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Abstract: According to medical reports and statistics, skin diseases have millions of victims world-
wide. These diseases might affect the health and life of patients and increase the costs of healthcare
services. Delays in diagnosing such diseases make it difficult to overcome the consequences of these
types of disease. Usually, diagnosis is performed using dermoscopic images, where specialists utilize
certain measures to produce the results. This approach to diagnosis faces multiple disadvantages,
such as overlapping infectious and inflammatory skin diseases and high levels of visual diversity,
obstructing accurate diagnosis. Therefore, this article uses medical image analysis and artificial
intelligence to present an automatic diagnosis system of different skin lesion categories using dermo-
scopic images. The addressed diseases are actinic keratoses (solar keratoses), benign keratosis (BKL),
melanocytic nevi (NV), basal cell carcinoma (BCC), dermatofibroma (DF), melanoma (MEL), and
vascular skin lesions (VASC). The proposed system consists of four main steps: (i) preprocessing the
input raw image data and metadata; (ii) feature extraction using six pre-trained deep learning models
(i.e., VGG19, InceptionV3, ResNet50, DenseNet201, and Xception); (iii) features concatenation; and
(iv) classification/diagnosis using machine learning techniques. The evaluation results showed an
average accuracy, sensitivity, specificity, precision, and disc similarity coefficient (DSC) of around
99.94%, 91.48%, 98.82%, 97.01%, and 94.00%, respectively.

Keywords: skin disorders’ diagnosis; deep learning techniques; computer-aided diagnosis system;
multi-label classification

1. Introduction

A key issue in healthcare is to discover a disease at its early stage and determine
its type to commence with proper treatment. Today, millions of people worldwide are
impacted by skin diseases, placing a burden on the health of the individual and the economy
of governments, particularly if not treated in its early stages [1]. The American Cancer
Society reported that 7180 people died of melanoma (melanoma cancer) in 2021. At the
same time, estimates released in the 2022 annual report of the American Cancer Society
reported that the number of new cases in the skin disease group (melanoma) was estimated
to be approximately 99,780, with the death rate expected to include 7650 people [2].

In contrast, others diseases can cause significant impairment and deformation, due to
symptoms such as itching or pain. Moreover, damage to the skin caused by such diseases
can also harm an individual’s self-confidence and wellbeing [3]. In general, most people
believe that some skin sicknesses do not cause significant problems. In contrast, most
individuals try to deal with these skin diseases using their own personal strategies. If
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available medicines are not effective for a specific skin disease, they will simply aggravate
the disease further. Additionally, the individual might not even be aware of the seriousness
of their skin condition [4].

The conventional approach to diagnosing skin disease is focused on examining der-
moscopic images. Diagnoses through dermoscopic images involve dermatologists using
multiple dermoscopic equipment, such as the pigment network, dots/globules, and regres-
sion of colors. However, this approach has many disadvantages, as it requires high-level
dermoscopic instruments, and requires dermatologists to undergo specific training to use
dermoscopic equipment, which is time-consuming and requires more effort [5,6]. Moreover,
due to the similar patterns and overlapping characteristics of infectious and inflammatory
skin diseases, there is often high visual diversity, as well as irregularities in the shape and
texture of skin lesions. It has been difficult for dermatologists, especially those who are
inexperienced, to identify these slight differences with the naked eye.

With the recent advances in artificial intelligence (AI), especially in the medical field,
including medical image processing, AI has become a promising method by which to
develop methods for medical image analysis. As a promising AI approach, deep learning
networks have proven successful in image analysis, with unique characteristics, and can
automatically learn image representation. Consequently, intelligent-solutions-based CAD
systems are urgently required to help dermatologists to accurately and quickly diagnose
skin diseases, reducing the burden on healthcare systems and the waiting times for medical
dermoscopic screenings [7].

Deep learning, particularly convolutional neural networks (CNNs), has outperformed
other conventional techniques in human disease diagnostics [8]. As a result, this paper
proposes a computer-aided diagnosis (CAD) system for detecting skin disease based on
multi-modality data-fusion techniques. This paper is oriented towards the diagnosis of
dermoscopic images in addition to analyzing metadata. The proposed CAD system uses
AI techniques to fuse and classify metadata and dermoscopic images for accurate disease
diagnosis. In this paper, multi-CNN models are used as a backbone for feature extraction
from dermoscopic images, which are classified using different machine learning algorithms
to obtain a reliable, accurate, and fast skin-disease diagnosis. Therefore, the proposed
CAD system relies on the reliable fusion of multiple extracted features to practically help
physicians diagnose skin diseases in real-time. The proposed model can result in more
accurate diagnoses in metadata and dermoscopic images. The main contributions of this
paper can be summarized in the following points:

1. A multi-type feature fusion approach based on image and meta-data features is de-
veloped for multi-type skin lesion detection with heterogeneous ensemble classifiers.
We utilized six convolutional deep learning models, including VGG19, ResNet50,
InceptionV3, InceptionResnet, Xception, and DenseNet201, which were pre-trained on
the ImageNet dataset. We used transfer learning to train a public skin lesion dataset
containing more than 10,000 dermoscopic images.

2. The proposed approach automatically extracts features from the processed images,
avoiding complex manual feature extraction processes.

3. After extracting features, the patient’s metadata are fused with the extracted features
to diagnose different skin lesions using machine learning classifiers.

4. The experimental results show that the proposed approach achieved promising results
for the diagnosis of different skin diseases.

The remainder of this paper is structured as follows. Section 2 discusses current
work for skin lesion classification and identification. Section 3 describes the proposed
CAD system, including the process of dermoscopic image preprocessing, feature extraction,
patient metadata concatenation, and skin lesion classification. Section 4 describes the results
and provides a comparison with other systems. Finally, Section 5 presents the conclusions
and future work.
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2. Related Work

Diseases of the skin are a significant concern for the human body. However, some
disadvantages can influence their diagnosis, such as high sensitivity, and diagnosis is labo-
rious in nature, time-consuming, and involves complex manual operation. Moreover, they
are frequently misclassified due to the degree of similarities across many skin lesions [9].

Therefore, many recent studies on skin disease diagnosis are presented. For example,
Shanthi et al. [1] proposed a CNN approach to classifying four types of skin disease:
keratosis, acne, eczema herpeticum, and urticaria. The utilized CNN model was AlexNet,
which has accuracy values of 85.7%, 92.3%, 93.3%, and 92.8, respectively. Wei et al. [3]
proposed a framework that can be used to recognize three types of skin disease. Their
model utilized a median filter to remove noise and irrelevant background information
in the preprocessing stage. Then, the skin images were segmented using a gray-level
co-occurrence matrix (GLCM), while texture and color features were utilized for the feature
extraction of different skin disease images. Finally, the support vector machines (SVM)
technique was used to classify three skin diseases. The classification accuracy was 90%,
85%, and 95% for dermatitis, herpes, and psoriasis, respectively.

Bajwa et al. [5] proposed a CAD system based on a deep-learning network for skin
disease classification. The deep learning models utilized in this work were DenseNet-161,
ResNet-152, NASNet, and SE-ResNeXt-101. Their models were trained and tested using
the DermNet and ISIC datasets. It achieved an average accuracy of 92.4% for the detection
of skin diseases using the DermNet dataset, while the average accuracy was 93% for the
ISIC dataset. Wu et al. [10] proposed a system called AIDDA to diagnose inflammatory
skin diseases through dermatology analysis. The proposed AIDDA was able to diagnose
three diseases: Pso, Ecz, AD, and healthy skin (HC). The authors investigated whether the
proposed AIDDA was able to predict inflammation by employing CNN, an EfficientNet-b4
model. Their network was trained and tested on 4740 images. It achieved an average
accuracy (ACC) for skin disease diagnoses equal to 95.80% ± 0.09%, a sensitivity (SEN)
equal to 94.40%, and a specificity equal to 97.20%.

Khan et al. [11] proposed a model called DarkeNet19, a pre-trained deep neural
network model that used a hybrid optimization technique (EKWO) to pick the most dis-
criminating feature information for classification using the softmax layer. The experimental
approach used three datasets, including ISBI2018, HAM10000, and ISBI2019, to obtain
97.1%, 95.8%, and 85.35% accuracy, respectively. Alsaade et al. [12] proposed a hybrid
feature extraction technique to process skin lesions. The CNN technique was used in the
second system, AlexNet and ResNet50, to efficiently classify skin disorders. According to
the results, the approach was tested on HP2 and ISIC 2018 datasets. The ANN model had
the best accuracy for PH2 (97.50%) and ISIC 2018 (98.35%) compared to the CNN model.

Ali et al. [13] introduced a deep CNN (DCNN) model for the classification of malignant
and benign skin lesions. The DCNN was tested on the HAM10000 dataset and achieved
an accuracy of 91.93%. Ameri [14] proposed a model based on the AlexNet model as the
pre-trained model for detecting skin cancer using images of skin lesions. The model was
evaluated using the HAM10000 database. The accuracy was 84%, the sensitivity was 81%,
and the specificity was 88%. Manne et al. [15] introduced a diagnosis model based on
ResNet150. The datasets HAM10000 and PH2 were used for model evaluation. HAM1000
had a 98.16% accuracy, whereas PH2 had a 96% accuracy.

Rajput et al. [16] adapted the activation function in the AlexNet model to identify skin
cancer diseases in the HAM10000 dataset. The accuracy, recall, and F-score scores increased
to 98.20%. Raza et al. [17] proposed an ensemble model for skin lesion classification.
Xception, Inceptionv3, InceptionResNet-V2, DenseNet121, and DenseNet201 are stacked
ensemble methods that use the principles of transfer learning and fine-tuning. The findings
indicated that the suggested model surpasses state-of-the-art procedures, with 97.93 %
accuracy. Gouda et al. [18] presented a new method called ESRGAN for preprocessing the
ISIC 2018 images, then classified images using Resnet50, InceptionV3, and InceptionResnet
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deep learning models. They achieved an 83.2% accuracy rate using the CNN, Resnet50
(83.7%), InceptionV3 (85.8%), and InceptionResnet (84%) models.

Ur Rehman et al. [19] improved pre-trained MobileNetV2 and DenseNet201 deep
learning models to more successfully detect skin cancer by adding more convolution layers.
The update for both models comprises three stacked convolutional layers. Both benign and
malignant classes may be detected using the suggested strategy. Compared to the existing
literature methodologies, the suggested modified DenseNet201 model achieves 95.50%
accuracy and state-of-the-art performance. Furthermore, the Modified DenseNet201 model
has a sensitivity and specificity of 93.96% and 97.03%, a respectively.

Aldhyani et al. [20] proposed a lightweight model to precisely categorize skin lesions.
To obtain the best results, dynamic-sized kernels are employed in layers, resulting in
extremely few trainable parameters. Furthermore, the suggested model uses both ReLU
and leakyReLU activation functions. The model correctly categorized all of the HAM10000
dataset’s classes. The model’s total accuracy was 97.85%.

Using the HAM10000 dataset, Kousis et al. [21] trained and tested 11 CNN architec-
tures on seven skin lesion classifications. They used data augmentation (during training),
transfer learning, and fine-tuning to address the imbalance problem and the significant
similarity between photos of particular skin lesions. DenseNet169 outperformed the other
11 CNN architecture variants, achieving an accuracy of 92.25%, a recall (sensitivity) of
93.59%, and an F1-score of 93.27%.

Hasan et al. [22] proposed a dermoscopic Expert (Dermo-Expert), an automated der-
moscopic SLC framework. A preprocessing and a hybrid convolutional neural network
are combined (hybrid-CNN). Three different feature extractor modules are used in the
proposed hybrid CNN to provide better-depth feature maps of the lesion. These single
and fused feature maps are then ensembled to predict a lesion class after being categorized
using several fully connected layers. Lesion segmentation, augmentation (geometry- and
intensity-based), and class rebalancing (penalizing the majority class’s loss and merging
extra pictures with the minority classes) are all used in the proposed preprocessing stage in
their framework. The ISIC-2016, ISIC-2017, and ISIC-2018 datasets are used to test Dermo-
Expert, and the DermoExpert acquired an area under the receiver operating characteristic
curve (AUC) of 0.96, 0.95, and 0.97, respectively.

The limitations of the current studies can be summarized in the following points.
First, most existing studies use only raw images to diagnose skin disease, which cannot
efficiently and accurately detect disease. Second, most studies have low accuracy regarding
the importance of incorporating multi-features for skin disease diagnosis. To overcome
the limitations of these studies, we propose a CAD system that detects various skin dis-
eases. The proposed system extracts the main significant features from two different data
modalities: demographic data and dermoscopic images.

3. Materials and Methods
3.1. Dataset Description

The Human Against Machine with the 10,000 Training Pictures (HAM1000) dataset
contains 10,015 skin lesion images, divided into seven classes of skin lesions. A complete
description of each lesion exists in [23]. All images have the associated demographic
information of the patient. Demographic data (gender and age) and the anatomical location
of the potentially diagnostically relevant lesion are also inclued. We used the hold-out
technique to divide the dataset into training, validation, and testing sets. We randomly
used 70% of the dataset as a training set to train all tested models. We used 6% of the
dataset as a validation and 24% as a testing set. Therefore, the models were tested on new
data that were unseen during training. We summarize different classes of the dataset in
Table 1. Figure 1 shows skin lesion images of different class samples from the used dataset.
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Table 1. Class distribution in the HAM10000 dataset.

Class Training Set Testing Set Validation Set Total

Actinic Keratoses (Solar
Keratoses) (akeic) 222 92 13 327

Basal cell carcinoma (BCC) 339 150 25 514
Benign keratosis (BKL) 770 294 49 1113
Dermatofibroma (DF) 68 40 7 115

Melanoma (MEL) 4340 2027 338 6705
Melanocytic nevi (NV) 680 353 66 1099

Vascular skin lesions (VASC) 90 49 3 142
Total 6509 3005 501 10,015

Figure 1. Samples for different skin disorders from the HAM10000 dataset.

3.2. Framework Architecture and Model Training

In this study, we employed a combination of pre-trained deep learning models and
machine learning classifiers to autonomously identify skin lesions to further enhance
the generalization capability and accuracy of the deep models. Three machine-learning
classification methods were used to separate skin lesions by extracting and storing the
bottleneck characteristics from six previously trained models. Figure 2 shows the pipeline
of the proposed ensemble feature fusion approach for skin disease diagnosis.
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Figure 2. The pipeline of the proposed ensemble feature fusion approach for skin disease diagnosis.

3.3. Stages of the Proposed Ensemble Approach

This paper presents an autonomous ensemble approach to diagnosing skin lesions that
fuses the deep features of dermoscopic images with clinical information. The main stages
of the proposed approaches include input images, metadata preprocessing, pre-trained
deep learning models, and extracted features. Multi-feature fusion is implemented using
different state-of-the-art classifiers.

Stage 1 (image pre-processing): In this work, we aim to reduce time-consuming
preprocessing steps and improve the generalizability of the CNN design. As a result, we
only used two popular preprocessing techniques—image resizing and image normalization
processes—when we trained the deep learning model. Image scaling was used because
the image dataset may be of various sizes, with significant variations in the image size and
intensity. The image normalization process is inevitable because some of the images in
the collection of skin lesions may come from various acquisition sources. Each image’s
pixel intensity might differ significantly due to undesired artifacts such as fluctuations in
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picture quality or size, pixel-level noise, bright text, symbols, etc. Data preprocessing is an
unavoidable step in this study.

Furthermore, skin images may exhibit variations in image contrast. To circumvent this
problem, the contrasts in the training pictures were normalized throughout the training
process. As a result, the pictures were normalized by dividing each pixel value by 255. As
a result, we set all image intensity values to range between [−1 and 1].

Stage 2 (feature extraction): Six CNN models (Xception, ResNet50, DenseNet201,
InceptionV3, VGG19, and InceptionResnet) were utilized to extract features. Compared
to retraining the model after fine-tuning, the extracted features were a low-dimensional
vector, significantly reducing the model’s training time.

The training step of deep learning approaches involves the extraction of deep features,
and the testing phase involves evaluating their performance when diagnosing new images.
The fact that deep learning models include several layers for feature extraction is their key
strength. The primary characteristic of deep learning models includes, for instance, the
extraction of geometric features by the first convolutional layer, the detection of edges by
the second layer, the extraction of color features by the third layer, the extraction of texture
features by the fourth layer, and so forth. The feature extraction in CNN models comprises
a convolutional layer and pooling layer pairs that are piled on each other. As the name
indicates, the convolution layer uses the convolution technique to transform data. This
may be viewed as a set of digital filters—the pooling layer functions as a threshold and
dimension reduction layer. The number of features extracted from the CNN models is 2048,
and the vector length is N 2048, where N signifies the training image’s number.

Stage 3 (metadata pre-processing): This removes missing data from the clinical in-
formation. Since most of the demographic features are categorical variables that are
represented as ‘strings’ or ‘categories’ and are finite in number, these categories’ features
are converted to the categorical data format, using one-hot encoding. For each level of a
categorical feature, we created a new variable. Each category was mapped with a binary
variable containing either 0 or 1. For example, sex type was converted into two new
features (male and female categories). Here, 0 represents the absence, and 1 represents
the presence of that category. Moreover, the numeric demographic features, such as age,
were normalized.

Stage 4 (feature concatenation): This stage is responsible for fusing the image features
and metadata into a single feature vector. First, we fed the preprocessed skin disease images
into the CNN models. The CNN models extract deep features through convolutional,
pooling, and auxiliary layers. This produced 2048 deep features and stored them in feature
vectors with a size of 6509 × 64. The number of demographic features is 6509 × 5. The
concatenated feature vector is 6509 × 65. After converting the categorical features of
demographic features into one-hot encoding, the length of the concatenated vector will be
6509 × 85 features

Stage 5 (skin lesion classification): This feeds the generated concatenated features to
different machine learning classifiers. Finally, all skin lesion images were classified into
seven classes.

3.4. Transfer Learning (TR)

In machine learning applications involving image categorization, TR is employed.
This entails reusing knowledge from a trained CNN model that performed well in the
original domain [24]. The weights for this trained model were derived from sizable, labeled
datasets such as ImageNet. After the model is trained, the generated weights may be
applied to a particular dataset in a new domain. TR may be utilized as a model for the
retrieved features. We removed the final fully connected layer and treated the remaining
CNN for the feature extraction process.

The pre-trained CNN models were trained on the ImageNet dataset, which includes
1000 classes. The first group of layers in each CNN model generates low-level features
for the trained classes, which can be used in any application. The final fully connected
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layers are used to classify the 1000 classes as they were pre-trained on the ImageNet dataset.
For this purpose, these deep architectures’ last fully connected layers were removed and
replaced by a fully connected layer to ensure they were adaptable for our case study.
Softmax was used as a classification layer. Thus, these deep architectures were adapted for
the detection of multiple skin disorders.

As a result, TR was utilized to assort images of skin lesions. Therefore, our research
reused pre-trained models trained on the ImageNet dataset for skin lesion classification.
In this work, we deleted the last fully connected layer and replaced it with a new layer
based on the number of skin disease classes. The new fine-tuned model was then trained
using transfer learning. We trained a model using 70% skin photos. We set the learning
rate to 1 × 10−4, the batch size to 64, the dropout factor to 0.5, and the weight decay
value to 1 × 10−5 for training. Once we learned this new model (GAP), we reduced
features from the global average pooling layer. The number of extracted features on
this layer was 2048, and the vector length was N 2048, where N signifies the training
image’s number. We also employed early stopping to improve the trained neural network’s
generalization performance. In this paper, we tested the performance of six state-of-the-art
networks: InceptionV3 [25], ResNet50 [26], VGG19 [27], Xception [28], DenseNet201 [29]
and Inception-ResNet [30]. We chose these DL models because they were the most suitable
models for diagnosing skin disorders with high performance. We removed each model’s
top layer and froze the former convolutional layer. Then, dense layers were added at the
bottom. A dropout layer was added to the dense layer. Then, the L1-norm was added to
avoid model overfitting. Finally, the loss was defined as a categorical cross-entropy. Adam
was chosen as an optimizer for the utilized models. In the following, the architecture of
these models is briefly outlined.

3.5. Convolution Deep Learning Model for Feature Extraction Process

The VGG19 model consists of 19 layers. It contains 16 convolutional layers and 3 fully
connected layers trained on the ImageNet. It uses multiple 3 × 3 convolutional filters and a
stride of 1, followed by multiple non-linear layers. Five MaxPool layers and 1 SoftMax layer
are applied to reduce the feature size and achieve high accuracy in image classification.
The last three thick layers in block 6 have dimensions of 4096, 4096, and 1000, respectively.
VGG categorizes the supplied images into 1000 separate groups. This research has seven
output classes, and the dimension of fc8 is set to seven.

The InceptionV3 model is utilized to enhance computing resources by emphasizing
the importance of memory management and the model’s computing power. Therefore, it
speeds up calculations and reduces the number of parameters that are used. The model’s
architecture has 48 layers with skipped connections trained on millions of images, including
1000 classes. It is repeated with max-pooling to reduce the feature dimensions.

The ResNet50 model is a common CNN model at present. It uses a residual structure
that supplies more effective training and a more straightforward gradient flow. The
network can accept input images with a height and width and channel of 224 × 224 × 3.
The ResNet50 model is divided into four stages. Every ResNet design uses 77 and 33 kernel
sizes for initial convolution and max-pooling, respectively. Following then, Stage 1 of the
network begins with three Residual blocks, each comprising three layers. The kernels used
to conduct the convolution operation in all three stages of the stage 1 block are 64, 64,
and 128.

The denseNet201 model utilizes dense connections, which replace the direct connec-
tions of the hidden layers. Therefore, it allows for network features to be re-utilized. It
also maximizes information transmission between layers in the model. The network takes
224 224 input and runs this via a convolution and max pool layer. Then, four dense blocks
are interspersed with three transition blocks, and 14 × 14 feature maps are output.

The Xception model assumes that cross-channel and spatial correlation can be separated.
The same parameter numbers are utilized, with a better performance. The depthwise separa-
ble convolutions used in the Xception architecture, which expands the Inception architecture,
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replace the normal Inception modules. Instead of dividing the input data into several com-
pressed pieces, it maps the spatial correlations for each output channel individually, before
performing a 1 × 1 depthwise convolution to capture cross-channel correlation.

The Inception-ResNet model combines the inception structure with residual con-
nections. It has multiple-sized convolution filters that are trained on millions of images
to avoid the degradation problem. All layers developed before the FC layer contain the
fundamental components of the Inception-ResnetV2 architecture. The kernel size of the
Conv (convolutional layer), Pool (pooling layer), or FC is the patch size. The stride is the
distance between two procedures assigned to number 2 in the experiment. Softmax is a
network classification function, and Filter contact is a module that connects many Conv.
The Inception-ResNetV2 model incorporates three main inception modules: Inception-
ResNet-A, Inception-ResNet-B, and Inception-ResNet-C. These modules are in charge of
lowering the number of parameters in tiny Conv layers (for example, 17, 71) and creating
discriminating features. Each module has its own Conv and pool layers.

Table 2 lists the values of the parameters of the tested DL models. We believe that
adding a trainable parameter via Hyper-Parameter Optimization (HPO) algorithms might
increase the model’s computational complexity. Therefore, the model parameters are the
hyperparameters obtained using the trial-and-error methodology. Then, we list the values
for the best hyperparameter results. Table 3 lists all used hyperparameters that achieved
the highest performance for each tested model.

Table 2. Characteristics of the DL model architectures used in the experiments.

Model
Number of
Parameters

Number of
Layers Input Image Size Kernel Size

Xception 30,375,912 71 71 × 71 3 × 3
Resnet50 27,857,668 50 71 × 71 7 × 7

DenseNet201 22,331,392 121 71 × 71 5 × 5
InceptionV3 21,817,127 48 75 × 75 3 × 3

VGG19 20,027,975 19 75 × 75 3 × 3
InceptionResNetV2 54,347,495 164 71 × 71 3 × 3

Table 3. Values of the hyperparameters used in the CNN model architectures.

Hyper-Parameters Value

Number of epoch 100
Batch size 64
Pooling Global average pooling

Optimizer Adam
Initial learning rate 1 × 10−4

Dropout 0.5
Patience 10

Loss function Categorical-cross entrop

4. Results
4.1. Implementation Details

Our implementation was completed on Kaggle. This offers full access to Keras library.
It also offers free access to NVidia K80 GPUs in kernels with 11.86 GB RAM and Intel(R)
Xeon(R) CPU 2.30 GHz with 16 cores. We uploaded the source code of all models on
Kaggle, and this is available to anyone. The source code will be available on request from
the corresponding author after manuscript publication.



Electronics 2022, 11, 4009 10 of 16

4.2. Evaluation Metrics

The proposed model was evaluated using five various performance metrics. The
evaluation metrics are precision (PRE), disc similarity coefficient (DSC), accuracy (ACC),
sensitivity (SEN), specificity (SPE), and area under the curve (AUC).

PRE =
TP

TP + FP
(1)

DSC =
2×TP

2×TP + FP + FN
(2)

ACC =
TP + TN

(TP + FP + TN + FN)
× 100 (3)

SEN = Recall =
TP

TP + TN
(4)

SPE =
TN

TN + FP
(5)

In the above equations, TP presents the number of positive instances that are labeled
correctly. FP presents the number of positive instances that are mislabeled. TN presents
the number of negative instances that are correctly labeled. FN presents the number of
negative instances that are mislabeled. PRE represents the samples’ proportion, classified
as positive or actually positive. DSC can be introduced as a harmonic average of precision
and recall.

4.3. Results
4.3.1. Classification Results on HAM10000 Dataset without Metadata

Six pre-trained models were used in the first experiment to classify skin lesion images.
Table 4 presents the results of a detailed comparison of six different pre-trained models
using different evaluation metrics.

Table 4. The performance evaluation of the CNN classifiers without metadata.

Model SEN (%) SPE (%) PRE (%) DSC (%) ACC (%)
Training
Time (s)

Testing
Time (s)

Xception 92.29 98.68 93.69 92.96 96.83 328.1691 12.1131
Resnet50 93.23 99.02 95.49 94.44 96.93 353.5990 11.6892

DenseNet201 92.76 98.88 97.45 94.74 97.16 594.0691 16.3945
InceptionV3 91.52 98.43 93.44 92.46 96.62 376.2660 12.8734

VGG19 92.96 99.09 91.31 92.11 96.97 411.8653 11.1327
InceptionResnet 92.79 98.87 94.87 93.28 96.65 746.5525 26.3085

The overall average ACC for DenseNet201 was 97.16%. The model’s impact was
steadier when compared to various other models. Moreover, the DenseNet201 model
exhibits high accuracy (average PRE is 97.45%) and performs well in the DSC rate (94.74%),
which is also worth noting. Three machine-learning classification techniques were utilized
to classify the extracted features from the previously trained CNN models to distinguish
skin lesions. We employed a combination of deep learning classifiers that had already been
pre-trained, as well as machine learning classifiers, to autonomously identify skin lesions
to further enhance the generalization capability and accuracy of the deep models. The
confusion matrix of each deep learning classifier is displayed in Figure 3.
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Figure 3. The confusion matrices for deep learning classifiers.

Figure 3 illustrates the confusion matrix for the six CNN models for the skin disease
classes. The support of the class akeic is 92, the support of class akeic class is 150 images,
BKL class is 294 images, the DF class is 40 images, MEL class is 2027 images, NV is
353 images, and the support of VASC class is 49 images.

For class VASC, the best model is DenseNet201, as it correctly classified 87 images
out of 92, while only five images were misclassified. The best model for the akeic class is
DenseNet201, which correctly classified 145 images, while only five were misclassified. For
class BKL, the best modes are DenseNet201 and ResNet50, which can classify 278 images
correctly. The VGG 19 is the best model that classified the DF class, as it correctly classified
37 out of 40 images. Again, the DenseNet201 is the best model to classify the MEL class, as
it can correctly classify 2013 out of 2027 images. For class NV, the best model is VGG19,
as it can correctly classify 320 out of 353 images. Finally, models VGG 19, Xception, and
Resnet50 can best classify the VASC class.
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Additionally, as shown in Figure 4, we calculated the receiver operator characteristic
(ROC) curve for True Positive Rate (TPR) vs. False Positive Rate (FPR) for the classifier that
solely uses deep image features. We represented the values of area Under the Curve (AUC)
as class-wise boxplots for the HAM10000 dataset for each skin lesion.

Figure 4. The ROC curves for the deep learning classifiers.

Figure 4 shows that the DensNet201 is the best model to obtain the ROC curve for all
skin disease classes, as it obtains an AUC that is equal to 1 for all classes. The worst model
is the Xception model, which obtains an AUC of less than 1 for all skin disease classes.

4.3.2. Classification Result of Combined Classifier

The obtained results for the three machine learning classifiers and deep feature ex-
tractors are summarized in Tables 5–10. These three machine-learning classifiers are SVM,
random forest (RF), and logistic regression (LR). These tables show that the assessment
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metrics were enhanced compared to the conventional CNN models. It is important to note
that all the pre-trained models using various classifiers performed quite well. Every hybrid
technique improved model performance when including clinical meta-data as an additional
feature, as shown in Tables 5–10. Compared to simply using image features, employing
metadata results in a more significant performance gain for Sensitivity, Precision, and
F-score across all hybrid models. Despite the overall improvement, ACC and SPE exhibited
modest improvements compared to the other metrics in all studies. The bold values in each
table indicate the highest value in all metrics.

Table 5. The performance evaluation for VGG19 combined with different classifiers.

Model SEN(%) SPE(%) PRE(%) DSC(%) ACC(%)
Test

Time (s)

VGG19 + RF 93.39 99.72 97.80 95.39 99.73 9.5132
VGG19 + LR 97.90 99.95 98.79 98.12 99.92 9.4659

VGG19 + SVM 90.74 98.87 94.81 92.57 99.19 10.6649

Table 6. The performance evaluation for InceptionV3 combined with different classifiers.

Model SEN(%) SPE(%) PRE(%) DSC(%) ACC(%)
Test

Time (s)

InceptionV3 + RF 92.72 98.73 95.61 94.08 99.01 9.8076
InceptionV3 + LR 99.49 99.83 99.17 99.24 99.90 9.7577

InceptionV3 + SVM 91.14 98.37 95.60 93.26 98.84 11.0787

Table 7. The performance evaluation for ResNet50 combined with different classifiers.

Model SEN(%) SPE(%) PRE(%) DSC(%) ACC(%)
Test

Time (s)

Resent50 + RF 93.15 99.59 97.18 94.68 99.44 10.6397
Resent50 + LR 96.83 99.77 98.01 97.16 99.72 10.5896

Resent50 + SVM 90.45 98.96 95.47 92.31 98.99 11.8022

Table 8. The performance evaluation for DenseNet201 combined with different classifiers.

Model SEN(%) SPE(%) PRE(%) DSC(%) ACC(%)
Test

Time (s)

DenseNet201 + RF 92.50 99.68 97.66 94.58 99.49 9.8076
DenseNet201 + LR 95.08 99.81 98.23 96.99 99.71 9.7577

DenseNet201 + SVM 91.55 99.22 96.49 93.37 99.21 11.0787

Table 9. The performance evaluation for Xception combined with different classifiers.

Model SEN(%) SPE(%) PRE(%) DSC(%) ACC(%)
Test

Time (s)

Xception + RF 94.09 99.41 97.62 95.54 99.93 10.1391
Xception + LR 98.16 99.96 99.24 98.78 99.36 10.0877

Xception + SVM 91.48 98.82 97.01 93.90 99.09 11.3043

Table 10. The performance evaluation for InceptionResnetV2 combined with different classifiers.

Model SEN(%) SPE(%) PRE(%) DSC(%) ACC(%)
Test

Time (s)

InceptionResnetV2 + RF 93.25 99.51 97.43 95.26 99.34 19.9461
InceptionResnetV2 + LR 98.84 99.97 99.59 99.16 99.94 21.1139

InceptionResnetV2 + SVM 92.21 98.88 96.85 94.05 98.99 21.5670
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Table 5 shows that the use of VGG19 as a feature-extractor and LR as a classifier
achieved the best results in all performance metrics (SEN, SPE, PRE, DSC, and ACC).
Moreover, the testing time also achieved the best value using the same combination.

Table 6 shows that the combination of InceptionV3 as a feature-extractor and LR as a
machine learning classifier also achieved the best results for all metrics. The testing time
also achieved the smallest value using the same combination.

Table 7 shows that the combination of Resent50 as a feature extractor and LR as a
machine learning classifier also achieved the best results for all metrics. The testing time
also achieved the smallest value using the same combination.

Table 8 shows that the combination of DenseNet201 as a feature-extractor and LR as a
machine learning classifier also achieved the best results for all metrics. The testing time
also achieved the smallest value using the same combination.

Table 9 shows that the combination of Xception as a feature-extractor and LR as a
machine learning classifier also achieved the best results for all metrics and the testing time
achieved the smallest value using the same combination.

Table 10 shows that the combination of InceptionResnetV2 as feature-extractor and LR
as machine learning classifier achieved the best results for all metrics and the testing time
is also achieved the smallest value using the combination of InceptionResnetV2 + RF.

The best SEN and DSC metrics were obtained using hybrid InceptionV3 + LR. The
results reached 99.49% and 99.24%, respectively, as shown in Table 6. The best SPE, PRE,
and ACC results were 99.97%, 99.59%, and 99.94%, respectively. These metrics are shown
in Table 10 using hybrid InceptionResnet + LR.

4.3.3. Comparative Study with the State-of-the-Art Systems

Table 11 shows a comparative analysis of the interoperability of pre-trained models
using state-of-the-art methods. In general, our hybrid methods outperform other state-of-
the-art methods. The worst results, as in [14], used the AlexNet model for classification
tasks, as illustrated in related work. In general, the results demonstrate the superiority
of the proposed methodology for hybrid data fusion and machine learning with deep
feature integration, achieving a remarkably higher average accuracy results of 99.44% in
the case of the DenseNet121, model for feature extraction, and logistic regression (LR), for
the classification task.

Table 11. The comparison of results of our proposed methodology with some related work.

Work Year Dataset Method ACC SEN SPE

Prposed Syatem 2022 HAM10000 DenseNet201 + logistic
regression (LR) 99.94% 98.84% 99.97%

Bajwa et al. [5] 2020 DermNet and ISIC
datasets

92.4% for DermNet,
93%, for ISIC

Ameri [14] 2020 HAM10000 84% 81% 88%

Manne et al. [15] 2020 HAM10000 and PH2 98.16%,
And 96%

Khan et al. [11] 2021 HAM10000, ISBI2018,
and ISBI2019

95.8%, 97.1%,
and 85.35%,

Alsaade et al. [12] 2021 HP2 and ISIC 2018 (97.50%), (98.35%)

Ali et al. [13] 2021 HAM10000 91.93%

Rajput et al. [16] 2022 HAM10000 98.20% 98.20% 98.20%

Raza et al. [17] 2022 Figshare 97.93% 97.83% 97.50%

Gouda et al. [18] 2022 ISIC 2018 85.8%
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5. Conclusions

Skin diseases are widespread around the world, affecting the health of patients, and
the cost of healthcare services that are provided through the government. Therefore, due to
the positive effect of the diagnosis of skin diseases, this article proposes a computer-aided
diagnosis system. The proposed system relies on deep learning and machine learning
algorithms and utilizes dermoscopic images. According to the obtained results, the pro-
posed system achieved promising results, which may encourage the authors to evaluate
the proposed system using other types of skin diseases and other disease categories. The
limitation of this work is its lack of dimensionality reduction methods to select the best
features among all extracted features. In future work, we will test other deep-learning
techniques to improve the classification accuracy of skin disorders. In addition, we will test
our proposed system by using other benchmark datasets with different skin disorders.
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