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Abstract: In many locations, reverse transcription polymerase chain reaction (RT-PCR) tests are
used to identify COVID-19. It could take more than 48 h. It is a key factor in its seriousness and
quick spread. Images from chest X-rays are utilized to diagnose COVID-19. Which generally deals
with the issue of imbalanced classification. The purpose of this paper is to improve CNN’s capacity
to display Chest X-ray pictures when there is a class imbalance. CNN Training has come to an
end while chastening the classes for using more examples. Additionally, the training data set uses
data augmentation. The achievement of the suggested method is assessed on an image’s two data
sets of chest X-rays. The suggested model’s efficiency was analyzed using criteria like accuracy,
specificity, sensitivity, and F1 score. The suggested method attained an accuracy of 94% worst, 97%
average, and 100% best cases, respectively, and an F1-score of 96% worst, 98% average and 100% best
cases, respectively.

Keywords: machine learning; transfer learning; class weight balancing; convolution neural networks;
COVID-19

1. Introduction

The COVID-19 pandemic is deadly and extremely severe. It is one of the main
problems of the twenty-first century. In March 2020, the World Health Organization
(WHO) declared COVID-19 to be a pandemic [1]. It exhibits signs and symptoms like
those of pneumonia [2]; however, it is more fatal. To reduce the transmission of COVID-19
infection [3,4], suitable safety measures are needed.

The most widely used molecular type test for COVID-19 detection in people is the
Reverse Transcription Polymerase Chain Reaction (RT-PCR). It is the gold standard for
diagnosing Coronavirus [5]. Within three weeks of the onset of symptoms, an RT-PCR test
has a 90% accuracy in identifying COVID-19 circumstances favorably [6]. The RT-PCR test
does, however, have many drawbacks. It is not very widely available, and obtaining the
test results takes longer than 48 h.

Although RT-PCR [7] is the first and most efficient approach for detecting COVID-19,
this procedure is rather time-consuming. It might take hours or even days and require
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special packages that are only sometimes available in far-flung parts of a country because
of geological, social, and economic factors. The rapid antigen test, on the other hand,
examines a nasal swab for the presence of infection-related antigens, but has a higher
probability of errors. The serological test looks for antibodies the body’s immune system
has developed to fight the illness from the person’s blood. However, it examines just one
IgM and one IgG antibody during or after recovery, making it inefficient for extremely early
viral identification.

Vaccinations have either Food and Drug Administration (FDA) or European Medicines
Agency (EMA) authorization [8]. CT scans and chest X-rays are two typical chest radio-
graphy procedures. Both have pros and cons, but a chest X-ray costs less than a CT scan
because it uses less expensive equipment. When molecular tests, such as RT-PCR, are
not accessible or time is restricted, COVID-19 can be identified rapidly and correctly by
analyzing individual chest radiographs [9].

Many doctors and radiologists agree that chest X-rays can find COVID-19, which
has the same 90% accuracy as the RT-PCR test. CT scans and chest X-rays have distinct
positive and negative attributes. A CT scan requires more expensive equipment than a
chest X-ray. In addition, the disinfection time for a CT scan is around 15 min, which is
significantly longer than a chest X-ray because a portable version exposes the patient to
fewer germs. Additionally, the person obtains more ionizing radiation from a CT scan
than from a chest X-ray. Chest X-rays comprise the bulk of routine radiology examinations.
Hundreds of millions of these photos are taken annually in hospitals and clinics worldwide
to help doctors figure out what is wrong with people. CT and X-ray scans use parts of
the electromagnetic spectrum that cannot be seen to find problems very early on. This
has a lot of medical value. Chest X-rays are better than CT scans because they are more
common in hospitals and expose patients to less ionizing radiation. CT and X-ray scans,
which have a high scientific value, use unseen forms of the electromagnetic spectrum to
detect abnormalities for early detection [9].

In this research, we discovered that chest X-ray examinations are inexpensive, and
the results are straightforward. Chest X-ray tests are administered easily. It offers portable
variants with a decreased danger of radiation exposure. It makes X-ray scans easier to use
than CT scans. CT scans, on the other hand, expose people to a lot of radiation, cost a lot,
require clinical expertise, and cannot be moved.

Machine learning (ML) applications in healthcare are prevalent [10,11]. To find out if
a person has a COVID-19 infection, RTPCR testing [7], X-ray imaging [12–15], computed
tomography (CT) scanning [2], rapid antigen detection [16], and serological testing [17] are
all used.

Since beating the world champion at Go [18], the completion of a fill-in-the-blank
text [19], and robotic hand control to solve the Rubik’s cube [20], deep learning has
gained popularity.

Due to the present COVID-19 epidemic, several efforts are being made to identify
and combat it. Recent advancements in computer vision have paved the way for applying
deep learning and convolutional neural networks to medical image diagnosis, such as
retinopathy identification [21–25] and tumor discovery [26–28]. Numerous research studies
have been published in this field to combat COVID-19.

The use of deep learning in the battle against COVID-19 seems promising [29,30]. Still,
it is important to be aware of the problems with deep learning, such as how hard it is to
understand, how generalization metrics work, how learning from limited, labeled data sets
affects data privacy, and so on [31].

In the Section 2, we talk about a few recent studies that used chest X-rays and CT
scans to look for COVID-19. This work improved the CNN lightweight and class balance
for COVID-19 identification from chest X-rays.

We tried out different data sets with different requirements (see Section 4.1, and
the learning technique did the parametric workout for efficient parameter selection and
change. The results demonstrate that the proposed model is more accurate than existing
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cutting-edge approaches. In the end, the tuning and training produce an excellent design
configuration that reveals the fundamental behavior of the architecture’s characteristics.

Deep learning technologies are a good way to build automated systems to help
radiologists understand chest X-ray images. Chest X-rays are an important and easy-to-
obtain way to diagnose many diseases affecting the thorax [32,33].

The following are the essential contributions to this work:

– Proposed a unique lightweight CNN model and the balance of the class for COVID-19
identification from chest X-ray pictures.

– The proposed model was looked at using a medium-sized data set of chest pictures
and augmentation data.

– Used class weight balancing to solve a problem involving imbalanced classes.
– A CNN lightweight that has been fine-tuned and is the class average for chest X-ray

pictures.
– Evaluating data sets experimentally using different specifications (results section),

where the learning process changed the exercises for choosing and adjusting parame-
ters efficiently.

– The outcomes validate the suggested model, which is more precise than existing state-
of-the-art methods. In the end, tweaking and training lead to a design configuration
that looks good and explains how the parameters that went into making it work.

This work contains five sections. In Section 2, the related work is discussed. Section 3
goes into detail about the proposed model and the data set that was used to test it. Section 4
compares the results of the recommended model to those of recent research. The study is
concluded in Section 5, which covers future research.

2. Related Work

This section presents the commonly related techniques to detect the COVID-19 virus.
There are numerous proposed techniques to detect the COVID-19 virus. For example,

in [34], Apostolopoulos and Mpesiena employed transfer learning with a data set of healthy,
pneumonia, and COVID-19 X-ray pictures to create their model. In [35], Ozturk et al. create
a deep network employing the DarkNet model. The model includes 17 convolution layers
and employs the Leaky ReLU activation function; they obtain an accuracy of 98.08%
for binary classes and 87.02% for multi-class cases. In [36], Waheed et al. developed
a model called CovidGAN (Auxiliary Generative Adversarial Network for Classifier)
to develop synthetic X-ray images and enhance the COVID-19 classification accuracy.
In [37], Sethy et al. designed an exclusive feature for a support vector machine-based
method. They examined SVM with different CNN models for COVID-19 identification.
In [13], Hemdan et al. developed the COVIDX-Net, which includes seven different structure
models of deep convolution neural networks (VGG19 and Google MobileNet V2). They
employed 150 images of chest X-rays, including 25 positive COVID-19 samples. In [38],
Qaid et al. employ deep models and transfer learning to develop general, robust models
for COVID-19 identification. In [39], Abdulkareem and Mpesiena developed a model to
identify COVID-19 based on machine learning and IoT in smart hospitals. Khorami et al.,
in [40], developed a method to derive the characteristics of X-ray images based on a gray-
level co-occurrence matrix and Discrete Wavelet Transform (DWT), then classified the
images using an improved CNN model by the Red Fox Optimization algorithm. In [41],
Fareed et al. employed deep CNN models such as ResNet50, MobileNet, InceptionV3
and X-ray images. In [42], Abbas et al. studied a deep CNN called DeTraC (Decompose,
Transfer, then Compose) to classify pictures from COVID-19 chest X-rays with an accuracy
of 93.1%.

Recently, Rehman et al. [43] released a study titled “COVID-19 Detection Enabled
by Machine Learning and Deep Learning Techniques.” In [43], the authors focus on
completing two tasks; the first is an analysis of recently published ML/DL techniques
related to the detection of coronaviruses, and the second is a consideration of upcoming
research challenges; additionally, they determine the significance of available data sets from
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the literature used for the prediction of COVID-19, analyzing the ML and DL techniques
used to detect COVID-19, and identifying the directions of future research. The authors
of [43] offer various learning types employed in deep learning systems to combat COVID-19.
The authors of [43] present a variety of algorithm-classifiers and their accuracy performance
on various data sets. We recommend that readers investigate.
A survey on deep learning solutions for COVID-19 was published by Shorten et al. [31]. It
focuses on progressing technological solutions, emphasizing deep learning. Their studies
propose and discuss some elements, such as the capability of solving, the current state
of this technology, and the COVID-19 formulation as the application of deep learning for
fighting COVID-19 in many ways. We suggest to the readers explore [31]. Zhou et al. [32]
proposed an intra- and inter-contrastive attention model and a chest radiology knowledge
graph to enhance the efficiency of thoracic disease diagnosis. Zhou et al. [33] proposed a
many-to-one distribution learning and a K-nearest neighbor smoothing method to enhance
the efficiency of thoracic disease diagnosis, where COVID-19 disease is among the thoracic
diseases. The work of Zhou et al. is useful to apply for the COVID-19 disease diagnosis,
which is our attention in our future works. Additionally, the investigation of the suggested
model is a lightweight CNN and class weight balancing on images of Chest X-ray for
thoracic disease diagnosis. (L-CNN-CWB-CX).

A systematic evaluation of the literature and future directions for analyzing and di-
agnosing the COVID-19 epidemic using deep learning was published by Heidari A. et al.,
in [44]. Long Short-Term Memory Networks (LSTM), Self Organizing Maps (SOM), Con-
ventional Neural Networks (CNNs), Generative Adversarial Networks (GANs), Recurrent
Neural Networks (RNNs), Autoencoders, and Hybrid Class are the seven categories into
which they divide the DL techniques used to combat COVID-19. The advantages and
disadvantages of each class are also presented.

In [45], Park et al. create a model to combat and identify COVID-19; they combine
a self-supervised learning approach with convolution attention to solve the classification
problem. More than 100,000 chest X-Ray pictures with a structural similarity index (SSIM)
were used in self-supervised learning utilizing a U-shaped CNN model in conjunction
with a convolution block attention model (CBAM). Their approach model provides an
exceptionally high precision normal, pneumonia, and COVID-19 categorization. Their sug-
gested model has excellent classification performance, evidenced by the COVID-19 class’s
average AUC (area under the curve) of 0.994. In [46], Nasiri and Hasani used DenseNet169
to extract characteristics of X-ray images and employed XGBoost for classification; the
accuracy is 89.70% and 98.24% in multi-class and binary classification.

Heidari et al. [47] describe a model that uses blockchain-based Convolutional Neural
Networks to train a global DL model using a modest amount of data (chest CT images)
from multiple sources, such as companies or areas of hospitals (CNNs). They make use
of the Transfer Learning (TL) methodology. In terms of precision (2.7%), recall (3.1%), F1
(2.9%), and accuracy (2.8%), they show that their strategy performs better on average than
state-of-the-art methods.To alleviate the overfitting issue, Zheng et al. suggest a two-stage
training method in [48]. This method enhances the generalization capacity of deep CNN
by optimizing the feature boundary and is robust to the selection of hyper-parameters.

In the following Sections 2.1–2.3, we present the commonly related works to the sub-
jects CNN with medical image classification, Pneumonia and COVID-19 Medical diagnosis
using chest X-ray images.

2.1. CNN and Medical Image Classification

CNN is among the most attractive DNNs. It has a lot of hidden layers that do sampling
and convolution to reduce the quantity of data that comes in. This network is highly
effective in diverse areas, especially computer vision [49]. Convolution layers constitute
CNN, and the following convolution layers’ data sources and outputs are attribute vectors.
Every layer includes several networks that are highly complex. The depth of the resulting
feature mappings is equivalent to that of the convolution task’s multiple filters [50]. In [51],
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the authors show how chest X-rays can be used to find and predict tuberculosis using
simple CNN architectures.

2.2. Pneumonia and COVID-19

A variety of bacteria and viruses can cause pneumonia. General radiologists in the
network of emergency hospitals have to look at many chest X-rays to find something
unexpected. That can be time-consuming and difficult. During this pandemic, radiologists
have been asking more and more about COVID-19 contamination pneumonia. That is
because there are many similarities between COVID-19 contamination pneumonia and
other pathogens or viruses [52].

Using computer systems, researchers tested several intelligent strategies for detecting
the COVID-19 infection. Ground-glass opacity is identified using ultraviolet imaging of the
lungs [53,54].

In an extension phase, individuals suffering from Dynamic Pneumonia can result in
intense respiratory distress disorder, as this infection primarily assaults the individuals’
respiratory system [55]. Researchers applied numerous computer vision and deep learn-
ing approaches to categorizing the patients with this transmittable disease from healthy
people [51,56,57].

Researchers primarily focused on identifying the severity of the disease by analyzing
chest X-ray pictures [58], chest CT scan images [59], or cough audio recognition [60].

Consequently, several deep learning models described in the literature try to determine
COVID-19 cases. Although some deep learning-based CNN designs are applied to CT
pictures, further research has used CNN models, such as DarkCovidNet [35] and COVIDX-
Net [13], to identify and classify COVID-19 cases using chest X-ray images. Medical
imaging is reliable and essential for efficiently regulating the spread of COVID-19 and
treating patients to reduce mortality [14]. Ai et al. [61] discovered that upper body CT scans
detect COVID-19 infections much quicker than RT-PCR tests.

Regular scanning could be helpful for keeping an eye on how well someone is getting
better or how bad their illness is. Li and his colleagues [62] made a COVNet architecture
based on deep learning to sort CT scan images by COVID-19, pneumonia, and other lung
diseases. Li and Xia [63] utilized breast CT images of COVID-19 patients. They compared
them to clients who were not infected to find out if the patterns of infection were the
same and to reduce the falsely favorable pricing in their results. Wang et al. [59] used an
extra-deep discovery technique for chest CT images and pathological visual exams to find
COVID-19.

Chest X-ray radiography is often employed in medical techniques because of its
inexpensive, reduced radiation portion, user-friendly and vast ease of access benefits as a
whole or neighborhood health centers [64].

2.3. A Medical Diagnosis of COVID-19 Using Chest X-ray Images

Sethy et al. [37] came up with a way to use X-ray images and deep learning to find
a COVID-19 infection with 95.38% accuracy. In the same way, Apostolopoulos and Mpe-
siana [34] suggested for COVID-19 an X-ray image deep learning model that was 98%
accurate. Ozturk et al. [35] implemented two deep learning-based methods for binary
categories (COVID-19 and non-COVID-19) and three-way categories (COVID-19, normal,
and pneumonia), reaching 98.08% and 87.02% accuracy, respectively. Oh et al. [57] used a
logical approach to figure out how likely it was that X-ray COVID-19 pens would break.
They cooperated on a regional patch-based technique utilizing chest morphology, mean
chest, intensity, and standard deviation of chest endurance in five classes: normal lungs,
tuberculosis, pneumonia, viral pneumonia, tuberculosis, and COVID-19. Their design
achieved the highest classification accuracy of up to 88.9%. Azemin et al. [58] came up with
a deep learning-based forecasting method that could tell the difference between COVID-19
and normal chest X-rays with an accuracy of 71.9%.

Heidari et al. [56] showed a chest X-ray to find COVID-19 and figure out how serious
the health problem is. They obtained around 8474 chest X-rays and divided them into three
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groups: non-pneumonia, COVID-19-contaminated pneumonia, and other community-
acquired pneumonia that was not contaminated by COVID-19. Asnaoui et al. [65] looked
at CT and X-ray images of the chest and used a model called inception-ResNetV2. They
obtained the best category accuracy of 92.18% for COVID-19 normal and pneumonia cases.

In DenseNet 121-COVID-19, Ezzat uses the Gravitational Search Algorithm (GSA) to
fight COVID-19 instances with a 98.38% percent accurate chest X-ray [66]. Kumar et al. [67]
show a method to use the Gray Level Co-occurrence Matrix Feature (GLCM) and the
Zernike Moment Feature (ZMF) together. They utilize a 36-feature Zernike Moment algo-
rithm with texture contrast and variance. Their implementation’s performance displays
an accuracy rate of 93.4%. Shorten C et al. [31] published a deep learning application
for the COVID-19 survey. They present deep learning applications to fight in different
domains such as natural languages processing [68–74], Literature Mining [15,75–77], Misin-
formation Detection [78–82], Public Sentiment Analysis [83,84], Life sciences [85], Precision
Diagnostics [86], Protein structure prediction [87,88], Drug re-purposing [89], Computer
vision [69,90–93], Ambient Intelligence [90,94], Vision-based robotics [95,96], Medical Im-
age Analysis [93,97], Epidemiology, Black-box spread forecasting [98], SIR models [99,100],
and Contact Tracing [101]. In [31], the authors describe the present circumstances of deep
learning limitations of COVID-19 detection. We refer readers to [31] for more information.
Zhao et al. [102] propose a faster mean-shift technique for segmenting and tracking cells.
In [103], VoxelEmbed is an embedding-based deep learning method that Zhao et al. created
to separate and track 3D cell occurrences. The authors in [104] build and use a generative
adversarial network model called “D+GAN” to translate faces from one image to another
under multiple conditions.

The Mobile NetV2 model and a chest X-ray were used by Ragab M. and his associates
to successfully identify COVID-19 with 95.8% accuracy [30].

Akbar et al. [105] write about the benefits of using machine learning and deep learning
together to find and get rid of COVID-19. They discuss CNN’s use of pre-trained, well-
known, cutting-edge deep-learning models. They talk about different ways to classify CX
photos and how deep-learning models can be used to pick out and improve certain features.
They also show that deep learning models are accurate between 93% and 98% of the time
when chest X-rays are used to find COVID-19.

3. Materials and Methods

In this section, Materials and Methods, we describe all data sets that are used in
Section 3.1, Convolutional Neural Networks (CNN) in Section 3.2, the proposed CWB-CX
model of CNN architecture in Section 3.2.1, and data augmentation in Section 3.3.

3.1. Data Set Description

Data set 1 consists of Chest X-rays with only 102 images of clients diseased with
Coronavirus. We incorporated just 414 images from the Normal group. The data set
establishes data accumulated from different two open-source databases taken from:

• GitHub database [62];
• Kaggle dataset, which includes 8851 normal and 6012 infected with pneumonia sam-

ples (https://kaggle.com/c/rsna-pneumonia-detection-challenge (accessed on 10
September 2022)).

The second data set includes 1583 normal, 576 COVID-19, and 4273 pneumonia
pictures. We exclude pneumonia and make use of COVID-19 and normal chest images [106].
Our principal investigation focuses on COVID-19 with a medium size data set of chest
images concurrently with data augmentation techniques. In Figures 1–3, we present the
images distribution of each class in data set 1 and data set 2 and chest image, respectively.

https://kaggle.com/c/rsna-pneumonia-detection-challenge
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Figure 1. The proportion of each class’s data in the data set 1.

Figure 2. The proportion of each class’s data in the data set 2.

Figure 3. Example of X-ray images.

3.2. Convolution Neural Networks (CNN)

Initially, LeCunetal created CNN’s approach for classifying handwritten digit image
data [62]. CNN is built on layers called convolution (Conv), pooling, the rectified linear
unit (ReLU) equation, fully connected (FC), batch normalization (BN), and global pooling
(GP) [50]. CNN employs a mathematically unique convolution process in at least one layer.
When convolution and neural networks are used together, applications for segmentation,
feature extraction, noise removal, augmentation, and classification work better. CNN
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is used to train the convolution filters, which are initialized randomly. CNN uses local
receptive fields, weight sharing, and subsampling in its designs [51]. In clinical imaging
applications, trained designs must be easy to understand so their accuracy can be checked.
With deep learning techniques, classification performance is enhanced, but models are less
interpretable. Compared to manually built features and simple machine learning classifiers,
classification prediction is hard to understand because it depends on many parameters.

In the following Sections 3.2.1 and 3.3, we present the proposed CWB-CX model CNN
architecture and data augmentation methods.

3.2.1. The Proposed CWB-CX Model CNN Architecture

A recommended CWB-CX-Model CNN design is based on the typical CNN archi-
tectures. A lightweight CNN version is suggested to categorize chest X-ray images into
two classes, normal and COVID-19. For quick CNN design execution, the chest X-ray
images are resized to 256 × 256 × 3 dimensions. The chest X-ray image’s pixels are each
standardized to bring the intensities into a uniform range. The proposed CNN style consists
of four convolution layers, each with 64, 64, 128 and 256 filters. The 2 × 2 kernel of each
convolution layer contains a ReLU activation function. The attribute maps’ dimensions
are chosen under literary examples of improved efficiency. LeNet, AlexNet, VGG16, and
InceptionV3 designs conform to current architectural ideas by enhancing function maps or
filters to future layers. To evaluate chest X-ray images, lightweight or shallow CNN must
be applied effectively with high classification precision.

This information is used in the proposed plan to build a lightweight CNN architecture
with four layers for classifying chest X-rays. Layers of batch normalization and max-pooling
are added to the convolution layers. For classification tasks, the linked layer is usually the
last layer of the CNN architecture. This layer gives the expected probabilities for each class
label [34]. The space layer is the most important part of making class-specific activation
maps. Due to this, it enforces a solid correlation between attribute maps and classes. That
reduces the chance of overfitting. So, according to Anderson [54], global average pooling
(GAP) is the last layer in the proposed CNN design instead of being a connected layer.
The average feature map of the last convolution layer is used to put chest X-ray pictures
into groups. The last layer of the proposed system is meant to keep data from being lost.
This will make sure that important details (information) are not lost during the space
mission. The final layer that is recommended uses 256 filters and has a size of 28 × 28.
Figures 4 and 5 illustrate the suggested model’s description.

Figure 4. The proposed structure of CNN-CWB-CX.
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Figure 5. Description of the proposed model.

The suggested architecture also uses CWB-CX to address the problem of class imbal-
ance. In this strategy, classes with fewer image examples are given more weight and vice
versa. The equation provided by King et al. [107,108] is used to calculate the class weights
for each class.

Wj =
N

K ∗ Nj
(1)

where K is the total number of classes, Wj is the weight of class j, N is the total number of
photos, and Nj is the number of images in class j. The class weights used throughout CNN
Learning penalize the minority class category when it becomes the dominant class. The
GAP layer’s final features employed the SoftMax activation function and were coupled to
the dense layer for classification.

ReLU(x) = max(0, x). (2)

The cross-entropy loss function is commonly used in deep learning. Equations (2)–(4) [109]

loss(y, ỹ) = 1
n

n

∑
i=1

zi (3)

where, zi = −(yilog(yi)− (1− yi)log(1− yi))). (4)

Wij is initialized using the Xavier uniform initializer. Utilizing the Max poling with
size = 2 and Dropout (0.3) to reduce the over-fitting, the size of the feature maps is substan-
tially reduced by a factor of 2. With the following widely used heuristic Equation (5) [110],
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we initialized the biases to be 0 and the weights Wij at each layer, where U[n, n] is the
uniform distribution in the interval (n, n), and n is the size of the preceding layer.

Utilizing the Xavier uniform initializer, Wij is initialized. When using Max poling with
size = 2, the size of the feature maps is significantly decreased by a factor of 2. the following
often used a heuristic equation, where Dropout (0.3) reduces over-fitting. At each layer, we
set the biases to 0 and the weights to Wij, where U[n, n] is the uniform distribution in the
range (n, n), and n is the size of the layer before it.

Wij− > U[− 1√
n

,
1√
n
]. (5)

3.3. Data Augmentation

In deep learning, Data Augmentation is a usual practice. Therefore, every deep
learning framework has augmentation methods or a complete library to implement image
augmentations using built-in techniques in Keras. KerasImageDataGenerator class offers a
fast and simple way to augment images. It provides various augmentation methods like
standardization, shifts, rotation, brightness change, flips, and many more. Nevertheless,
the principal benefit of employing the KerasImageDataGenerator class is that it is developed
to offer online data augmentation. It generates augmented images in the training phase of
the model.

Image Augmentation with Keras ImageDataGenerator Class

The ImageDataGenerator class guarantees that the model receives new varieties of
images on each epoch. Nevertheless, it just returns the changed images. It does not
include them in the initial corpus of images. If it were the instance, then the model would
certainly be seeing the initial images many times, which would over-fit the model. One
more advantage is that it requires reduced memory usage. It is so because we load all the
pictures without utilizing this class. Nevertheless, we are packing the images by batches
on utilizing it, saving much memory. A series of methods are used, such as pixel scaling
techniques. We will concentrate on five main augmentation techniques for images: photo
changes using height shift and size shift range disagreements, the image flips using vertical
flip and horizontal flip arguments, image rotations using the rotation range disagreement,
image illumination via the illumination arguments disagreement and image zoom through
the zoom range argument. A sample of data augmentation operations is shown in Figure 6.

Figure 6. Data augmentation.

4. Experimental Setup and Environment

In this section, Experimental Setup and Environment, we present the results and dis-
cussion (Section 4.1), results data set 2 (Section 4.2) and complexity of the proposed model.
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The model that was suggested was built using the Keras library [111] on the Tensor-
Flow backend [112] on Windows 10, which is a working 64-bit framework. The model was
executed with Python (free Python). The following is the foundation for investigation: Intel
R Center i7-8250U CPU @ 1.70 GHz, 1900 MHz, 7 Cores. There were 16 GB of memory and
nine consistent Pr. In the proposed architecture, the final feature vector from the GAP layer
is sent to the dense layer, which has two neurons, one for each class. The following is the
foundation for investigation: Intel R Center i7-8250U CPU @ 1.70 GHz, 1900 MHz, 7 Cores.
There were 16 GB of memory and nine consistent Pr. In the proposed architecture, the final
feature vector from the GAP layer is sent to the dense layer, which has two neurons, one
for each class. The data collection was previously partitioned into training and testing sets.
The training set of data sets is divided into training and validation sets (beginning at 60%
and increasing by 10%), 60%, 70%, 80% and 40%, 30%, 20%, with X-ray scans of the chest in
each pair, accordingly.

In Figures 1 and 2, you can see how the images in each data set are spread out. For
each training session, a batch size of 32 is used to train the model. The model is trained
on the categorical cross-entropy (CCE) and the binary cross-entropy (BCE) loss functions,
see Equations (3) and (4). Additionally, for back-propagation, the optimizers Adam with
a learning rate of 0.01 and SGD (learning rate = 0.01; momentum = 0.9) are utilized. All
results are displayed in Tables 1–4. During the training phase, training and validation
examples are applied with the class weights. The learning is penalized in accordance with
the class-specific weights. Where the weight value of the COVID-19 class (576 samples) is
1.874, the weight value of the normal class (1583 samples) is 0.682 for the data set 2, and
where the weight value of the COVID-19 class (102 samples) is 2.529, and the weight value
of the normal class (4 hundred and fourteen samples) is 0.623 for the data set 1.

Table 1. Adam’s rate of learning is =0.001. The loss function is categorical cross entropy (CCE).

V.S ACC SENS SEPC PREC RECA F1-Score ROC C.M EP

0.40 97% 1.0 1.0 100.0% 95.8% 97.872% 0.98 [8 0][1 23] 30

0.40 97% 1.0 1.0 100.0% 96.3% 98.113% 0.98 [5 0][1 26] 40

0.30 94% 1.0 1.0 100.0% 92.6% 96.15% 0.96 [5 0][2 25] 30

0.20 97% 1.0 1.0 100% 95% 97.46% 0.98 [12 0][1 19] 20

V.S: Validation split, ACC: Accuracy, SENS: Sensitivity, SPEC: specificity, PREC: Precision, RECA: Recall, Roc:
ROC (area), C.M: Confusion Matrix, EP: epochs.

Table 2. SGD (rate of learning 0.001; momentum = 0.9). The loss function is cross-categorical
entropy (CCE).

V.S ACC SENS SEPC PREC RECA F1-Score ROC C.M EP

0.40 100% 1.0 1.0 100% 100% 100% 1.0 [6 0][0 26] 40

0.30 94% 0.86 0.86 96.0% 96.0% 96.0% 0.91 [6 1][1 24] 40

0.20 97% 0.90 0.90 95.8% 100.0% 97.87% 0.94 [8 1][0 23] 40

V.S: Validation split, ACC: Accuracy, SENS: Sensitivity, SPEC: specificity, PREC: Precision, RECA: Recall, Roc:
ROC (area), C.M: Confusion Matrix, EP: epochs.

According to the data shown in Tables 1–4, the performance of the suggested model
is satisfactory.

In the following Tables 5–7, we compare the performance of state-of-the-art approaches
to that of the suggested method.



Electronics 2022, 11, 4008 12 of 27

Table 3. SGD (rate of learning 0.001; momentum = 0.9). The loss function is binary cross en-
tropy (BCE).

V.S ACC SENS SEPC PREC RECA F1-Score ROC C.M EP

0.40 97% 1.0 1.0 100% 96.0% 97.96% 0.98 [7 0][1 24] 40

0.30 97% 1.0 1.0 100% 96.43% 98.18% 0.98 [4 0][1 27] 40

0.20 97% 1.0 1.0 100% 96.0% 97.96% 0.98 [7 0][1 24] 40

0.15 97% 1.0 1.0 100% 95.46% 97.67% 0.98 [10 0][1 21] 40

V.S: Validation split, ACC: Accuracy, SENS: Sensitivity, SPEC: specificity, PREC: Precision, RECA: Recall, Roc:
ROC (area), C.M: Confusion Matrix, EP: epochs.

Table 4. Adam’s rate of learning is = 0.001. The loss function is binary cross entropy (BCE).

V.S ACC SENS SEPC PREC RECA F1-Score ROC C.M EP

0.40 100% 1.0 1.0 100% 100% 100% 1.0 [7 0][0 25] 40

0.30 100% 1.0 1.0 100% 100% 100% 1.0 [8 0][0 24] 40

0.30 94% 1.0 1.0 100% 91.7% 95.652% 0.96 [8 0][2 22] 50

V.S: Validation split, ACC: Accuracy, SENS: Sensitivity, SPEC: specificity, PREC: Precision, RECA: Recall, Roc:
ROC (area), C.M: Confusion Matrix, EP: epochs.

Table 5. Comparison between the performance of the existing approaches and the suggested approach.

Author Method Accuracy

Ozturk et al. 2020 [35] Models based on deep learning for binary classification 98.08% and 87.02%

Azemin et al. 2020 [58] learning-based COVID-19 71.9%

Heidari et al. 2020 [56] Convolution neural network (CNN) 94.5%

Oh et al. 2020 [57] statistical method 88.9%

Asnaoui et al. 2021 [65] inception-ResNetV2 92.18%

In Tables 6 and 7, we compare our suggested model to the relevant cutting-edge
techniques. Sethy et al. [37] used 381 chest X-ray images from three groups of identical
imaging data (COVID-19, pneumonia, and healthy) in their study on detection. In their
studies, they classified data using ResNet50+SVM and attained 95.33% precision. They did
not detail specifics about the standards and network requirements.

After making the X-ray picture 200 by 266 pixels big, Apostolopoulos and Mpesiana
used the Adam optimizer and the ReLU activation function. Their network includes
two hidden layers, one dropout, ten epochs, and a 97.82% success rate. They used deep
CNN with ResNet, with the default values of the hyperparameters and the initialization
approach [34].

The authors of XCOVNet [113] employed CNN to classify 392 chest X-ray images.
(Two sets of the same size as COVID and Normal) and also accomplished a 98.44% accuracy.
However, the authors of the cutting-edge publications did not sufficiently specify the details
of their experiments, making it difficult to test their model’s predictions using our data sets.

Despite producing encouraging findings, our suggested approach has limitations.
First, we used two data sets that were readily available; these data sets are described in
Section 3. Because COVID-19 symptoms can be very different, the complexity of the model
we suggested needs to be checked and confirmed using a larger data set with larger image
data sets, and the model needs to be optimized (minimize the number of parameters).
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Table 6. Related work comparison only chest X-ray, A.

Author Method Image Type Size Dataset Accuracy Covid:Total

Sethy et al. 2020 [37] Resnet and SVM Chest X-ray 381 total 127 covid 95.38% 33%

Apostolopoulos et al.
2020 [34]

Deep CNN—ResNet and
inception Chest X-ray 1427 total. 224 covid 97.82% 15.6%

XCOVNet 2021 [113] CNN Chest X-ray 392 total. 196 covid 98.44% 50%

Proposed model 2022 CNN with CWB-Cx and
Data-Augmentation Chest X-ray 516 total 102

COVID-19 (data set1) 100% 19.7%

Proposed model 2022 CNN with CWB-CX and
Data-Augmentation Chest X-ray 1583 total 576

COVID-19 (data set2) 100% 37.4%

Table 7. Related work comparison only chest X-ray, B.

Author Method Image Type Size data set Accuracy Drawbacks

Hemdan et al.
2020 [13] COVIDX-Net Chest Xray 25 COVID-19 (+)

25 COVID-19 (−) 90.0%
Using a dataset that

only contains 25
COVID-19 samples.

Wang et al. 2020 [15] COVID-Net Chest Xray
358 COVID-19 (+)

8066 COVID-19 (−)
5538 Pneumonia

92.40

Using unbalanced data
set 8066 COVID-19 (−).

High computational
complexity as a result of
Pneumonia’s 5538 deep

learning trainings.

Ozturk et al. 2020 [35] DarkCovidNet Chest Xray

125 COVID-19 (+)
500 No- Findings
125 COVID-19 (+)
500 No-Findings
500 Pneumonia

98.08% and 87.02%

Use of a small number
of COVID-19 Samples.
High computational

complexity as a result of
deep learning.

Narin et al. 2021 [64] Deep CNN ResNet50 Chest Xray 50 COVID-19 (+)
50 COVID-19 (−) 98.0%

Use of a data set
including 50 COVID-19

samples, a
small number.

Nasiri H. 2022 [114] DenseNet169+ ANOVA
+ XGBoost Chest X-ray

125 COVID-19 (+)
500 No- Findings
125 COVID-19 (+)
500 No-Findings
500 Pneumonia

98.72% and 92.0%

Sensitivity to the
ANOVA’s number of

features chosen utilizing
only a small number of

COVID-19 samples

Proposed model
(CWB-CX) 2022

CNN with CWB-CX
and

Data-Augmentation
Chest X-ray

516 total and 102
COVID-19 (data set1)

1583 Normal 576
COVID-19 (data set2)

94% worst 98% average
and 100% Best see Table 8

-Needs to be optimized
(minimize the number
of parameters) -use a
medium size data set

4.1. Results and Discussion

The suggest method is applied to two data sets, which are described in Section 3.1 for
the two-class classification. The two data set distributions are shown in Figures 1 and 2.
The effectiveness is assessed and contrasted using metrics based on the confusion ma-
trix. The proposed model results are compared to the existing state-of-the-art approaches
Tables 6 and 7. A confusion matrix is built for 32 examples at each time on the forecasted
label of the testing set. We have expressed the model’s success rate in terms of performance
metrics like accuracy, F1-score, Accuracy, Sensitivity, and Specificity, which are computed
using Equations (6)–(11) [115]. The training is done with different epochs, two loss func-
tions (Binary Cross entropy and categorical cross-entropy), two optimizers (Adam with a
learning rate of 0.001, and SGD (learning rate = 0.001, momentum = 0.9), where the results
are described in Tables 1–4. In addition, the receiver operating characteristics (ROC) curve
is plotted, and the area under the curve (AUC) is calculated. Figure 7 demonstrate how the
training accuracy rises as the validation accuracy rises, indicating that the CWB+CX model
is not over-fitted. The worst, average and best cases for the proposed model 8 (prediction
model, confusion matrix and ROC) are presented in Figures 8–13.

Accuracy =
TN + TP

TN + TP + FN + FP
(6)
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Speci f icity =
TN

TN + FP
(7)

Sensitivity =
TP

FN + TP
(8)

Precision =
TP

FP + TP
(9)

F1 =
2 ∗ TP

2 ∗ TP + FP + FN
(10)

MCC =
(TP ∗ TN)− (FP ∗ FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (11)

Figure 7. Accuracy (training and validation) 40, 50 epochs.

Figure 7 demonstrate how the training accuracy rises as the validation accuracy rises,
indicating that the CWB+CX model is not over-fitted.

In the next Table 8, we summarize the results of our suggested method and the loss
function of the worst-case scenario in the Figure 12.

Table 8. AC, SENS, SPEC, PRE, REC and F1-score, for 3 cases worst, average and best cases.

Cases AC SENS SEPC PRE REC F1-Score

Worst 0.94 0.86 0.86 96% 96% 96%

Average 0.97 0.86 0.86 97% 100% 98%

Best 1.00 1.00 1.00 100% 100% 100%

Finally, we summarize the worst, average, and best cases in Table 8, which show that
the proposed model attains motivation results to detect COVID-19.

The presentation of the confusion matrix in Figures 9–11 are described below. Figure 9
shows that the actual and predicted COVID-19 values for the examples are 18.75%. Overall,
75% of patients are normal and are predicted to be normal. Normal and anticipated COVID-
19 cases are 6.25%. The proportion of COVID-19 and normal-predicting instances is 0%.
Figure 10 illustrates the instances of actual and predicted COVID-19 (21.875%). Seventy-five
percent of patients are normal and are predicted to be normal. For patients, the normal
and expected COVID-19 is 3.125 percent. Furthermore, 0% of instances in COVID-19 are
expected to be normal. The examples of real COVID-19 and anticipated COVID-19 are
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depicted in Figure 11. Overall, 71.875% of cases are normal and are anticipated to be normal,
whereas 0% of patients are normal and have a predicted COVID-19. Figure presents the
ROC’s worst, average, and best cases.

Figure 8. Model prediction best score.

Figure 9. The worst case of the proposed model with Confusion Matrix.
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Figure 10. The average case of the proposed model with the Confusion Matrix.

Figure 11. The best case of the proposed model with the Confusion Matrix.

Figure 12. The loss function of the worst case in Table 8.
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(a) worst ROC (b) average ROC

(c) best ROC

Figure 13. ROC, worst, average and best cases.

4.2. Results Data Set2

Data set 2 consists of 1728 images belonging to two classes for learning and 431 im-
ages belonging to two classes for validation. The distribution of the data set is present in
Figures 2 and 14. The model in Figure 2 without the dropout layer is used in the experi-
mental data set 1, and the model in Figure 14. The model with the dropout layer is used in
experimental data set 2.
In the following section, we present four experimental cases with dropout = 0.3, data
augmentation parameters are width shift range = 0.05, zoom range=0.05, shear range = 0.05,
height shift range = 0.05, horizontal flip = False, fill mode = ’nearest’), rescale = 1. /255,
and validation split = 0.20. The batch-size = 32, where the weight classes for 576 images is
1.874 and for 1583 images is 0.681, the kernel size = 2 × 2, the filters are 64, 64, 128 and
256, and the pooling size is 2 × 2. The total parameters of the model are 32,951,006, and the
numbers of the epochs = 50. With Trainable params: 32,951,006.

In the following Table 9, we present the results of four cases. We present case 4 in
Table 9, and the optimization loss function, the accuracy function, the confusion matrix,
model presentation and Roc curve in the Figures 15–19, respectively.

Table 9. Four cases for data set 2.

Cases ACC SENS SEPC PREC RECA F1-Score ROC C.M M.C.C

case 1 99.3% 1 1 100% 95.65% 97.77% 97.77% 0.978 [9 0][1 22] 0.927

case 2 98.8% 1 1 100% 95.83% 97.87% 0.979 [8 0][1 23] 0.922

case 3 98% 1 1 100% 94.74% 97.29% 0.974 [13 0][1 18] 0.937

case 4 97% 1 1 100% 95.65 97.78% 0.978 [9 0][1 22] 0.927

Case 1: Adam’s learning−rate of 0.001 and a Binary Cross Entropy Loss Function
(B.C.E.). Case 2: Adam’s learning−rate of 0.001 and a categorical cross-entropy loss func-
tion (C.C.E.). Case 3: S.G.D.’s (learning−rate = 0.001, momentum = 0.9) loss function
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is binary cross entropy. Case 4: S.G.D. (learning−rate = 0.001, momentum = 0.9), the
loss function is categorical cross-entropy, Matthews correlation coefficient (M.C.C) is de-
fined by Equation (11), ACC, SENS, SEPC, RPEC, RECA, ROC, and C.M are defined in
Tables 4 and 9.

Figure 14. Model with dropout layer.

Figure 15. Loss function case 4 in Table 9.
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Figure 16. Accuracy function case 4 in Table 9.

Figure 17. Model prediction case 4 in Table 9.

The Figure 18 confusion matrix shows the TP case’s actual COVID-19 and predicted
COVID-19 is (28.125%). TN cases that are normal and predicted normal are 68.750%, FN
cases that are normal and predicted COVID-19 are 3.125%, and FP cases that are COVID-19
and predict normal are 0%.
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Figure 18. Confusion Matrix case 4 in Table 9.

Figure 19. ROC case4 in case 4 in Table 9.

4.3. Model Complexity

In the following, we introduce the proposed model complexity; in machine learning,
model complexity is crucial. It is simply the number of independent variables, characteris-
tics, or predictors that a model must consider to make accurate predictions. Our model has
32,951,006 parameters; moreover, the numbers of FLOPS = 1.25 G ( G = 109 floating-point
operation). We employed the Keras-flops version 0.1.2 to calculate the number of FLOPs.
In Table 10, in millions (M), we provide the number of trainable parameters for the most
prevalent deep models. We found that the proposed model needs to be optimized where
the number of parameters is 32.95 M, less than both AlexNet and VGG-19, but greater than
each of DenesNet, GooleNet, Inception, Xception and MobileNet-V2.

The proposed model (CWB-CX) outperforms several state-of-the-art approaches. In
consideration of the problem of class imbalance, the suggested technique has an advan-
tage over previous methods stated in the literature. For the two data sets utilized in the
experimental phase, the model (CWB-CX) performs well. Tables 1–4 provide a summary
of the findings. The lightweight CWB-CX-based architecture proposed in this paper out-
performed [37] and produced a performance comparable to [56,113]. The advantage of
the recommended method over existing approaches comes from the fact that it has lower
training requirements than transfer learning-based approaches. The classification prob-
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lem’s ROC curve illustrates the trade-off between sensitivity and specificity is essential to
analyze medical image data. Figure 13 contains the ROC curves for the worst, average, and
best-case scenarios. Where the best model is a ROC curve with an AUC value of 1, for the
worst, average, and best scenarios, the suggested technique yields AUCs of 0.96, 0.98, and
1.0, respectively. Additionally, data augmentations are employed in conjunction with the
parameters shown in Tables 1–4 and 11.

Table 10. The number of trainable parameters for the most prevalent deep models in millions (M).

Model # Parameters

Alex-Net 62 M

DenseNet 25 M

GooleNet 4 M

Inception V3t 23.6 M

VGG-19 138 M

Xception 22.8 M

MobileNet-V2 3.5 M

Proposed 32.95 M

Figures 9–11 present the worst, average and best cases, respectively. In [32], the author
presents the four methods DenseNet-121 (B), B+Model+KNNS, Model Ensemble 1, and
Model Ensemble with their Mean AUC and numbers of parameters the best Mean AUC is
93.96, where the mean AUC for the (LW-CNN-CWB) proposed method is 97 and number
of parameters is 32.951M. Note that the data sets are different. In [32], the CheXpert
dataset [116] is used.

Table 11. Augmentations parameters.

Width Zoom Shear Hight Shift Fill Mode

0.05 0.05 0.05 0.05 Nearest

Figure 20 summarizes all accuracy for different methods and the proposed model in
the three worst, average and best cases. As you can see from Figure 20 and Tables 5–7, our
proposed model (CWB-CX) outperforms others in terms of accuracy.

Figure 20. Methods and accuracy. Methods (X-axis) see Table 12.
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Table 12. Methods (X-axis) for the Figure 20.

Ozturk et al. I Ozturk et al. II Azemin et al. Heidari et al. Oh et al.

[35] [35] [58] [56] [57]

Sethy et al. Apostolopoulos et al. Asnaoui et al. XCOVNet

[37] [34] [65] [113]

5. Conclusions and Future Work

In general, in medical imaging data sets, there is an imbalance between the number of
normal and disease examples. This study proposes the CWB-CX approach for classifying
COVID-19 images and addresses the class imbalance issue. During the period of model
training, class weights that penalize the majority class are applied. The trained model
is then evaluated using a data set of chest X-ray image data. Parameters based on the
confusion matrix are used to assess the results. The efficiency of the suggested model has
been analyzed on the criteria like accuracy, specificity, sensitivity, F1-score and MCC. The
suggested method accomplished an accuracy of 94% worst, 97% average, and 100% best
cases, respectively, and F1 are 96% worst, 98% average and 100% best cases, respectively.
The benefit of the suggested mode compared to other state-of-the-art approaches lies in the
light of CNN architecture CWB. The suggested model can assist the experts.

The difficulty of our suggested approach necessitates more screening and validation,
employing updated data and larger image data sets, and the proposed model needs to
be optimized so that the number of parameters is 32.95 million, less than both AlexNet
and VGG-19, but greater than each of DenesNet, GooleNet, Inception, Xception, and
MobileNet-V2. In the future, we intend to test the proposed model, a lightweight CWB-CX,
on chest X-ray images for multi-classification of thoracic disease diagnosis. In future work,
we will investigate two databases related to general chest diseases, such as atelectasis,
cardiomegaly, consolidation, edema, and pleural effusion, and also apply the proposed
model to chest CT images. In addition, we will investigate the implementation of the works
of Zhou et al. [32,33] to COVID-19.
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