0 =

.
e0 + ce0, (36)

After putting the initial conditions (35) in (36):

σ0 = 5, (37)

σ0 = z0 = 5. (38)
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The response of σ, and s against time (t) can be observed in Figure 10, whereas Figure 11
shows the control output of both forms of implemented logic.
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4.2. Experimental Results

Experiments were performed to verify both controllers. The commercial treadmill,
HERA 9000, is used for heart rehabilitation. The treadmill control input frequency is
calibrated to find the relation between the control output command and treadmill velocity.
The unit of the control output is hertz. The calibrated relation to convert hertz to velocity
(Km/h) is obtained by the experiment, which was implemented in C#. The calibrated
control output frequency of 45 hertz is equal to 1 km/h and 315 hertz equals 7 km/h. The
maximum velocity and minimum velocity were set as 7 and 1 km/h, respectively. Figure 12
shows the controller’s output in hertz (a) and the corresponding profile are conversion to
velocity (b).
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Figure 12. Hertz and velocity relationship: (a) hertz, (b) velocity.

The clinical subject’s heart rate and treadmill velocity are visible on the monitor (GUI).
There is also a stop button on the control panel of the treadmill to ensure safety in the case
of an emergency, and so the observer can stop the program in the case of an emergency
while running. For safety purposes, a foam mattress was placed to the rear of the treadmill
during the experiment.

Experiments were conducted at Pusan National University Hospital with six clinical
subjects, for which data were gathered by the hospital. Both controllers were implemented
and the corresponding results were compared. The total time for the experiment was 7 min.
The target heart rate was different for every clinical subject and prescribed by hospital
doctors. The hospital doctors suggested the target heart rate of the subject after examining
the subject’s condition. Therefore, each subject has a different target heart rate. The target
heart rate for the subjects is shown in Table 5.

Table 5. Target heart rate of each clinical subject (prescribed by a doctor).

Clinical Subject Subject Information

Target Heart Rate (bpm) Initial Heart Rate (bpm)

A 149 107

B 114 92

C 133 86

D 120 104

E 119 73

F 119 95
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Firstly, SMC was used to track the desired heart rate trajectory for 7 min. After taking a
rest during a 10 min break, the second controller (ISMC) was implemented for the same task
and period of time. The heart rate tracking error using SMC for the six different subjects is
shown in Figure 13a. It is known that the error trajectory of each subject lies between plus
10 bpm and minus five during a steady state. This steady-state error is large. To decrease
this error, ISMC was implemented in the next experiments.
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In the second experiment, ISMC logic was implemented. The results are shown in
Figure 13b, and show that the steady-state error of ISMC is mostly between ±5 (bpm),
which is smaller than that of SMC. This research confirmed that ISMC can reduce the steady-
state error by more than SMC. This means that ISMC can reduce the tracking error even if
ISMC does not require a mathematical model of the human heart rate. However, the control
output of ISMC has a little chattering, which should be reduced in the future. ISMC will
be integrated with the observer for disturbance rejection. A sliding perturbation observer
(SPO) or nonlinear extended state observer (ESO) will be integrated with ISMC for this
purpose. The disturbance observer-based ISMC will further improve system performances,
such as by reducing chattering.

5. Conclusions

The human heart is a nonlinear system, and accurate heart rate modeling is a tedious
task. To track the desired heart rate during treadmill exercise, a robust controller is required.
Therefore, in this research, two different nonlinear controllers were designed and imple-
mented on the system. In SMC heart rate tracking, a large steady-state error was observed
because of the effect of the assumed perturbation on the sliding surface. In addition, the
control input of SMC required a plant dynamics model with linear parameters, which
are difficult to model. Therefore, ISMC was implemented to reduce tracking errors under



Electronics 2022, 11, 4081 16 of 17

unknown dynamic model. In ISMC, the effect of the perturbation on the actual sliding
surface was eliminated by the design of an auxiliary sliding surface; furthermore, the
control input of ISMC does not require a system mathematical model. This ISMC showed
outstanding performance, including less steady-state error when compared with SMC in
both simulation and experimental results. However, the control output of ISMC has a little
chattering, which is not desirable. In the future, this ISMC will integrate with a sliding
perturbation observer (SPO) to reduce the chattering.
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