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Abstract: The advancement of multi-level cell technology that enables storing multiple bits in a
single NAND flash memory cell has increased the density and affordability of solid-state drives
(SSDs). However, increased latency asymmetry between read and write (R/W) intensifies the
severity of R/W interference, so reads cannot be processed for a long time owing to the extended
flash memory resource occupancy of writing. Existing flash translation layer (FTL)-level mitigation
techniques can allocate flash memory resources in a balanced manner taking R/W interference into
account; however, due to the inefficient utilization of parallel flash memory resources, the effect on
performance enhancement is restrictive. From the perspectives of the predicted access pattern and
available concurrency of flash memory resources, we propose a parallelism-aware channel partition
(PACP) scheme that prevents SSD performance degradation caused by R/W interference. Moreover,
an additional performance improvement is achieved by reallocating interference-vulnerable page
using leveraged garbage collection (GC) migration. The evaluation results showed that compared
with the existing solution, PACP reduced the average read latency by 11.6% and average write latency
by 6.0%, with a negligible storage overhead.

Keywords: data migration; flash memory; garbage collection; page allocation; R/W interference

1. Introduction

In NAND flash memory, the number of bits per cell is increased to expand the capacity
and reduce the bit cost. However, as the number of bits per cell increases, the NAND flash
becomes more difficult to store and read correctly considering that the threshold voltage
margins become smaller [1]. For example, compared to a single-level cell (SLC) that stores
one bit in one cell, the read time of a quad-level cell (QLC) that can store four bits in one
cell is approximately five times longer, the write time is approximately twenty times longer,
and the latency asymmetry is over four times longer [2]. A solid-state drive’s (SSD) overall
performance suffers as the read/write (R/W) interference problem becomes more severe
owing to the increasing latency asymmetry.

The simplified data flow across the SSD’s components for processing requests received
from the host is illustrated in Figure 1a. First, the flash translation layer (FTL) converts
the logical address to the physical address based on a given data allocation policy. Next,
the FTL forwards the corresponding data request to NAND flash chip arrays and logs the
translated address information in the mapping table in parallel to expedite the subsequent
data accesses.

Figure 1b depicts the timing diagram for this process to highlight the problem to be
addressed in this study as a result of the technology trend of NAND flash evolving into a
multi-level cell (including MLC, TLC, QLC, and so forth) structure for higher integration.
Consequently, data processing latency increases rapidly, and in particular, the imbalance
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between the read and write is exacerbated significantly. For instance, the write latency for
SLC is approximately 6.3 times that of the read latency, whereas the ratio for QLC increased
dramatically to 23.2 times [2]. Therefore, ineffective data allocation can frequently cause
read processing delays owing to write operations.
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Figure 1. (a) Data flow across the components in the simplified SSD structure; (b) timing diagram for
a request flow from host to chip.

Previous studies have focused on allocation strategies that use simple mathematical
modeling to determine the target of a flash transaction. For instance, the location of data
storage is determined by the quotient and remainder of successive divisions of logical
addresses in a predefined order of channel, chip, die, and plane [3–6]. However, this
approach makes the latency of the request sensitive to the address pattern of the I/O request,
and its static nature can cause conflicts on shared resources. A promising alternative
to cope with this challenge is to adopt a dynamic approach when allocating resources
depending on the characteristics of the transaction workloads [7]. However, the existing
dynamic allocation strategy focuses on resource conflict; thus, it is insufficient to resolve
R/W interference through effective request distribution considering the characteristics of
the workload.

By addressing the problems of imbalanced flash memory resource utilization and R/W
interference in the existing dynamic data allocation methods, we propose a parallelism-
aware channel partition (PACP) that boosts SSD performance through efficient data al-
location. PACP allocates SSD resources dynamically based on request types in order to
maximize utilization and reduce read processing latency by focusing primarily on domi-
nant request patterns. Furthermore, reallocating interference-vulnerable pages that may
occur when changing the allocated area also contributes to an increase in performance.

The contributions of this study are summarized as follows:

1. SSD is partitioned at the channel level using the parallelism-aware channel partition
technique to mitigate R/W interference, and latency is reduced by allocating pages
leveraging transaction histories.

2. The allocated channel is dynamically updated to maximally utilize the flash memory,
even when the workload has highly imbalanced access characteristics.
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3. Reallocating some pages vulnerable to R/W interference through a migration scheme
is performed to address worst-case scenarios where latency can increase and leveraged
garbage collection (GC) to minimize SSD performance overhead.

The remainder of this paper is organized as follows. Section 2 presents related work
on R/W interference. Section 3 describes the proposed idea, PACP. The simulation results
and analysis under various conditions are provided in Section 4. Finally, Section 5 provides
the conclusion and future work.

2. Related Work

Various efforts have been conducted to alleviate R/W interference, which can be
categorized into program/erase (P/E) suspension, an I/O scheduler at the host level,
and performance isolation. Table 1 summarizes the existing R/W interference mitigation
schemes for NAND flash memory. Wu et al. proposed a P/E suspension method, which
allows for the interruption of long program or erase transactions to process immediate
read transactions [8]. However, along with a complicated scheduling technique for proper
program and erase interruption, this method requires a page buffer to temporarily store
the data of the hindered operation.

Table 1. Summary of R/W interference mitigation schemes.

Category Scheme Main Idea Advantages Limitations

P/E suspension Wu et al. [8] Suspend on-going P/E
operations

Significantly decrease
the read latency

System & hardware
overhead Negative

impact on the
endurance

I/O scheduling

FIOS [9]
Separates reads and

writes in batches
No hardware
modification

Read and write
requests only

separated in batches
BCQ [10]

PIQ [11]

Performance isolation

Kim et al. [12] Eliminating interference
from different tenants

that share the SSD

Significantly decrease
R/W interference
between tenants

Interference within
the workload has not

been addressedHuang et al. [13]

Lv et al. [14]
Allocate different types

of requests into
different partitions

Significantly decreases
R/W interference

Channel utilization
problem has not been

given sufficient
consideration

Typical I/O schedulers are primarily designed to expedite I/O in multi-tasking en-
vironments that share a storage device. Although the FIOS [9] describes how to alleviate
R/W interference at the host level, it takes a simple approach by sending the read request
out first and waiting to send all the writes until the dispatched reading is complete [15].
BCQ [10] presents a similar approach with a higher accuracy for determining R/W costs.
Both FIOS and BCQ can cause write delays owing to frequent read access, which can
degrade the overall performance of the storage device. In contrast, PIQ [11] minimizes the
access interference among I/O requests in a single batch by exploiting the rich parallelism
of the SSD. However, all these I/O schedulers isolate read and write requests within a
single batch, and the R/W interference problem still exists between batches.

Performance isolation schemes exploit the fact that the main cause of R/W interference
is the sharing of flash memory resources among the different types of requests. The objec-
tive of performance isolation techniques [12,13,16,17] is to provide predictable latency by
preventing interference between tenants sharing an SSD. For example, Huang et al. and
Kim et al. deployed a similar approach to data allocation to avoid performance degradation
caused by the garbage collection (GC) of other tenants [12,13]. Although performance
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isolation schemes reduce inter-tenant interference, they overlook R/W interference within
a single workload.

Regarding the R/W interference problem within a single workload, Lv et al. [14]
proposed a static channel partition for different requests to be handled independently.
Compared to previous isolation methods, R/W interference can be addressed to a higher
level by statically partitioning channels based on workload access patterns. However,
when read and write requests are highly imbalanced, this approach results in low flash
memory usage.

3. Parallelism-Aware-Channel-Partition (PACP)

The primary goal of PACP is to increase the flash memory resource utilization and
mitigate R/W interference through workload-aware page allocation. Figure 2 shows an
overview of PACP implemented in the SSD controller. First, an access pattern is predicted
based on the transaction histories in the modified mapping table to select a flash memory
resource where the data are processed depending on the request types. Then, PACP han-
dles the SSD resource underutilization by budgeting the area allocated for each request
type according to the intensity of the workload and performs R/W-interference-aware
page allocation. However, if the request imbalance between reading and writing is severe,
partitioning the allocated area can result in a problem where request processing is concen-
trated on specific flash memory resources. The declining channel utilization is boosted by
allowing the use of an alternative channel type in accordance with the access characteristics
of the workload. R/W-interference-aware page allocation enables the partial assignment of
pages to the other type channels for flash memory resource utilization improvement. Fur-
thermore, PACP pursues additional performance improvements with effective reallocation
via leveraged GC migration for pages that may become vulnerable to interference.

1/47

Mapping table
TRH

LPA PPA

0xBF469000 0xC0104000 Read Read Write

0x3D0A5400 0xA14F1000 Write Write Read

0xC0620000 0x58CE7000 Write Read Read

Channel 0 Read

Channel 1 Read

Channel 2 Read

No. of Channel Type

Channel 3 Write

Chip 0
Channel 0

Chip 1

Chip 2
Channel 1

Chip 3

Chip 4
Channel 2

Chip 5

Chip 6 
Channel 3 

Chip 7

Read

Write

H
o

st
 I

n
te

rf
ac

e

N
A

N
D

 F
la

sh
 I

n
te

rf
ac

e

SSD Controller

N = 3

Newly proposedModified  N : TRH field size

R/W Interference-aware data allocator Request queue

Leveraged 

GC migrator Channel 

info

FTL

Mapping 

table

Figure 2. Overview of the parallelism-aware channel partition (PACP).

3.1. Request Prediction on Page

It is vital to characterize the workload being processed on the SSD in order to ex-
pose the maximum parallelism of flash memory resources based on the types of requests.
To reflect the nature of real-world workloads, we analyzed the Microsoft Research (MSR)
trace [18] that profiled workloads running on the Microsoft Research Enterprise Server.
Figure 3 shows the read and write percentages processed by pages classified into three
categories for nine workloads randomly selected from the MSR traces. A page is classified
as read-dominant (write-dominant) if more than 90% of the requests processed are read
(write). Otherwise, it is categorized as a mixed page. Although the ratio of reads to writes
varies depending on the workload being processed, approximately 91.6% of requests are
processed on the dominant pages, as shown in Figure 3. These observations are consistent
with previous studies [19,20] and provide the guideline for flash resource partitioning for
performance optimization considering the behavior of real-world applications.
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Figure 3. Distribution of reads and writes ratio processed by pages classified into three categories.

To appropriately handle the biased workloads of read or write depending on the
addresses of the MSR traces, the associated request type must be logged at run time.
As shown in Figure 2, PACP requires a transaction history (TRH) field in line with the
corresponding mapping table entry containing the logical page address (LPA) and physical
page address (PPA). When the FTL refers to the mapping table during address translation,
TRH records the request type and can hold up to N recent requests.

The predicted type is determined by comparing the number of reads and writes in
the TRH; the greater one is chosen. For example, if TRH field tracks three transaction
histories (as in Figure 2) and two or more of those are read, the type of request for that
page is predicted to be read. However, if an even number of transaction histories are held,
the number of reads and writes could be the same. To deal with this case, the request
is predicted based on the stored channel information to utilize the evicted past access
information. This information is derived from the recorded transaction requests, which
will be discussed in Section 3.2.

3.2. R/W-Interference-Aware Page Allocation

PACP aims to minimize R/W interference by isolating the flash memory resource for
read and write while taking parallelism into account. Channel-wise partitioning is per-
formed to eliminate any conflict caused by physical resource occupancy between read and
write requests. The channel partition is determined by the ratio of page types identified by
TRH. During the workload processing, the channel partition ratio is dynamically adjusted
by reflecting the updated read- and write-dominant page ratios, effectively responding
to request intensity and maximizing resource utilization. When switching channel types,
the channel with the fewest pages of the previous type is chosen to avoid R/W interference
caused by different types of pages within the channel.

Algorithm 1 presents R/W-interference-aware page allocation to fully utilize the
partitioned read and write channels. By default, if there is no transaction history, dynamic
page allocation is performed at the channel, chip, die, and plane level order in a round-
robin manner. If a resource is busy, it is assigned to the next resource at the same level to
utilize flash memory resources efficiently [7]. For requests with transaction history, R/W
interference is mitigated through workload-aware page allocation. Considering that the
type of request depends on LPA, dynamic allocation is performed in the area partitioned
into read and write channels, as shown in Figure 4a.
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Algorithm 1 R/W-interference-aware data allocation.

Input:
Each channel type info : Cstatus = {CRead, CWrite}
Logical page address : LPA
N transaction histories of the LPA : TRH

Output:
Physical page address : PPA

1: TRHRead ← The number of read transaction histories of the TRH
2: TRHWrite ← The number of write transaction histories of the TRH
3: if No TRH then
4: PPA ← Dynamic_page_allocation(LPA)
5: end if
6: if TRHRead > TRHWrite then
7: if all Channels(CRead) is busy then
8: PPA ← Dynamic_page_allocation (LPA, CWrite)
9: else

10: PPA ← Dynamic_page_allocation (LPA, CRead)
11: end if
12: else if TRHRead < TRHWrite then
13: if all Channels(CWrite) is busy then
14: PPA ← Dynamic_page_allocation (LPA, CRead)
15: else
16: PPA ← Dynamic_page_allocation (LPA, CWrite)
17: end if
18: else if TRHRead == TRHWrite then
19: if prvious PPA on Channels(CWrite) then
20: PPA ← Dynamic_page_allocation (LPA, CWrite)
21: else
22: PPA ← Dynamic_page_allocation (LPA, CRead)
23: end if
24: end if

The method in Figure 4a may cause processing delays due to insufficient channels
being allocated for each type according to the imbalanced requests. For instance, when
requests are processed repeatedly only for read-dominant pages, write channel resources
may not process any requests. As requests are concentrated only on a specific channel, read
requests are buffered for a long time, which has the same effect as reducing the number
of channels in the SSD. This is fatal for an SSD with a small number of channels, and the
performance degradation from the channel partitioning can cause a bigger problem than
the response time improvement that can be obtained through R/W interference mitigation.

When imbalanced requests are processed intensively, as shown in Figure 4b, some
pages are partially stored in the other type of flash memory resources. This has the
advantage of allowing request processing without waiting for other requests to complete.
However, partially allocating data to the other type of area conflicts with design goals
of PACP by generating data vulnerable to R/W interference. Although it is a problem
in the context of considering the worst case in the application of PACP, the possibility
of effectively solving this problem was explored by leveraging GC, which is an intrinsic
operation of SSD.
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Figure 4. R/W-interference-aware page allocation: (a) basic allocation flow; (b) allocation flow with
strongly imbalanced requests.

3.3. Leveraged GC Migration

R/W-interference-aware page allocation partially allocates pages to channels of the
other type when excessively imbalanced requests occur to address latency degradation
caused by reduced flash-memory resource usage. The page that can intensify interfer-
ence by using the same hardware resources for read and write operations is reallocated
through migration.

The migration processes of read- and write-dominant pages are different owing to the
difference between the read and write operations of the SSD. For write operations, data
are stored in the physical location, which is determined based on the predefined allocation
policy. If data already exist, the page containing that old information is marked invalid,
and new data are allocated to a free page and changes its state to valid. When an additional
write request occurs for a write-dominant page residing in the read channel, migration is
performed to the write channel through R/W-interference-aware page allocation.

However, read-dominant pages in the write channel cannot be reallocated if additional
write requests are not made, so the reallocation is performed through migration. Page mi-
gration introduces additional writes and occupancy SSD resources, which can degrade the
performance of foreground jobs. In order to avoid performance degradation, background
migrations should only be performed when the storage system is not in use.

To improve the system performance in the background migration process, page allo-
cation is performed by leveraging GC, which frequently occurs during the SSD lifetime
and significantly influences the SSD latency. The GC procedure reclaims invalidated pages
by selecting a candidate victim block with many invalid pages, moving any valid pages
into a free block, and then erasing the block [21]. As the proportion of invalid pages to the
total pages within a block rises, GC efficiency increases [22]. Through GC-aware migration,
the block with the largest number of invalid pages is chosen to increase the efficiency of
GC that will occur and reallocate page that is vulnerable to interference.

Depending on workload intensity, it may not be possible to sufficiently migrate a
read-dominant page stored in a write channel through GC-aware migration. The mi-
gration overhead is hidden by transferring the page using an approach similar to the
GC-piggybacked migration proposed by Han et al. [23], in which the read-dominant page
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in the victim block is migrated to a block in a read channel and GC is being performed in the
write channel. Consequently, the page migration overhead is concealed by piggybacking
the migration on the GC and eliminating unnecessary program operations.

As shown in Figure 5a, the block with the highest number of invalid pages is chosen,
and a read-dominant page in the block is migrated to a read channel at idle time. Figure 5b
shows the process of migrating the read-dominant page when GC is performed, hiding
latency without unnecessary program operations caused by migration.WD
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Figure 5. Procedure for read-dominant pages migration vulnerable to R/W interference: (a) GC-
aware migration at idle time; (b) GC-piggybacked migration during GC process.

3.4. Lifespan Discussion

PACP performs channel-wise partitioning and allocates pages referring to transaction
histories stored in the mapping table to mitigate R/W interference in SSD. The limited
performance improvement stemming from the parallelism decrease is solved by dynami-
cally altering the channel type and reallocating interference-vulnerable pages. However,
PACP can affect the lifespan by causing uneven utilization of flash memory resources in
write-dominant applications due to the physical properties of NAND flash memory.

Existing wear-leveling solutions proposed for partitioned SSDs can address the prob-
lem of PACP effectively. For example, Huang et al. [12] proposed a method of exchanging
partitions when the device is idle, and Kim et al. [24] presented a method of using the write
area in round-robin order. The lifetime degradation problem of PACP can be alleviated.

4. Evaluation

SSDsim [4], a well-known trace-driven simulator, was utilized to model PACP. In the
evaluation, flash microarchitecture comprised 8–64 channels, and read latency according to
the number of channels was compared with Lv et al.’s scheme [14], which is performance
isolation in a workload. The configuration of flash memory resources per channel and chip
operation latency is shown in Table 2. The implemented page-mapping-based FTL, GC,
and wear leveling of the SSDsim were utilized [4]. Various workloads were used to validate
the effectiveness of PACP according to the read and write ratios, as shown in Table 3.
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Table 2. Configuration of the simulated SSD.

NAND Flash Parameters Value

Number of Channels 8–64 (8, 16, 32, 48, 64)

Number of Chips per Channel 2

Number of Dies per Flash Chip 2

Number of Planes per Die 2

Number of Blocks per Plane 2048

Number of Pages per Block 256

Page Size (KB) 4

Page Read Latency (µs) 140

Page Program Latency (µs) 3102

Block Erase Latency (ms) 3.5

Table 3. Request ratio of seven workloads selected from MSR.

Workload Read Ratio (%) Write Ratio (%)

hm_1 95.3 4.7

src1_2 25.3 74.7

hm_0 35.5 64.5

proj_3 93.5 6.5

prn_0 10.8 89.2

wdev_0 20.1 79.9

web_0 29.9 70.1

average 44.3 65.7

4.1. Prediction Accuracy Based on TRH

A trade-off between prediction accuracy and field size was analyzed for the TRH-based
request prediction technique used by the PACP. Figure 6 depicts the prediction accuracy
according to the field size of 1 to 3 bits. The average accuracy of request type prediction
based on the history of a single request was 96.4%. Even though there is only information
about the most recent request type, it is still possible to make an accurate prediction about
the page type. This is because there is a strong possibility that requests of the same type will
be processed on the identical page, as was demonstrated by the results of earlier workload
analysis in Section 3. However, the processing of mixed read and write requests appears to
be the cause of the incorrect distinction of 3.6%.

When using more than one bit of TRH, channel information with a page is used to
resolve ambiguity due to the same number of transaction histories. However, the prediction
accuracy of the two-bit TRH was 94.6%, which was less than that of the one-bit transaction
history, owing to the problem of erroneously predicting a page misallocated to channels of
the other type. This means that some pages require migration.

In the case of using three transaction histories, a 0.5% increase in accuracy was pre-
sented because more information was utilized compared to one bit. Despite an increase of
two bits for each mapping entry resulting in an additional 64 MB of overhead based on 512
GB flash with 4 KB pages, there was only a 0.5% improvement in accuracy compared to
one bit. TRH field to each mapping entry requires 2 MB of capacity overhead per channel
count for including an additional bit. This is not an effective solution considering that
SSD’s storage capacity increased by approximately 0.1% for every one bit of TRH field
size increase. Therefore, PACP adopts a one-bit TRH to predict the type of request to be
processed on the page.
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Figure 6. TRH bits count impact on request-type-prediction accuracy.

4.2. PACP Latency Compared to Ideal

A preliminary experiment was conducted in which PACP was compared to the ideal
case without R/W interference. The root cause of R/W interference is read processing
delay due to writes monopolizing flash memory resources. 32-channel SSD was configured
on the simulator to make the write-induced resources preemption close to zero to eliminate
the read delay caused by the write, showing the ideal case of read delay.

In Figure 7, ’Ideal’ represents the read latency when there is no interference in com-
parison to the baseline dynamic allocation [7] for the seven previously selected workloads
in Table 3. Hm_1, proj_3, and src1_2 are workloads with relatively low R/W interference
frequencies, making it challenging to anticipate considerable PACP effectiveness. In con-
trast, read processing for hm_0, prn_0, wdev_0, and web_0 is severely delayed due to the
write operation. Thus, when PACP is used, a significant performance enhancement can
be expected.
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Figure 7. Normalized read latency comparison with the ideal.
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Hm_1 and proj_3 are workloads that exhibit insignificant performance degradation
owing to R/W interference, as verified in ’Ideal’. Even if PACP (without migration) is
applied to resolve interference, it shows a similar read latency as the baseline. For hm_0,
prn_0, and web_0, the application of PACP (without migration) showed a tendency com-
parable to the ’Ideal’, and the latency reduced significantly to 31.9%, 32.6%, and 49.3%,
respectively. However, although src1_2 and wdev_0 are workloads vulnerable to R/W
interference, the latency reduction is insufficient, and src1_2 increases latency by 19.0%.
This problem is predictable because interference-vulnerable pages are inherently handled
poorly by R/W-interference-aware page allocation technique.

PACP reallocates the read-dominant pages in the write channel resources to the ap-
propriate location with low overhead through GC leveraged migration. The latency of
src1_2 was 21.9% lower than PACP (without migration), showing an average read latency
comparable to the baseline. Hm_1 showed decreases in latency of approximately 12.9%
through PACP, although the performance degradation owing to R/W interference was
relatively low at 16.0%. By leveraging GC migration, an effective response to the worst
case was achieved, as well as additional performance improvement for workloads that
are not sensitive to R/W interference. In addition, the average read latency was further
reduced for hm_1, proj_3, and prn_0. However, owing to the overhead of the migration
process, the latency increased by 8.7% and 6.1% for hm_0 and wdev_0, respectively. Al-
though the migration technique reduced the overall latency by 7.8%, the handling of some
workloads suffered.

Overheads caused during the reallocation procedure were analyzed to understand
GC-leveraged migration comprehensively. Figure 8 shows the ratio of program counts to
total during the migration process. In hm_1 and proj_3, where the read ratios accounted
for 93.5% and 95.3%, respectively, migration occurred infrequently. As a result, only 0.2%
of the additional programs were processed. For other workloads, the migration ratio
varied depending on the intensity of the request. Nevertheless, the migration ratio for
all workloads was within 2.7%, and the average migration ratio was around 1.0%. These
are negligible program counts considering the average read latency decreased owing
to migration.
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Figure 8. GC-aware migration and GC-piggybacked migration’s cost to the total number of pro-
gram operations.

4.3. Overall Comparison with Existing Solution

The method of Lv et al. [14] and PACP, commonly categorized into R/W interference
mitigation by performance isolation (Table 1), were compared from various perspectives.
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For performance comparisons based on SSD configuration and workload interference
intensity, various workloads were applied under 8 to 64 channel configurations.

Figure 9a shows the latency according to the number of channels for web_0, a work-
load with high interference. Despite the severe interference, latency increases when there
are 16 or fewer channels because Lv et al.’s method decreases channel utilization. However,
in environments with a large number of channels, page allocation using statically parti-
tioned channels has proven to be effective because it drastically reduces interference. When
the number of channels was 48 or more, the decrease in read latency was bigger than that
of PACP. Lv et al.’s method reduced latency by 6.0% on average for a workload with high
R/W interference.

A comparison of the read latency for the low interference workload hm_1 is shown in
Figure 9b. The performance of PACP, which uses flash memory resources effectively, was
more effective in all cases because performance improvements due to R/W interference
mitigation were not significant.
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Figure 9. Read latency comparison under different interference conditions: (a) high-interference
workload (hm_1); (b) low-interference workload (web_0).

Figure 10a depicts the average read latency for the seven workloads depending on the
number of channels. For cases where the number of channels is 32 or less, the latency of
the existing scheme increased, whereas the latency of PACP decreased. In addition, when
the number of channels exceeded 48, both existing methods and PACP decreased latency.
However, the PACP latency reduction effect was approximately 11.6% for all channels,
which showed outstanding performance compared to the existing technique.
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Figure 10. Average latency comparison for all workloads: (a) read; (b) write.



Electronics 2022, 11, 4048 13 of 14

Despite the fact that both the Lv et al. scheme and the PACP reduce the read latency,
Figure 10b shows that the write latency increases due to the delay caused by the write.
PACP caused an increase in latency of 2.7% because it causes an additional program
compared to PACP (without migration). With PACP, the write latency was increased by
2.5% relative to the baseline. However, the write latency was reduced by 6.0% relative to
the Lv et al. method.

5. Conclusions

With the development of multi-level cell technology in which multiple bits can be
stored in NAND flash memory cells, R/W interference has become a more significant
problem. This paper proposed a PACP technique that exploits the request access pattern
to mitigate R/W interference and increase parallel flash-memory resource utilization.
Furthermore, an additional performance improvement was achieved through GC-leveraged
migration for pages vulnerable to interference. PACP can be implemented in the FTL of
the SSDs without dedicated hardware, requiring approximately 0.1% of the SSD storage
capacity. Extensive evaluations showed that PACP significantly reduces read and write
latency compared to the previous solution. The future work of PACP includes a wear
leveling method for dynamically updated, partitioned SSD.
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