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Abstract: In the portrait matting domain, existing methods rely entirely on annotated images for
learning. However, delicate manual annotations are time-consuming and there are few detailed
datasets available. To reduce complete dependency on labeled datasets, we design a semi-supervised
network (ASSN) with two kinds of innovative adaptive strategies for portrait matting. Three pivotal
sub-modules are embedded in our architecture, including a static teacher network (S-TN), a static
student network (S-SN), and an adaptive student network (A-SN). S-TN and S-SN are modules that
need to be trained with a small number of high-quality labeled datasets. Moreover, A-SN and S-SN
share the same module parameters. When processing unlabeled datasets, A-SN adopts the adaptive
strategies designed by us to discard the dependence on labeled datasets. The adaptive strategies
include: (i) An auxiliary adaption: The teacher network with complicated design not only provides
alpha mattes for the adaptive student network but also transmits rough segmentation results and
edge graphs as optimization reference standards. (ii) A self-adjusting adaption: The adaptive network
can make self-supervised to the characteristics of different layers. In addition, we have produced
a finely annotated dataset for scholars in the field. Compared with existing datasets, our dataset
complements the following two types of data neglected in previous datasets: (i) Images taken by
multiple people. (ii) Images under low light conditions.

Keywords: portrait matting; semi-supervised; attention mechanism; adjustment strategy

1. Introduction

Portrait matting is an extraordinary image processing task in the computer version.
Its core goal is to predict accurate alpha mattes that can be used to capture the foregrounds
of images. Portrait matting is mainly used for background replacement. Since it is difficult
to produce hair-fine mattes, the task has always faced the problem of how to improve the
accuracy of the effect in the case of insufficient datasets.

Existing methods [1,2] have also made progress with only small amounts of labeled
datasets. However, in the face of unlabeled datasets, the effect of the existing models
cannot be improved, because existing portrait matting models rely entirely on labeled
data for training and cannot adjust on unlabeled datasets. In the existing portrait matting
methods, the trained model can no longer improve its performance when faced with
unlabeled datasets. This limitation greatly reduces the generalization ability of the model
over unlabeled datasets. Recently, semi-supervised networks have attracted the attention
of many tasks, such as knowledge distillation. Knowledge distillation is the transfer of
knowledge by introducing the teacher network the ability to acquire the soft targets and
then inducing a student network to conduct training. It has been widely utilized in many
computer vision tasks and achieved considerable results; however, in the case of portrait
matting, a task that requires hair-precision results, the knowledge distillation should not
focus on allowing the student network to simply learn the soft label that the teacher network
outputs at the end. Some characteristics of the intermediate-level output of the teacher
network should also enjoy the treatment of being transmitted to the student network for
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learning. In addition, to avoid excessive dependence on the features provided by the
teacher network in the training process, the student network should also have the ability of
self-supervision and adjustment.

Therefore, to achieve a performance-friendly portrait matting algorithm in the case
of insufficient datasets, we constructed a semi-supervised network (ASSN) based on the
idea of knowledge distillation. In addition, we designed two adaptive strategies to assist
semi-supervised networks in dealing with the unlabeled datasets. On the one hand,
the student network constructed by us is supervised by segmentation results, edge graphs,
and alpha mattes generated in the teacher network for learning; on the other hand,
the student network also directly supervises different layers of the self-network to avoid
excessive dependence on the teacher network. Compared with existing fully supervised
learning networks in the portrait matting field, the semi-supervised network with adaptive
strategies can obtain further improvement space and stronger generalization ability on
unlabeled datasets. Our main contributions are as follows:

- A concrete instantiation of the semi-supervised network architecture (called ASSN).
The architecture consists of three sub-networks, namely, a static teacher network (S-TN),
a static student network (S-SN), and an adaptive student network (A-SN). Among
them, the adaptive student network is the final applied lightweight network, which
successfully acquires the ability to further improve performance on unlabeled data with
the assistance of the static teacher network.

- Two adaptive strategies to improve generalization on unlabeled datasets (as shown in
Figure 1). Firstly, the auxiliary adaption ensures that the student network is not only
supervised by the alpha mattes generated by the teacher network but also needs to
receive the characteristics obtained in the middle layer of the network, including the
segmentation results and edge graphs. Second, the self-adjusting adaption guarantees
the similarity comparison between the characteristics of different levels in the
student network.

- Twenty-four groups of comparative experiments and several groups of ablation experiments
are performed on several datasets.

- An elaborate hand-annotated dataset has been produced and will be available to scholars
in this field. We supplemented two types of images that are missing from existing
datasets: images from multiple people and images taken in low-light conditions.

Figure 1. A schematic illustration of the collaborative process between our designed semi-supervisory
network and two adaptive strategies.

2. Related Work

Three related areas of research are described in the following, including portrait
matting, knowledge distillation, and semi-supervised.
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2.1. Portrait Matting

Although some image segmentation methods can also recognize human contours,
these contours are usually output as binary masks. Unlike image segmentation, portrait
matting requires more accurate alpha mattes. Portrait matting can be divided into three
categories [3] based on the input needed to enter into the network: (i) Trimap-based matting.
These methods [4,5] require an input of trimaps in addition to the given images containing
the portraits. Trimaps are manually annotated in three different colors. It is a rough
partition of a given image, including, the foreground, background, and unknown region
to be solved. (ii) Background-based matting. These methods [6–9] predict the portrait
areas with the help of background images and initial images with people. Although it is
more advantageous to identify portrait areas with given background images, background
matting is not suitable for those with dynamic backgrounds. (iii) Auxiliary-free matting
methods [10–16] do not require additional input except for images to be identified. These
approaches, which require no additional input other than images, are attracting more
and more scholars’ attention. It does not require complex trimaps, nor does it require
background images. A trained network can recognize portrait areas by simply sending the
portrait images.

2.2. Knowledge Distillation

Knowledge distillation is a model compression method, which is a training method
based on the idea of a teacher–student network [17–20]. Because of its simplicity and
effectiveness, it is widely used in the industry. The process of knowledge
distillation [21–25] is divided into two stages: (i) A “teacher model” (NET-T). This is
characterized by a relatively complex model and can also be integrated by multiple
separately trained models. For the “teacher model”, we do not need to make any restrictions
on model architecture, the number of parameters, and integration. The only requirement
is that for input X, it can output Y, where Y is mapped by SoftMax, and the output value
corresponds to the probability value of the corresponding category. (ii) A “student model”
(NET-S). This is a single model with a small number of parameters and a relatively simple
model structure. Similarly, for input X, it can output Y, and Y can also output the probability
value corresponding to the corresponding category after SoftMax mapping. Since we
already have a Net-T with strong generalization ability, we can directly let Net-S learn the
generalization ability of Net-T. In this paper, our approach differs from existing ideas of
knowledge distillation in the following ways. First, knowledge distillation is only an idea
of using a large model to guide a small model to learn, rather than a concrete framework.
Based on this idea, we designed a specific architecture suitable for the field of portrait
matting. Under the same training conditions, it is better than the existing methods of
portrait matting. Secondly, the object adopted for guidance is different from existing
knowledge distillation methods. In our auxiliary adaption and self-adjusting adaption,
we specify the segmentation results, edge graphs, and alpha mattes of the network for
guidance. It is not guided by some feature layer or final output as existing methods
are. Finally, as shown in Figure 1, our two adaptive strategies are combined with the
semi-supervised network. This design enables our architecture not only to be trained on
labeled datasets but also to be further improved when faced with unlabeled datasets.

2.3. Semi-Supervised

Semi-supervised learning is used to make the learner use unlabeled datasets to
improve learning performance [26]. In semi-supervised learning, there are both labeled
datasets and unlabeled datasets. Generally, the quantity of unlabeled datasets is much
larger than labeled datasets. In general, a good predictive model is obtained by making full
use of labeled and unlabeled datasets. This operation [27–29] enables the network not only
to obtain the optimal prediction of unknown datasets but also to obtain high generalization
ability. Since the alpha mattes required for training need meticulous manual annotation



Electronics 2022, 11, 4080 4 of 18

and the available amount is small, it is necessary to realize portrait matting employing
semi-supervised learning.

3. Proposed Method

To overcome the performance limitation of portrait matting after training with a small
number of label datasets, we design a semi-supervised network based on the idea of
knowledge distillation and propose two kinds of adaptive strategies when the network
faces unlabeled data. It is worth noting that compared with previous knowledge distillation
methods, our network has the following three innovations: First, our model can further
improve performance when faced with unlabeled datasets. Since the teacher model is more
complex than the student model, the prediction results of the teacher model are relatively
more precise and can be utilized to guide the student model in training. The segmentation
results, edge graphs, and alpha mattes generated by the teacher model are adopted as
pseudo-labels in the training of the student model. With the help of these pseudo-labels,
the student model can further improve its performance on unlabeled datasets. Secondly,
our student network not only fully relies on the characteristics generated by the teacher
network for learning, but also carries out the supervision between different levels in the
self-network. Finally, our teacher network adopts the design of two backbones, and the
knowledge learned by one backbone is constantly used as a residual margin to supplement
the extracted features of the other backbone.

In this section, we describe the core proposed instantiations of the overall architecture
and the two kinds of adaptive strategies.

3.1. Baseline Network Architecture

Our network structure can be roughly divided into three sub-networks: (1) A static
teacher network (S-TN) with a complex network structure design. (2) A simple static
student network (S-SN) pruned based on the teacher network. (3) An adaptive student
network (A-SN) that copies the parameters of the static student network model. Both the
static teacher network and the static student network will carry out a certain number of
pre-training steps on the labeled datasets. After the training, the saved training parameters
will not change, so we call these two networks static. The motivations of the three
sub-networks are as follows: the static teacher network is designed to guide the student
network for training; the static student network is employed for training on labeled
data; the adaptive student network is used to achieve improved results on unlabeled
data by combining the two types of adaptive strategies. After the training, we copy the
parameters of the static student network to an adaptive student network. When faced
with some unlabeled data, we adjust network parameters using two strategies of auxiliary
adaption and self-adaptive adaption to achieve semi-supervised learning. In the following
paragraphs, we introduce the architecture of the static teacher network and how to prune it
to obtain the static student network structure. We first introduce the individual modules
of the network in the first three parts, then introduce the process of data transmission in
the static teacher network in the fourth part, and finally introduce how to obtain the static
student network by pruning the static teacher network.

3.1.1. Backbone

In our training network, we utilized the layout of two backbones. FBNetV2 [30] was
selected as our backbone1, and MobileNetv3 [31] was embedded as backbone2. It has
been proved in many existing papers [32–35] that the effect of a network can be improved
by supplementing the original primary features with residual edges after continuously
extracting abstract features. Different backbone focuses on extracting different features,
so we continue to obtain high-level abstract features from backbone2 and use the primary
features extracted from backbone1 to supplement. As can be seen from Figure 2, the features
obtained from backbone2 have undergone more complex processing, so these features are
more abstract than those obtained directly from backbone1. Based on experimental data
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(as shown in Table 1), we deployed FBNetV2 [30] as backbone1 and MobileNetV3 [31] as
backnone2. In the MobilenetV3 network, the substructure modules are arranged in parallel,
while FBNetV2 is arranged in series. In terms of the diversity and richness of the features,
the results of the intermediate layer of the network are far inferior to those of the last layer
of the network because of the series structure of the network. In the parallel architecture,
each branch can acquire unique characteristics due to the different embedded modules.
Design differences between branches result in certain differences in the characteristics
of each branch. The complementarity between branches and further feature extraction
promote the establishment of richness. In the series structure, however, the character is
simply enriched as the network deepens. The characteristics of diversity and richness in the
parallel structure are more suitable for the embedded network for deep information mining.
Therefore, compared with FBNetV2, mobilnetV3 is more suitable to output multiple results
from the parallel structure to guide the student network to learn from unlabeled data.
So, MobilenetV3 was embedded as the backbone2 in the network, rather than FBNetV2 as
the backbone2.

Figure 2. A diagram of a static teacher network as the complex structure.

3.1.2. Channel-Wise Attention Mechanism

To capture the importance of each channel in the feature map and enhance the subsequent
processing of higher-importance channels, we designed this attention mechanism. In this
attention mechanism, we calculate the importance value of each channel in the feature and
establish the relationship with the feature. The specific implementation steps are shown in
Algorithm 1 and a simple illustration is shown in Figure 3. First of all,
we assume that the input is a single image, and the batch size is 1 at this time. We
ignore the batch dimension, so the feature shape can be represented as [C,16,16]. Secondly,
we evaluate each of the channels in the feature through average pooling, and by doing that
the feature will translate into a tensor of only C length. Thirdly, we reduce the dimension of
the features extracted in the previous step to one-quarter of the original by convolution and
then restore it to the original length C after activation of the ReLu [36] function. Fourthly,
we use the Sigmoid [37] function to transform a value of length C to between 0 and 1 and
extend it by copying it to the same size as the original feature. By performing such an
operation, we obtain some importance degree values greater than zero and less than one
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for each channel. Finally, we multiply the features of the original input with the results of
the previous calculation. This multiplicative approach amplifies the values in the channels
with higher importance values, enhancing the visual color of these areas and the attention
to subsequent processing. In summary, in the first four steps above we are trying to obtain
an importance value between 0 and 1 for each channel in the feature, and then give a
larger eigenvalue to the channel with a higher value by multiplying the original feature.
Therefore, we can utilize the channel-wise attention mechanism to calculate the importance
of each channel feature and pay more attention to channels with higher importance.

Algorithm 1: The algorithm

1 of the Channel-Wise Attention Mechanism
Input: The features F.
Output: Features with varying degrees of attention.

2 The channel-wise Attention Mechanism first establishes the calculation of the
importance values of different channels and then correlates them with the
features of the original input. Suppose that the shape of our input feature F is [B,
C, H, W]. View stands for morphing the features. Conv is used to represent the
convolution operation. Expand indicates that a column of values is copied to
achieve matrix expansion.

3 for i=1 to W step 1 do
4 for j=1 to H step 1 do
5 P_sum += F(i,j)
6 end
7 end
8 P_value← 1

H×W P_sum
9 P_view_1← Conv(View(P_value)) // Channel −→ Channel/4

10 for j=1 to C/4 step 1 do
11 value← P_view_1j

12 if value >0 then
13 value← value
14 end
15 else
16 value← α(ex-1)
17 end
18 P_view_1j ← value
19 end
20 P_view_2j ← Conv(P_view_1j) // Channel/4 −→ Channel
21 for j=1 to C step 1 do
22 value← P_view_2j

23 value← 1
1+e−x

24 P_view_2j ← value
25 end
26 P_view_3j ← View(P_view_2j) // [C] −→ [C,1,1]
27 output← F × Expand(P_view_3j) // [C] −→ [C,16,16]
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Figure 3. A diagram of the channel-wise attention mechanism.

3.1.3. CIBR

It is generally accepted that BatchNorm [38] is suitable for cognitive tasks (classification
and segmentation, etc.), while instanceNorm [39] is suitable for generative tasks (style
shift, Deblur, GAN). When you change the model’s BatchNorm to instanceNorm during
a cognitive task, a significant performance drop is shown; however, this is not because
instanceNorm is not friendly to cognitive tasks. Through our experiments, a different
implementation can avoid performance degradation. In fact, InstanceNorm and Batchnorm
each have unique advantages. InstanceNorm brings immutability to the statistical variance
across different samples, which is reflected in the characteristic mean variance statistics.
BatchNorm, as a global normalization method, preserves the differences among samples in
the datasets. InstanceNorm brings invariance that Batchnorm cannot replace. For example,
the variance generated by the input image on appearance factors (such as brightness,
color, style, etc.); however, InstanceNorm also destroys significant differences between
different categories in the BatchNorm. However, in portrait matting, the effect of the
network depends on the differentiation of different types of objects in the feature maps.
This variation is largely reflected in mean and variance, and we do not want instanceNorm
to destroy this divergence. Therefore, to better benefit from the advantages of BatchNorm
and InstanceNorm, IBNorm is proposed by us and its effect was verified in experiments.

IBnorm refers to the following process: assume that features of the format are represented
as [batchsize, channel, height, width]. The features are first processed by BatchNorm and then
passed to InstanceNorm for processing. Finally, the characteristics are stacked on the first
dimension. IBnorm is embedded in our proposed CIBR module to replace the traditional CBR
design. CBR means embedding Batchnorm between convolution and ReLU in existing code. In
the CIBR module that we designed, the convolutional layer is followed by IBnorm processing.
Finally, the activation function ReLU function is adopted to increase the nonlinearity of
the network.

3.1.4. The Process of Data Transmission

In Figure 2, we introduce the formation process of segmentation results, edge graphs,
and alpha mattes. These three parts play an important role in the network, the main
functions are: (1) As the standard for calculating loss measurement between static teacher
network and static student network when training labeled dataset. (2) As a reference to
guide the static student network when there are no labeled datasets in training. (3) As a
training standard for the adaptive student network. In the above three outputs, the edge
graphs need to be further obtained by expansion and corrosion (Abbreviated as EAC in
Figure 2) operations on the obtained feature graph: the intersection area of foreground
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expansion and corrosion is obtained as the edge graph at this time. These edge graphs are
obtained for later training to compare edge effects.

In the following part, we introduce how to realize loss calculation in the training
process through segmentation results, edge graphs, and alpha mattes. It is assumed that
the segmentation results, edge graphs, and alpha mattes of the loss to be calculated are
expressed as si, ei, and ai, respectively. Here we give some formulaic representations of
the calculation.

segloss =
1
2
||si − Gau(αm)||2, (1)

eloss = ||ei − EAC(αm)||1, (2)

aloss = ||ai − αm||1, (3)

Loss = λssegloss + λeeloss + λaaloss, (4)

where α stands for alpha mattes in the datasets and Gau represents the process of downsampling
and Gaussian blur. “‖ ‖1”, “‖ ‖2” represent the L1 loss and L2 loss calculation [40], respectively.
EAC is used to indicate expansion and corrosion operations on the features.
In this paper, the size of the convolution kernel used for expansion and corrosion operations is 3.
Equation (2) is designed to calculate the differences between the segmentation results generated
by the S-TN network and the S-SN network. Equation (3) is adopted to measure the similarity of
edge graphs obtained after expansion and corrosion operation changes in the S-TN network and
S-SN. Equation (4) is responsible for calculating the gap between the outputs in the final S-SN
network and the annotation results in the datasets. Equations (2) and (3) both attempt to assist
training by calculating losses, so that the effect of S-SN with a relatively simple structure is close
to that of the S-TN network with a relatively complex structure. The purpose of Gaussian
blur [41] processing is to remove some hair details because at this step we only need to
obtain the outline of the portrait as much as possible, and we do not need to pay attention
to details. In addition, we conduct the calculation after downsampling in this step to reduce
the time of calculation loss by reducing the number of parameters. The hyper-parameters
λs, λe, and λa in Equation (5) are originally set to 1, 10, and 1, respectively. Equations (2)–(5)
are designed to calculate losses when using labeled data to train static teacher networks
and static student networks. However, there is no alpha matte when it comes to training
unlabeled data. When the static teacher network assists the adaptive student network in
training unlabeled data, the alpha mattes from the data set in Equations (2)–(5) should be
replaced with the alpha mattes generated in the static teacher network.

3.1.5. Pruning the Static Student Network

Our static student network (S-SN) and adaptive student network (A-SN) are transformed
based on the static teacher network (S-TN). To obtain more abundant characteristics, two kinds
of backbones are designed in our static teacher network. In the following process, the features
of one backbone are utilized as residual edges to complement the features acquired by the other
backbone; however, in the real application, the student network needs not to be as complex as
the teacher network [20]. Therefore, we adjust the static teacher network to obtain a lightweight
static student network. When adjusting, we simply remove backbone1 and its associated
residual edges to achieve refactoring. Through experiments, it is proved that this simple student
network can also obtain good portrait matting effects under the guidance of the teacher network.

3.2. Adaptive Strategies

In the following sections, we introduce two training strategies for unlabeled data.
By adopting these two adaptive strategies, ideal models can be constructed even when
training data are insufficient. It is worth noting that these two strategies are also significant
innovations compared with the previous teacher–student models. These two strategies
enable the network to not only rely on the output of the last layer of the static teacher
network for optimization but also establish a reference to the characteristics of the middle
layer when faced with unlabeled data. In addition, the standard referenced in the training
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of the adaptive student network is not only from the static teacher network but also from
their network.

3.2.1. Auxiliary Adaption

Auxiliary adaption can be adopted when static teacher networks guide adaptive
student networks without labels [42–44]. Its core idea can be described as using a small
number of labeled datasets to train the static teacher network and static student network.
Then, the trained model of the static student network is copied to the adaptive student
network. In the face of unlabeled datasets, the trained static teacher network with a complex
structure is first used to obtain segmentation results, edge graphs, and alpha mattes. It is
assumed that alpha mattes generated by the static teacher network are expressed as am.
Then, this batch of data is transmitted to the adaptive student network. It is assumed that
the segmentation results, edge graphs, and alpha mattes obtained by the student network
are represented by si, ei, and ai, respectively. Finally, Equations (2)–(5) are adopted for the
learning and training of the adaptive student network. This adaptive strategy successfully
establishes a connection between the static teacher network and the adaptive student
network and enables the relatively simple adaptive student network to achieve a huge
improvement in the training effect on the unmarked pictures.

3.2.2. Self-Adjusting Adaption

Self-adjusting adaption is designed to establish supervised learning between characteristics
of different layers in the adaptive student network. With the help of self-adjusting adaption, the
student network can reduce absolute dependence on the static teacher network [20,45,46]. In
the adaptive student network, we retain the same three output results as the teacher network,
namely, segmentation results, edge graphs, and alpha mattes. Formally, we denote our adaptive
student network as A-SN and represent the three types of output as s̃, ẽ, and ã, respectively.
Alpha mattes generated in the deep part of the network are more meticulous than segmentation
results and edge graphs obtained in the front end of the network. Thus, alpha mattes serve as
reference points for guided learning in this adaptive strategy. When implementing self-adjusting
adaption, network optimization follows the following equation:

Loss_saa = ||Gau(α̃)− s̃||2 + ||EAC(α̃)− ẽ||1. (5)

In this way, we enable the network to obtain the effect of the deep network as much as
possible when there are fewer layers in the early stage, to further optimize the details in the
deep network.

4. Experimental Results

In this section, we describe the experimental implementation in detail and report our
portrait matting results on different benchmarks compared with other algorithms. Finally,
the effects of adaptive strategies and self-adjusting adaption are investigated through
ablation studies.

4.1. Self-Made Dataset

After reviewing the public datasets, we find that the number of datasets in the portrait
matting domain is smaller than in other computer vision domains. In addition, most of the
people in the existing datasets are non-Asian. To enrich the diversity of datasets in this field,
a total of 130 sets of data are finely annotated by us (as shown in Figure 4). Compared with
the existing data set, we have the following three differences: (1) Our dataset complements
the diversity of race. It provides convenience for the following scholars to conduct research.
(2) We add multi-person images to our data set to avoid the phenomenon of only one
person in the previous dataset. (3) Some images in poor lighting conditions are also taken
and annotated. We name our dataset a multi-category portrait matting dataset (MPMD)
and will make it public for scholars to use.
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Figure 4. A presentation of some images of our multi-category portrait matting dataset (MPMD).

Table 1. Comparisons of different methods on ImageNet.

Method
ImageNet [47]

FLOPs Accuracy (%)

FBNet [48] 375M 74.9
ProxylessNAS [49] 465M 75.1

ChamNet [50] 553M 75.4
ResNet [51] 600M 75.5

MobileNetV3 [31] 356M 76.6
EfficientNet [52] 390M 77.3

AtomNas [53] 363M 77.6
FBNetV2 [30] 423M 78.1

4.2. Training Details

We first adopt SPDDataset [54] and the training sets of AutomaticPortraitMattingDataset [55]
to train the static teacher network and static student network, respectively, with 800 epochs. The
initial learning rate is set at 0.03 and shrunk by 0.45 times after every 100 epochs. Moreover,
adam [56] is chosen as our optimized way. After the training, we directly copy the static student
network parameters to the adaptive student network model. Then, the adaptive student network
is fed a batch of unlabeled data and adjusts parameters according to auxiliary adaption and
self-adjusting adaption. Finally, several images from different datasets are tested to verify the
effect. The names and number of datasets we utilize for testing and training are summarized and
presented in Table 2.

Table 2. Dataset description for portrait matting.

Datasets PPM-100 [46] SPDDataset [54] Adobe Portrait
Matting Dataset [57]

Automatic Portrait
Matting Dataset [55] P3M-10k [58]

Train Samples 0 3210 0 1700 0
Test Samples 100 3210 636 300 1000

Testset Rename - SPDDataset AdobeDataset AutomaticDataset P3M
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4.3. Comparisons Experiments

In this section, the details and effects of some comparative experiments are introduced.
The content includes: (1) the effect compared with the recent portrait matting architectures.
(2) The effect comparison of some previous modules with a similar design to CIBR. (3) The
effect comparison of S-TN and S-SN designed by us. (4) The parameter comparison of S-SN
designed by us and the recent portrait matting architectures.

4.3.1. Comparisons of State-of-the-Art Methods

To verify the effectiveness of our network architecture, multiple comparative experiments
were performed and the results are recorded in Table 3. SAD, MSE, MAD, Grad, and Conn
are the abbreviation of the ‘sum of absolute differences’, ‘mean squared error’, ‘mean absolute
difference’, ‘grad error’, and ‘connectivity error’; SAD-FG/SAD-BG is: the sum of absolute
differences in the foreground/background. We conducted comparative tests on four different
datasets, namely PPM-100 [46], SPDDataset [54], AdobeDataset [57], and AutomaticDataset [55].
Five methods recently applied in portrait matting were selected as the targets of our
comparative experiments. It is worth noting that there are no open-source codes for
the previous architectures that adopt the idea of knowledge distillation, so we have not
compared it to these types of approaches. To ensure the fairness of model comparison, we
first trained 800 epochs on the training sets of SPDDataset [54] and AutomaticDataset [55]
for the architectures of the comparative experiments. The initial learning rate was set at 0.06,
and after 80 epochs each time, the learning rate decreased to half of the original. At the same
time, the Adam optimizer [56] was applied as the method of training optimizer. Seven types
of different calculations were chosen to measure the effectiveness of the comparative tests.
The seven calculation methods used to measure the experimental effect include mean
squared error (MSE), meaning absolute difference (MAD), solute differences (SAD), gradient
(Grad), Connectivity (Conn), SAD-FG, and SAD-BG. The calculation methods are consistent
with that mentioned in the previous paper [59].

The results of 24 groups of comparative experiments can be viewed in Table 3.
Experiments show that our network architecture can achieve good results on multiple
test sets. In particular, in our comparative experiments with the AdobeDataset [57], our
architecture achieves significant improvements over the recent approach named SPKD [60]
in several metrics. The generalization ability of ASSN is fully validated by testing on
different untrained datasets. In addition, some visual comparisons are shown in Figure 5.

Table 3. The results of our approach compared with recent architectures on four different datasets.

Dataset PPM-100 [46] SPDDataset [54]

Method GFM [59] P3M [58] MGM [61] ViTAE [62] SPKD [60] ASSN GFM [59] P3M [58] MGM [61] ViTAE [62] SPKD [60] ASSN

year 2022 2021 2021 2022 2020 2022 2022 2021 2021 2022 2020 2022
SAD 52.00 65.39 34.06 32.91 35.29 20.86 49.69 23.57 22.02 19.27 21.31 18.21
MSE 0.1936 0.1973 0.0502 0.0761 0.0699 0.0750 0.1868 0.0681 0.0501 0.3107 0.0538 0.0673
MAD 0.1983 0.2491 0.1293 0.1256 0.1967 0.0790 0.1895 0.0952 0.0771 0.3244 0.0865 0.0695
Grad 19.07 18.98 14.48 16.46 14.04 17.09 27.21 23.18 12.72 23.42 12.91 19.89
Conn 50.30 65.81 32.87 32.99 36.94 21.23 49.56 21.72 19.42 17.92 20.05 10.59

SAD-FG 36.37 20.44 12.08 13.91 12.33 10.34 32.11 5.225 6.174 5.310 4.061 10.50
SAD-BG 7.727 10.36 10.59 8.204 12.09 6.223 7.577 14.05 15.09 10.94 14.59 2.926

Dataset AdobeDataset [57] AutomaticDataset [55]

Method GFM [59] P3M [58] MGM [61] ViTAE [62] SPKD [60] ASSN GFM [59] P3M [58] MGM [61] ViTAE [62] SPKD [60] ASSN

year 2022 2021 2021 2022 2020 2022 2022 2021 2021 2022 2020 2022
SAD 77.09 28.54 25.37 25.62 26.08 21.79 60.77 47.58 45.03 47.27 45.53 31.68
MSE 0.2839 0.2131 0.0676 0.1072 0.0706 0.0734 0.2214 0.2151 0.1765 0.1072 0.1795 0.1118
MAD 0.2940 0.3325 0.2105 0.2613 0.2208 0.0831 0.2318 0.2195 0.1912 0.1280 0.2063 0.1208
Grad 24.13 20.22 16.60 17.58 16.97 17.38 17.89 15.33 12.62 13.59 13.06 9.696
Conn 70.17 28.18 24.85 25.21 25.02 20.77 59.62 47.43 44.19 24.44 44.67 39.37

SAD-FG 21.66 12.10 5.019 2.311 10.64 2.077 52.14 28.69 22.62 14.80 23.19 25.00
SAD-BG 15.47 9.242 3.628 2.870 3.766 2.848 2.569 2.815 4.180 6.392 3.547 1.954
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Figure 5. Visual comparisons for portrait matting. From left to right, the above figures show the
original images, the results of GFM [59] architecture, the results of P3M [58] architecture, the results
of MGM [61], and the results of ViTAE [62] and the results of our architecture.

4.3.2. CIBR vs. CBR, CIR, and CBIR

The difference between CIBR, CBR, CIR, and CBIR is that they are embedded in
different normalized ways between the convolutional layer and the ReLU activation
function. What CIBR chose is to use InstanceNorm first and then BatchNorm. CBR
implies the BatchNorm as the method of normalization. CIR stands for the adoption of
InstanceNorm. CBIR uses BatchNorm first and then InstanceNorm. More details about
each of these modules are shown in Section 3.1.3. Some relevant experimental results are
presented in Table 4. To compare the different results brought by these different designs
embedded in our network, we conducted comparative tests on these modules. During the
experiment, we replaced the “CIBR” in our architecture with “CBR”, “CIR”, and “CBIR”,
respectively, and carried out training. The experiments all underwent the same training
strategy before the test. All tests were performed on the PPM-100 dataset [46]. The datasets,
training epochs, learning rates, and optimizers used for training are the same as described
in Section 4.2. The experimental data in Table 4 further confirm that simply embedding
Instancenorm is not a wise choice in the architecture. It was 5.44, 0.0266, 0.0247, 1.82, 0.41,
1.85, and 6.346 higher than SAD, MSE, MAD, Grad, Conn, SAD-FG, and SAD-BG when
using Batchnorm directly. In addition, when Instancenorm and Batchnorm are embedded
at the same time, CIBR design is superior to CBIR in measuring indicators. Through these
sets of experiments, we effectively prove that using “CIBR” modules in our architecture is
more conducive to portrait matting than using the other three designs.
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Table 4. Comparison Results Related to CIBR.

Module CIBR CBR CIR CBIR

SAD 20.86 29.93 35.37 23.18
MSE 0.0750 0.0757 0.1023 0.0805
MAD 0.0790 0.1072 0.1319 0.0937
Grad 17.09 21.33 23.15 20.92
Conn 21.23 22.50 32.91 21.42

SAD-FG 10.34 12.72 14.57 13.81
SAD-BG 6.223 8.184 14.53 7.106

4.3.3. The Comparisons of Static Teacher Network and Static Student Network

In this paper, we try to guide the learning and training of static student networks
(S-SN) by static teacher networks (S-TN) with complex structural design. The purpose
of this behavior is to enable the relatively simple structure of the static student network
to have similar effects to the complex structure of the teacher network. In this part, we
compare the effects of the static teacher network and the static student network on the
PPM-100 dataset [46]. It is important to note that the adaptive student network is acquired
by copying the static student network to face the unlabeled datasets with the help of
adaptive strategies. So in this subsection, the effect of the adaptive student network is the
same as that of the static student network. We only need to compare the effect of S-TN and
S-SN, which is enough to confirm whether the relatively simple S-SN achieves the same
effect as S-TN. By testing S-TN, we obtain the results of 20.91, 0.0751, 0.0792, 17.13, 21.25,
10.39, and 6.226 on SAD, MSE, MAD, Grad, Conn, SAD-FG, and SAD-BG, respectively.
Only 0.05, 0.0001, 0.0002, 0.04, 0.02, 0.05, and 0.003 are lower than S-SN on the seven
measures, respectively; therefore, we succeed in making S-SN with a relatively simple
structure under the guidance of S-TN to achieve similar results.

4.3.4. Parameters

To verify that the structure we designed is relatively simple, the number of parameters
for multiple architectures were tested and recorded. Through the test, we learn that
the number of parameters of GFM, P3M, MGM, and ViTAE is 55.29M, 39.48M, 29.7M,
and 27.46M, respectively. Our architecture has only 6.49M parameters. The number is
much smaller than that of some recent architectures.

4.4. Ablation Studies

In this section, we introduce some ablation experiments performed to verify the
effectiveness of the designed modules and adaptive strategies.

4.4.1. Adaptive Strategies

In Section 3.2, we introduce two types of innovative adaptive strategies. To verify the
effectiveness of the proposed adaptive strategies, we combined the adaptive strategies with
several different current architectures and tested their effects. Test results before embedding
the adaptation strategies are recorded in columns 2 through 6 of Table 5. The testing effects
after the adaptive strategies are integrated based on different architectures, and are shown
in the last five columns of Table 5. First, we trained 400 epochs on the training set of
SPDDataset [54]. The initial learning rate was set as 0.06, and after 80 epochs each time,
the learning rate decreased to half of the original. At the same time, we used the Adam
optimizer [56] to optimize models during training. Then, the tests were performed on the
P3M test set [58], and the results of the tests are recorded in the first four columns of Table 5.
Finally, four groups were trained using the two adaptive strategies we designed and the
test results are recorded in the last four columns of the table. According to the comparison
between the data in the first four columns of the table and the data in the next four columns,
it is obvious that the adaptive strategy designed by us can be significantly improved in
the test set. After adding the adaptive strategy designed by us, the recently proposed
MGM [61] architecture decreases by 29.56, 0.1131, 0.1151, 24.6, 27.03, 9.7562, 11.46 in SAD,
MSE, MAD, Grad, Conn, SAD-FG, and SAD-BG, respectively. At the same time, although
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MSE and MAD have obvious advantages over other methods when ViTAE architecture [62]
does not use our adaptive strategies, they still improve significantly after training using
the two adaptive strategies we designed. Among them, MSE and MAD further decreased
by 0.0850 and 0.0827, respectively. These eight sets of experiments effectively demonstrate
the two adaptive strategies designed by us can improve the generalization ability of the
existing architectures even after training on small batch datasets.

Table 5. Comparison results with adaptive strategies.

Before (the Original Algorithms) After (Algorithms with the Adaptive Strategies)

Method GFM [59] P3M [58] MGM [61] ViTAE [62] Ours w/o
Strategies GFM [59] P3M [58] MGM [61] ViTAE [62] Ours

SAD 66.50 30.74 35.21 23.75 17.59 43.72 4.520 5.641 2.368 2.074
MSE 0.2500 0.1071 0.1246 0.0898 0.0648 0.1620 0.0125 0.0115 0.0048 0.0031
MAD 0.2536 0.1172 0.1366 0.0917 0.0706 0.1668 0.0172 0.0215 0.0090 0.0075
Grad 20.22 33.31 28.42 29.91 20.59 22.67 6.876 3.820 4.838 4.575
Conn 64.86 36.89 32.06 22.41 10.93 42.96 4.276 5.027 2.249 2.084

SAD-FG 54.79 13.04 10.63 8.635 9.42 33.07 1.083 0.8738 0.3509 0.3018
SAD-BG 2.436 6.303 14.81 10.62 2.834 2.503 0.9829 3.341 0.1132 0.0948

4.4.2. Some Components in the Teacher Network

In the static teacher network, a total of four components are embedded. They are
backbone1, backbone2, channel-wise attention mechanism (Channel-Wise AM), and CIBR
modules. In this section, we combine these four components and test them on the P3M
test datasets [58]. Twelve sets of ablation experiments are presented in Table 6. In addition,
the twelve ablation groups underwent the same training strategy on the same dataset.
The training period, dataset, learning rate, and selection of optimizer are the same as the
configuration in Section 4.2.

Table 6. The ablation experiment of blocks in the static teacher network.

Num backbone1 backbone2 Channel-Wise
AM CIBR SAD MSE MAD Grad Conn SAD-FG SAD-BG

1 ! % % % 54.25 0.1256 0.1726 18.72 53.21 42.06 9.825
2 % ! % % 60.94 0.2355 0.2286 21.48 54.28 42.85 8.572
3 ! ! % % 42.57 0.1547 0.1703 23.83 41.64 20.58 7.852
4 ! % ! % 50.17 0.1102 0.1653 14.95 49.83 38.01 9.194
5 ! % % ! 46.82 0.1053 0.1493 11.15 43.03 33.92 8.083
6 % ! ! % 56.28 0.1738 0.1841 17.74 50.92 39.61 7.440
7 % ! % ! 48.67 0.1383 0.1618 13.47 46.92 30.04 7.052
8 % ! ! ! 26.30 0.0961 0.1075 10.31 23.72 14.10 7.228
9 ! % ! ! 13.94 0.0619 0.0690 16.36 9.186 2.330 4.124
10 ! ! % ! 8.813 0.0135 0.0171 5.446 8.350 0.9182 1.843
11 ! ! ! % 10.72 0.0979 0.0893 20.49 10.18 3.483 6.421
12 ! ! ! ! 2.074 0.0031 0.0075 4.575 2.084 0.3018 0.0948

It is worth mentioning that channel-wise AM and CIBR require feature input for
further feature extraction; therefore, there is no need to set up experiments utilizing
channel-wise AM and CIBR without any backbone. However, through the comparison
of several experiments, it is proved that adding channel-wise AM or CIBR can indeed
improve the effect of portrait matting. After adding the channel-wise AM structure based on
backbone1, SAD, MSE, MAD, Grad, Conn, SAD-FG, and SAD-BG decrease by 4.08, 0.0154,
0.0073, 3.77, 3.38, 4.05 and 0.631, respectively. When backbone1 is integrated with CIBR,
the seven measures fall even more sharply. They decreased by 7.43, 0.0203, 0.0233, 7.57,
10.18, 8.14, and 1.742, respectively. From the comparison of group 2 and group 6 in Table 6,
it can be found that the combination of backbone2 with channel-wise AM or CIBR can also
significantly improve the effect. As can be seen from the comparison results of group 2 and
group 7, the use of CIBR can also further improve the effect of backbone2.

As far as the use of backbone is concerned, the effect of the combination of the
two is better than that of the single embedding. When adopting the combination with
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two backbones, such as the second group and the third group of experimental comparison,
the SAD, MSE, and MAD index decreased by 18.37, 0.0808, and 0.0583 respectively. In
general, channel-wise AM or CIBR embedding can enhance the effect of the original
architecture. In addition, the design of two backbone companies is more effective than
using only one backbone company.

5. Conclusions

In this paper, we propose two kinds of novel adaptive strategies and a semi-supervised
network. The two adaptive strategies are auxiliary adaption and self-adjusting adaption. These
two adaptive strategies assist the semi-supervised network to have the ability to further improve
its effectiveness in the face of unlabeled datasets. In our proposed architecture, there are three
parts: static teacher network (S-TN) with a complex network structure, static student network
(S-SN) acquired after pruning the teacher network, and adaptive student network (A-SN)
applied to unlabeled datasets. Auxiliary adaption provides training and optimization reference
for the A-SN through segmentation results, edge graphs, and pseudo-labels obtained from
S-TN. This strategy eliminates time-consuming manual annotation in the face of unlabeled
training datasets and improves the model effect on unlabeled datasets to a certain extent. The
self-adjusting adaption enables the A-SN to measure and optimize the results generated
in front of the network according to the results generated in the back layer of its network.
In addition, we specifically integrated the above ideas with a network called ASSN and
conducted 24 groups of comparison experiments on four datasets. To verify the effectiveness
of the two adaptive strategies proposed by us, four different ablation experiments were
performed by combining the existing four different architectures with our adaptive strategies.
We also conducted some ablation experiments based on the modules in the designed network.
Both theoretically and experimentally, our proposed architecture and two adaptive strategies
are well proved. At the same time, considering that the existing detailed datasets in the field
of portrait matting are not sufficient, dataset named MPMD is available for scholars to use.
Compared to the previous datasets, our dataset not only adds images from multiple people
but also complements the images from bad lighting. Because our architecture is capable
of obtaining relatively detailed alpha mattes even on unlabeled datasets, it can be used to
create some supplementary alpha mattes to enrich the reference of unlabeled datasets during
training. In addition, our static teacher network can be used to guide lightweight networks
for knowledge distillation-based learning.
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