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Abstract: As a popular distributed learning framework, federated learning (FL) enables clients
to conduct cooperative training without sharing data, thus having higher security and enjoying
benefits in processing large-scale, high-dimensional data. However, by sharing parameters in the
federated learning process, the attacker can still obtain private information from the sensitive data
of participants by reverse parsing. Local differential privacy (LDP) has recently worked well in
preserving privacy for federated learning. However, it faces the inherent problem of balancing
privacy, model performance, and algorithm efficiency. In this paper, we propose a novel privacy-
enhanced federated learning framework (Optimal LDP-FL) which achieves local differential privacy
protection by the client self-sampling and data perturbation mechanisms. We theoretically analyze the
relationship between the model accuracy and client self-sampling probability. Restrictive client self-
sampling technology is proposed which eliminates the randomness of the self-sampling probability
settings in existing studies and improves the utilization of the federated system. A novel, efficiency-
optimized LDP data perturbation mechanism (Adaptive-Harmony) is also proposed, which allows
an adaptive parameter range to reduce variance and improve model accuracy. Comprehensive
experiments on the MNIST and Fashion MNIST datasets show that the proposed method can
significantly reduce computational and communication costs with the same level of privacy and
model utility.

Keywords: federated learning; local differential privacy; data perturbation; client self-sampling

1. Introduction

Machine learning has injected a strong impetus into the practical application of ar-
tificial intelligence (AI), such as computer vision, automatic speech recognition, natural
language processing, and recommender systems [1–4]. The success of these machine learn-
ing techniques, especially deep learning, is based on a large quantity of data [5–8]. However,
the development of data-driven AI still faces two significant challenges: privacy issues and
data silos [9].

Federated learning (FL), a new paradigm for privacy-preserving AI applications, aims
to break down the two barriers. Nowadays, the intelligence of network edge devices has
been dramatically improved [10–12]. Smartphones, wearable devices, sensors, and other
devices have the necessary computing and communication capabilities. The popularity of
IoT applications has promoted the rapid development of the FL framework with the core
concept of decentralization [13–16]. However, federated learning still has privacy issues,
even if the data are kept locally. Studies have shown that if the data structure is known in
federated learning, then the shared gradient information may also be exploited, leaking
additional details on the training data, such as model inversion attacks [17,18].
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Differential privacy (DP) has received much attention because it provides a rigorous,
quantifiable privacy-preserving method independent of the background knowledge of
attacks [19]. With the development of machine learning, DP has become an active research
area in privacy-preserving machine learning [20]. Nevertheless, traditional centralized
differential privacy (CDP) is not suitable for FL, first because a trusted server may not exist
and second because the noise accumulation at each round of aggregation causes the utility to
decrease. Satisfying DP, local differential privacy (LDP) further resists privacy leakage from
an untrustworthy server. In federated learning with LDP (LDP-FL), the models of the clients
are subjected to a data perturbation mechanism before uploading to the server to ensure that
the aggregator cannot infer more information from the model. Existing LDP-FL research
has achieved specific results [21–24]. Some personalized differentially private federated
learning algorithms have been proposed for complex models [25,26] and non-uniform
sampling processing [27]. However, utility decline should always be a rub and challenge.
Some of the research has relaxed the privacy levels for utility optimization [28–30].

Truex et al. integrated LDP into a federated learning system for jointly training
deep neural networks. Their approach efficiently handles complex models and adversarial
inference attacks while achieving personalized LDP. In addition, Wang et al. proposed
FedLDA, a latent Dirichlet allocation (LDA) model based on LDP in federated learning.
FedLDA employs a novel random response with priors that ensures the privacy budget is
independent of the dictionary size and dramatically improves accuracy through adaptive
and non-uniform sampling processing. To improve the model fitting and prediction of
the scheme, Bhowmick et al. proposed a relaxed LDP mechanism. Li et al. introduced
an efficient meta-learning LDP mechanism that can be used to implement personalized
federated learning. LDP can be used to prevent gradients from leaking privacy for federated
stochastic gradient descent (FedSGD) [31]. However, the increase in dimension d causes the
privacy budget to decay rapidly, the noise scale to increase, and the accuracy of the learned
model to decline. Therefore, Liu et al. proposed FedSel, selecting only the most essential k
dimensions to stabilize the learning process. Recently, many studies focusing on the data
perturbation mechanism to improve the model’s utility have achieved good results, such
as those of Laplace [19], Duchi et al. [32], Harmony [33], PM [34], and HM [34]. The data
perturbation mechanism design tries to make the aggregating disturbance statistical results
meet specific usability requirements by adding positive and negative noise to individual
values. They devote themselves to improving asymptotic error boundaries under private
premises. However, their weaknesses include low communication efficiency and poor
adaptability in complex deep learning models, since the range of model parameters for
different neural network layers varies widely. Assuming a fixed range for the model
parameters will introduce significant variance in the estimates, resulting in a decrease
in model accuracy [35]. An adaptive method has been proposed that allows the clients
in each round to adaptively select the perturbation parameters according to the model
training. However, the existing process, such as Adaptive-Duchi, requires that all model
information be uploaded to the server after each data perturbation, causing higher time
and space complexity.

Aside from that, a technique of privacy amplification has received extensive attention
for improving the model utility [36–38]. Based on the anonymity mechanism, the shuffler
scrambles the model parameters of different clients before the global model is updated. It
effectively improves the model utility of federated learning without consuming the privacy
budget. Another mechanism that can amplify privacy is the client self-sampling mechanism,
which realizes local differential privacy by randomly deciding whether to share updates
during each iteration [39]. The latest LDP-FL based on client self-sampling theoretically
proves the improvement of the privacy level and performance through the shuffler and
client self-sampling design. Nevertheless, the current client self-sampling technology has
some shortcomings in setting the self-sampling probability, which needs a detailed analysis
of the relationship between the number of participating clients and the model’s utility. Wei
et al. have shown the relationship between the number of clients participating and the
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model performance through detailed experimental and theoretical proof [40]. However,
the existing methods [39] roughly set the client participation probability to a (0, 1) interval,
which leads to a decline in the convergence and accuracy of the federated model. Moreover,
more client participation is needed to avoid resource waste in the training scenario.

Building trustworthy federated learning that meets the requirements of privacy, perfor-
mance, and efficiency has become the focus of future research [9]. Therefore, our study aims
to balance privacy, utility, and efficiency through the optimization of federated learning.
We propose an efficiency-optimized data perturbation mechanism (Adaptive-Harmony)
which allows an adaptive parameter range to reduce variance and improve model accuracy.
Furthermore, it randomly selects a dimension at each model layer and applies noise accord-
ing to the parameter settings. Then, we keep the remaining dimensions to fixed values.
As a result, this effectively reduces the communication cost with the server. We perform
theoretical analysis and proofing to show that Adaptive-Harmony holds the advanced
asymptotic error bounds and convergence performance with minimal communication costs.
On this basis, a novel federated learning framework (i.e., Optimal LDP-FL) is proposed.
In the framework, we use Adaptive-Harmony to provide the private local parameters with
minor computational costs during the local model update. We introduce a parameter-
shuffling mechanism that improves privacy by countering model-tracking attacks and
improving communication efficiency under the same privacy level and model utility. We
also propose a restrictive client self-sampling technology, which improves the shortcomings
of existing methods in studying client self-sampling probability by further refining the
quantitative relationship between self-sampling probability, convergence, and accuracy. It
limits a more reasonable range of self-sampling probability, removes the assumption of a
single datum in the past theoretical framework, extends the existing theoretical research to
practical application, and improves the utility of federated learning in both theoretical and
practical applications. We perform comprehensive experiments on the MNIST and Fashion
MNIST datasets to verify and evaluate our algorithm from the utility, privacy budget, and
communication cost. The results show that the proposed method can significantly reduce
computational and communication costs with the same privacy and model utility level.

To be precise, our main contributions are as follows:

1. We propose a novel LDP-FL, which integrates an efficiency-optimized data perturba-
tion and a parameter-shuffling mechanism, and client self-sampling technology in the
federated learning process to improve model utility and reduce communication costs,
ensuring privacy.

2. We propose an efficiency-optimized data perturbation algorithm, which supports
perturbing parameter adaptive selection and minimum parameter transmission to
hold the advanced asymptotic error boundary and improve communication efficiency.

3. We propose restrictive client self-sampling technology which limits the range of
self-sampling probability to a more reasonable one to improve the utility.

4. We verify our method’s efficiency, privacy, and performance from theoretical and
practical aspects. We analyze the asymptotic error boundary and communication cost
and prove that our unbiased algorithm satisfies LDP. We also evaluate our algorithm
on multiple databases from the utility, privacy budget, and communication cost
standpoints.

2. Background and Related Works
2.1. Federated Learning

Federated learning aims to build a global model over data distributed across multiple
clients without sending the raw data to any centralized server. The performance of the
global model should approximate the ideal model’s performance adequately. FedAvg [41]
is widely used in aggregating the models from clients. Supposing that there are K clients in
a horizontal federated learning system, let Dk denote the data set owned by the kth client
and Pk denote the index set of data points located in the kth client. Let nk = Pk denote the
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base number of Pk; that is, we assume that the kth client has nk data points. Thus, when
there are K clients in total, the loss function f (w) can be written as in Equation (1):

f (w) =
K

∑
k=1

nk
n

Fk(w), Fk(w) =
1
nk

∑
i∈Pk

fi(w) (1)

We assume that the server has the initial model and that the clients know the optimizer
settings. For each client, it contains its private dataset. Based on Equation (2), each local
client updates their local models by the weight w̄t from the server. For a typical implemen-
tation of FedAvg with a fixed learning rate η, when updating the global model parameters
at round t, the kth client will compute gk, the average gradient of its local data at the current
model parameter wt. Each local model uses gradient descent to optimize the distinct local
models’ weights in parallel and sends the local weights w(k)

t+1 to the server:

∀k, w(k)
t+1 ← w̄t − ηgk (2)

Next, the server calculates the weighted average of each model weight according to
Equation (3) and sends the aggregated weights w̄t+1 to each client. The training process of
a federated learning system typically consists of local update, local upload, server update,
and server broadcast:

w̄t+1 ←
K

∑
k=1

nk
n

w(k)
t+1 (3)

2.2. Differential Privacy

Differential privacy was developed in the context of statistical disclosure control,
which Dwork first proposed in 2006 [19]. For its information theory guarantee, it has
been widely used to enhance data privacy in machine learning with its simplicity and low
cost. The mechanisms of DP in federated learning are mainly classified into LDP [42] and
CDP [19]. The traditional Laplacian mechanism of CDP can be used in FL. Each user’s
data are disturbed by random noise based on the specific distribution in the mechanism.
However, CDP must be based on trusted data collectors. In the case of highly sensitive
machine learning models, the assumption of trusted data collectors is challenging to
uphold [40,43]. Therefore, there is an urgent need for a privacy-preserving method to
withstand untrustworthy third-party data collectors in the sensitive model aggregation
problem. LDP is well suited for the decentralized federated learning scenarios and is
naturally applicable in FL:

Definition 1 (ε-CDP). For two datasets D and D′ that differ by only one record, a randomization
mechanismM satisfies ε-CDP and for all S ⊂ Range(M) such that we have

Pr[M(D) ∈ S] ≤ Pr[M(D′) ∈ S]× eε (4)

where ε denotes the privacy budget.

Definition 2 (ε-LDP). A random function satisfies ε-LDP if and only if, for any two input tuples
t, t′ ∈ Dom( f ) and in any case f , the output t∗ satisfies

Pr[ f (t) = t∗]
Pr[ f (t′) = t∗]

≤ eε (5)

DP introduces noise to the data, ensuring privacy but damaging the utility. Existing
research has shown the algorithm has better privacy guarantees with small ε, which
means large noise injection. However, Jayaraman et al. [44] found that few existing DP
mechanisms for machine learning have an acceptable degree of a utility-privacy tradeoff.
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Therefore, balancing the utility and privacy is still an open issue for DP mechanism design
in machine learning.

2.3. Data Perturbation in LDP

The current implementation of LDP in federated learning is mainly based on the data
perturbation mechanism to perturb the local models and upload the perturbed models to
the server to complete the aggregation [45,46]. Since the process of server model aggregation
belongs to mean value estimation, the LDP mechanism applied in this process should also
support mean statistical queries on continuous-type data. Duchi et al. [32] proposed a
mean estimation method based on LDP. That aside, existing mean estimation methods
include Laplace [19], Harmony [33], PM [34], and HM [34], which have achieved some
results.

The main idea of Duchi et al. was to use a random response technique to perturb each
user’s data according to a certain distribution probability while ensuring unbiased estima-
tion. Each data tuple Vi ∈ [−1, 1]d is perturbed to contain the noisy tuple V̂i ∈ {−B, B}d,
where B is determined by the data dimension d and the privacy budget ε, as calculated in
Equations (6) and (7):

B =



2d+Cd ·(eε−1) d− 1
(d− 1)/2

·(eε−1)

, if d is odd

2d+Cd ·(eε−1) d− 1
d/2

·(eε−1)

, otherwise
(6)

where

Cd =


2d−1, if d is odd

2d−1 − 1
2

(
d

d/2

)
, otherwise

(7)

Although Duchi et al.’s mechanism can achieve LDP and has asymptotic error bounds,
it is relatively complex. Nguyên et al. [33] have shown that Duchi et al.’s mechanism does
not satisfy ε-LDP when d is even. Nguyên et al. proposed a possible solution and their
redefinition of the Bernoulli variables u according to Equation (8):

Pr[u = 1] =
eε · Cd

(eε − 1)Cd + 2d (8)

In addition, Nguyên et al. proposed the Harmony mechanism [33], which can achieve
the same privacy level and asymptotic error bounds by a more straightforward method
when estimating multidimensional data using LDP. Furthermore, Wang et al. [34] further
proposed the PM mechanism, which has lower variance and is easier to implement than that
of Duchi et al. The Laplace mechanism and Duchi et al.’s mechanism are costly. In contrast,
the Harmony and PM mechanisms are less costly. For d dimensional data, the Laplace
mechanism has the most significant asymptotic error bound. In contrast, the error bounds
of the other three mechanisms are lower than those of the Laplace mechanism. However,
all of the above methods assume a fixed range of inputs for simplicity, and we believe that
this setting has a detrimental effect on the accuracy of the neural network model.

2.4. Privacy Amplification

LDP provides privacy guarantees for federated systems with untrustworthy servers [47].
However, improving the performance of LDP-FL is necessary, since LDP makes further
utility decline [48]. Privacy amplification mechanisms have been proposed to enhance the
utility in LDP-FL [38,49,50]. One kind of privacy amplification mechanism is called shuffling,
first derived from the Encoding, Shuffle, Analyze (ESA) architecture [51]. The shuffling
model amplifies privacy through anonymization. It shuffles the local update before severe
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aggregation, thus preventing potential attackers from associating parameter information
with individual clients. Existing LDP-FL studies based on shuffling models have improved
model utility while ensuring privacy, such as model shuffling and parameter shuffling [38].
In particular, a parameter-shuffling mechanism further enhances privacy based on model
shuffling. Another mechanism to amplify privacy is through randomized sampling [49],
including sampling by data centers acting as servers and client self-sampling [39]. The
mainly used client self-sampling realizes a participant anonymity mechanism and the effect
of saving the privacy budget and enhancing utility, which avoids client coordination while
keeping confidential to the server. However, the existing self-sampling is insufficient in the
probability by roughly setting it within (0,1), which has theoretical and practical problems.
Theoretically, suppose the participation probability is too low and even approaching zero.
In that case, the number of participants in each iteration is too small, which means the
algorithm needs more training iterations to achieve convergence, and the accuracy of the
global model will decrease. From the perspective of application scenarios, training with too
few participants results in a waste of resources. Therefore, federated learning combined with
privacy amplification and efficiency enhancement becomes an urgent need. The existing
methods are inadequate in setting client self-sampling probability.

3. Optimal LDP-FL
3.1. Outline

As we discussed above, the existing research remains on the problem of balancing
privacy and utility. For this reason, we design a horizontal federated learning framework,
Optimal LDP-FL, to address the privacy, utility, and efficiency issues and rival reconstruc-
tion attacks, model inversion, and parameter tracing. In Optimal LDP-FL, we propose
a novel data perturbation mechanism (Adaptive-Harmony) in the local update, making
significant efficiency improvements while satisfying LDP. In addition, it also introduces
the parameter-shuffling mechanism, which can save the privacy budget, thus significantly
improving the model utility. We also introduce client self-sampling in Optimal LDP-FL
and propose a client self-sampling technique with restrictive probability to achieve utility
optimization. Clients perform self-sampling to determine whether they participate in the
local update and global update in this training iteration. The server remains ignorant
of the participating clients when aggregating the model. Moreover, we restrict the client
self-sampling probability to a more reasonable range to improve the performance of the
global model while maintaining a high privacy level. In Section 3.4, we will describe the
restrictive client self-sampling technology in detail. The architecture of our framework is
shown in Figure 1.

Aggregator
model

Local model 1 Local private
model 1

Parameter
shuffling

Parameter
shuffling

Adaptive-Harmony
data pertubation

Local data 1

Local model n Local private
model n

Adaptive-Harmony
data pertubation

Local data n

Running at clients Running at server

Train flowData flow Pertubation Update flow

Restrictively client
self-sampling

Figure 1. Optimal LDP-FL framework. Each client has a private dataset. The clients perturb their
weights by data perturbation after performing a local update, split and shuffle the parameters locally,
and finally upload them to the server for server updates.
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3.1.1. Local Update

Each client has his or her private training data. In each round of communication, the
selected client updates the local model with the weights from the server. Next, different local
models are optimized in parallel for each local model using stochastic gradient descent
(SGD). LDP requires that each client not pass data and weight to each other and keep
them secret from the untrustworthy server by data perturbation. Therefore, the algorithm
provides privacy based on data perturbation by applying noise to the weights from the
clients. After the server collects multiple models, their noise cancels each other to achieve
the model accuracy.

In the process of a local update, we propose a new data perturbation algorithm,
namely Adaptive-Harmony, which can satisfy the ε-LDP and the asymptotic error bound

of O
(√

d log(d/β)

ε
√

n

)
under the condition of improving the communication efficiency of the

algorithm to O(1). In Section 3.2, we will describe Adaptive-Harmony with privacy and
utility analysis in detail.

3.1.2. Global Update

The server randomly initializes the weights at the beginning. Let n be the number of
clients, and during the rth round of communication, the server randomly selects kr ≤ n
clients for communication. These clients upload the weights to the server in preparation
for updating the local model in the next round. During this process, the server does not
know the exact identity of the clients, as the clients remain anonymous to the server.

In order to improve the global model utility, we introduce a parameter-shuffling
mechanism into the global update process, by which the uploaded models are shuffled at
the parameter level. Compared with the model-shuffling mechanism, parameter shuffling
provides a better privacy amplification effect. Each client will split the weights of the local
model and send them to the server anonymously after a random delay. In Section 3.3, we
will describe the parameter-shuffling mechanism in detail.

Algorithm 1 gives the process of implementing the above Optimal LDP-FL framework,
in which Line 5 performs clients self-sampling to determine whether the clients participate
in local model updates and global aggregation in the training iteration, Line 20 performs
parameter shuffling, and Line 19 performs data perturbation.

3.2. Adaptive-Harmony

Due to the complexity of deep neural networks, the range of weights varies signifi-
cantly for each layer in the model. Assuming a fixed range of weights would introduce a
significant variance in the model aggregation process, resulting in poor model accuracy.
Sun et al. [35] first proposed the concept of weight range adaption and applied it to Duchi
et al.’s mechanism, and we named it “Adaptive-Duchi” in this paper.

3.2.1. Adaptive-Duchi

Given the weights W of the model, the mechanism adds random noise to all d dimen-
sions of W and outputs perturbed weights W∗. Let the mechanism beM, and for each
w ∈W, determine c and r such that w ∈ [c− r, c + r], where c is the center of w and r is the
radius. Both depend specifically on the method of clipping the weight. Therefore, they
designed the following mechanism to perturb w in Equation (9):

w∗ =M(w)

=

 c + r · eε+1
eε−1 , w.p. (w−c)(eε−1)+r(eε+1)

2r(eε+1)

c− r · eε+1
eε−1 , w.p. −(w−c)(eε−1)+r(eε+1)

2r(eε+1)

(9)

where w∗ is the weight after perturbation and “w.p.” stands for “with probability”. The
mechanism adds noise to all dimensions of W, so the communication cost of the method
is O(d), which means that the full model information must be uploaded to the cloud
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after each data perturbation. When the data dimension is high, both the time and space
complexity are high, so this mechanism is not suitable for high-dimensional data.

Algorithm 1: Optimal LDP-FL
Input: all of clients M; number of clients n; local mini-batch size B, number of

local epochs E; learning rate γ
// Running at server:

1 Initialize weights W0 ←
{

w0
id | ∀id

}
, where id indicates the position of each

weight;
2 Initialize the range by (C0, R0) for layers of W0;
3 SendToclient(W0, k0, C0, R0);
4 for each round l = 1, 2, . . . do
5 kl ← RestrictivelySelfSampling (M) ;
6 Collect all weights from the selected clients to update {(id, wid) | ∀id} and

SendToServer();
// Calculate and update model weights Wl.

7 for each element w ∈Wl do
8 determine the id of w;

// Calculate the mean value of local models.
9 w←− 1

kl
∑ wid;

10 for each layer of Wl do
11 update C and R of Wl ;

// Update clients.
12 SendToclient(Wl , kl , Cl , Rl);

// Running at clients:
13 Receive weights Wl , kl , Cl , Rl from server by SendToclient();
14 for each client s ∈ kl in parallel do
15 Ws

l+1 ←Wl ;
16 for local each round l = 1, 2, . . . .E do
17 for each batch b in B do
18 Ws

l+1 ←Ws
l+1 − γ∇L

(
Ws

l+1; b
)

;

19 AdaptiveHarmonyDataPerturbation(Ws
l+1, Cl , Rl) ;

20 ParameterShuffling(Ws
l+1) ;

3.2.2. Adaptive-Harmony

We propose the Adaptive-Harmony data perturbation mechanism, which improves
the adaptive range based on the Harmony data perturbation mechanism. If the range of
weights is adaptive, then the client can choose different c and r values for each weight in
each round, and these two values depend on the way we clip the gradients. Unlike Duchi
et al’s mechanism, for each dimension of the weights, only one bit of data needs to be
transmitted to the subsequent process, thus significantly reducing the communication cost.
Moreover, the mechanism achieves equally capable privacy-preserving and asymptotic
error bounds compared to Adaptive-Duchi. In Section 4, we will analyze the privacy,
unbiasedness, and asymptotic error bounds of Adaptive-Harmony.

The main idea of the algorithm is that given the weights W of the model, noise is
added by randomly sampling one of the [d] dimensions of W in j, and the algorithm
outputs a perturbed tuple W∗, which contains non-zero values only in the jth dimension.
In particular, wj is randomly selected from [d] dimensions of W, so wj obeys the following
distribution in Equation (10):

Pr
[

w∗ − c
r

= x
]
=

{
(w−c)/r·(eε−1)+eε+1

2eε+2 , if x = eε+1
eε−1 · d

−(w−c)/r·(eε−1)+eε+1
2eε+2 , if x = − eε+1

eε−1 · d
(10)
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The above mechanism shows that for a randomly chosen weight wj, the output W∗

contains only one non-zero value and only two possible values for it. Therefore, the data
perturbation mechanism only needs to transfer the non-zero values and their positions to
the subsequent process, so the communication cost of the mechanism is O(1). Moreover,
under the premise of uniform randomness of the wj selection process, the correctness of
the method does not depend on the selection of wj.

To describe of the difference between these two mechanisms more specifically, we
assume that the model M = [Wd

1 , Wd
2 , · · · , Wd

n ] has n layers, each with di dimensions such
that w∗+j = c + r · eε+1

eε−1 and, similarly, w∗−j = c − r · eε+1
eε−1 . According to Duchi et al.’s

mechanism, we have Equation (11):

M∗ =
[
M(Wd1

1 ),M(Wd2
2 ), · · · ,M(Wdn

n )
]
=


w∗+1 w∗−1 · · · w∗−1
w∗+2 w∗+2 · · · w∗−2

...
...

. . .
...

w∗+d1
w∗−d2

· · · w∗+dn

 (11)

Equation (11) shows that all positions of M∗ have the value w∗+j or w∗−j and are
related to the unperturbed M at the corresponding positions. The privacy budget is
equally distributed to each w. Therefore, the time complexity and the communication cost
of this mechanism are both O(nd). By contrast, in the Adaptive-Harmony mechanism
we proposed, the privacy budget is assigned only to non-zero values such that w∗+j =

c + d · r · eε+1
eε−1 , and similarly, w∗−j = c− d · r · eε+1

eε−1 can be obtained. Therefore, we have
Equation (12):

M∗ =
[
M(Wd1

1 ),M(Wd2
2 ), · · · ,M(Wdn

n )
]
=


w∗+1 0 · · · 0

0 0 · · · w∗−2
...

...
. . .

...
0 w∗−d2

· · · 0

 (12)

Equation (12) shows that each layer Wi of M∗ has one and only one dimension with
non-zero values, so the time complexity and communication cost of each layer is O(1), and
the total time complexity and communication cost is O(n), although for a single model, the
weights after perturbation deviate too much and are too sparse compared with those before
perturbation, making them almost unusable for neural networks. However, when enough
clients upload the model for aggregation, this deviation can be offset by mean estimation,
thus restoring the high availability of the model.

Algorithm 2 gives the implementation of the Adaptive-Harmony data perturba-
tion mechanism.

Algorithm 2: Adaptive-Harmony
Input: original local weights W with dimension d, range represented by C and R;

privacy budget ε
Output: perturbed weights W∗

1 Let W∗ ← [c, c, · · · , c];
2 Sample j uniformly at random from [d];

3 Sample a Bernoulli variable u such that Pr[u = 1] = (W[j]−c)(eε−1)+r(eε+1)
2r(eε+1) ;

4 if u = 1 then
5 W∗[j]← c + d · r · eε+1

eε−1 ;
6 else
7 W∗[j]← c− d · r · eε+1

eε−1 ;
8 return W∗
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According to Algorithm 2, there are only two possible values for each non-zero weight.
Since the perturbation algorithm is known, the server only needs to obtain the direction of
the perturbation to calculate these values using known c, d, and r values. Therefore, the
position corresponding to the perturbed model contains only one bit of information, and
therefore, the proposed method dramatically improves the efficiency of the algorithm.

3.3. Parameter Shuffling

In federated learning, the clients are required to upload gradient updates to the server
in multiple iterations. Therefore, the privacy budget will accumulate in LDP-FL, resulting
in an explosion in the total privacy budget. The studies in [38,51] show that, overall, privacy
is effectively improved when data are transmitted anonymously at each point in time and
are not associated with a transmission time.

However, Sun et al. [35] argue that the clients’ anonymity is insufficient to prevent
side channel attacks. If clients upload models simultaneously in each aggregation, then
the server can still associate a large number of weight updates together to distinguish
specific clients.

As shown in Figure 2, for the local models M1, M2, M3, and M4, each model has the
same structure but different weights. As shown in Figure 2a, the clients send the total
weights to the server in the original federated learning. The researchers in Figure 2b [36–38]
ensure the anonymity of the communication between the clients and the server by model
shuffling. However, the work of these researchers does not consider privacy amplification
in the high dimensionality of deep neural networks. Therefore, we introduce a local
parameter-shuffling mechanism to break the connection between weight updates from the
same clients and mix them with weight updates from other clients, thus making it more
difficult for the server to combine multiple weight updates and infer more information
about any client. To avoid servers tracking specific clients based on a large number of weight
updates in a short period, we should employ parameter shuffling, which is performed
in two steps as shown in Figure 2c. In the first step, each client splits the weights of the
local model and marks each weight with id to indicate the positions of the weights in the
network structure. In the second step, each client samples a small random delay t for
each weight from a uniform distribution U(0, t), where t > 0 and waits for a time t before
sending the weights to the server. Since all uploads are made randomly in the same period,
the server cannot distinguish them by upload time and cannot correlate weight updates
from the same client.

Aggregator

a1 b1 c1 d1M1

a2 b2 c2 d2M2

a3 b3 c3 d3M3

a4 b4 c4 d4M4

(a)

Aggregator

a1 b1 c1 d1M1

a2 b2 c2 d2M2

a3 b3 c3 d3M3

a4 b4 c4 d4M4

(b)

Aggregator

M1

M2

a1 b1 c1 d1M1

a2 b2 c2 d2M2

a3 b3 c3 d3M3

a4 b4 c4 d4M4

a1

b1

c1

d1

a2

splitting

(c)

Figure 2. Example of parameter shuffling, where S is a random shuffling mechanism. (a) No shuffling.
(b) Model shuffling. (c) Parameter shuffling.
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Algorithm 3 gives the implementation of the above parameter shuffling mechanism.

Algorithm 3: Parameter Shuffling
Input: perturbed weights W∗ after Algorithm 2

1 label the position id of each element of W∗;
2 for each element w∗ ∈W∗ do
3 label the element position with a unique id;

// Randomly sample a small latency between 0 and T.
4 ts

id ← U(0, T);
5 SendToServer(id, wid) at time tid;

3.4. Restrictive Client Self-Sampling

In this paper, restrictive client self-sampling technology is introduced in Optimal
LDP-FL. In the traditional client self-sampling, each client tosses a coin in each iteration
and participates in the subsequent training process if the coin turns to heads. The data in
clients’ local datasets also participate randomly in local updates with a certain probability.
Since a client decides to participate or not participate locally, the server does not need to
coordinate all clients to achieve LDP:

Definition 3 (Client Self-Sampling Probability). The client self-sampling probability q1 is the
probability of each client’s participation in each iteration, where m clients perform self-sampling
with the probability q1 to determine whether to participate in this iteration. Assuming that x out of
m clients participate in an iteration, then we have q1 = x

m .

Definition 4 (Client Data Sampling Probability). The client data sampling probability q2 is the
probability of data participating in training among the overall dataset D. For any client i in each
iteration, y entries of data are selected from Di to participate in training, assuming that each client
contains r data entries in total, and therefore q2 = xy

mr = q1y
r .

However, in the existing client self-sampling technology, the value of the client self-
sampling probability q1 is roughly set to (0, 1), which causes both theoretical and practical
problems. From a theoretical point of view, the number of participants in federated learn-
ing has a significant impact on the model’s performance. Furthermore, considering the
practical application scenario, where the number of client participants is too small, it
wastes resources, and such circumstances do not conform to the realistic federated scenario.
Therefore, we conducted a thorough study on the range of q1. Wei et al. [40] studied the
relationship between the number of clients participating and the model performance in
detail. Based on this, we drew the following conclusions according to the user self-sampling
scenarios in Theorem 1:

Theorem 1. There is a positive correlation between the number of participants and the convergence.
In other words, the larger the number of participants, the higher the convergence. The global model
accuracy changes with the number of participants as a convex function curve. Its inflection point
occurs when the number of participants approaches the total number of clients.

Proof. Since the convergence of the global model approximates to the optimum when
x → m and q1 = x

m , the convergence of the global model approximates to optimal when
q1 → 1. As q1 = x

m , the relationship between the global model accuracy and q1 is also
convex. To obtain the optimal global model accuracy, the value of q1 should be placed in
(0.5, 1).

We drew the conclusions as follows according to Theorem 1. Based on these theoretical
analysis, we present a restrictive client self-sampling algorithm with a client self-sampling
probability q1 in a specific range of (0.5, 1), as shown in Algorithm 4. According to the
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theorem of parallel composition in DP, increasing the number of participating clients does
not consume the privacy budget. Therefore, Algorithm 4 can acquire optimal convergence
and global accuracy while guaranteeing a consistent privacy level.

• There exists an optimal q1 that renders an optimal performance, since in an FL system
with m clients, there is the optimal number of participating clients x which optimizes
the performance. Therefore, for q1 = x

m , there is an optimal q1 range that guarantees
the best convergence and model accuracy.

• When the number of participants approaches all participants, the performance is
optimal. Therefore, the optimal FL model performance (i.e., convergence and model
accuracy) can be achieved when restricting the optimal q1 range to (0.5, 1).

Algorithm 4: Restrictive Self-Sampling
Input: The set of all clients M;
Output: The set of participants P;

1 k← 0;
2 for mi ∈ M do
3 q← Random(0.5, 1);
4 if Random(0, 1) < q then
5 Pk++ ← ci;
6 return P

4. Utility Analysis
4.1. Privacy Analysis

We prove that the Adaptive-Harmony mechanismM meets the definition of LDP
when the weights take values in the range of [c− r, c + r]:

Theorem 2. Given an arbitrary number w ∈ [c− r, c + r], where c is the center of the range
of values of w and r is the radius of that range, the range is denoted as [c− r, c + r] when the
mechanismM conforms to the definition of ε-LDP.

Both ε and r affect the privacy level, where ε determines how well the data are hidden in
a “crowd” and r determines the size of the “crowd”. Assuming that the true average weight
in each w ∈ W during the iteration is w̄ = 1

n ∑u wu, the LDP mechanism in Equation (10)
implements the average weightM(w) = 1

n ∑uM(wu) for unbiased estimation:

Lemma 1. Algorithm 2 satisfies ε-LDP.

Proof. Let W∗ be the output of this algorithm and w∗ be the only value in W∗ that is not
0. Let W and W ′ be any two tuples and u and u′ be the Bernoulli variables generated
by the input W and W ′ in line 3 of this algorithm. The following proof is for the case
w∗ = c + d · r · eε+1

eε−1 , and the other case is proved by the same reasoning.
According to the algorithm, we have Equation (13):

Pr[W∗ |W]

Pr[W∗ |W ′] =
1/d · Pr[u = 1 |W]

1/d · Pr[u′ = 1 |W ′]

≤ maxW Pr[u = 1 |W]

minW ′ Pr[u′ = 1 |W ′]

=
maxw∈[c−r,c+r]((w− c)/r · (eε − 1) + eε + 1)
minw′∈[c−r,c+r]((w′ − c)/r · (eε − 1) + eε + 1)

= eε

(13)
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4.2. Utility Analysis

Model aggregation is the process of estimating the mean value of the weights. In order
to maximize model utility, the data perturbation mechanism should satisfy two conditions:
unbiasedness and the smallest possible asymptotic error bound. In the following, the
unbiasedness of the Adaptive-Harmony algorithm will be demonstrated.

Let D = {W1, W2, · · · , WN} be the weights of all clients and N be the number of
clients. Each tuple Wi = (wi

1, wi
2, · · · , wi

d) is the weight data of the ith client. Without
loss of generality, the range of each weight is determined as [c− r, c + r], and the mean
estimation involves estimating the weights Wj(j ∈ [1, d]) for N clients (e.g., 1

N ∑N
i=1 wi

j). Let

Ŵi =
(
ŵi

1, ŵi
2, · · · , ŵi

d
)

be the d-dimensional weights after the ith user perturbation. Given
a data perturbation mechanismM, let E

[
ŵj
]

be the mathematical expectation of the output
at input wj. The ε-LDP data perturbation mechanismM is unbiased when it satisfies the
following two equations:

E
[
ŵj
]
= wj (14)

P
[
ŵj ∈ V | w

]
= 1 (15)

As we mentioned above, Equation (14) shows thatM is unbiased, and Equation (15)
shows that the probability of the sum of output values must be one, where P is the output
range ofM:

Lemma 2. Let W∗ be the output of Algorithm 2 given an input d-dimensional model W. Then, for
any j ∈ [d], E

[
w∗j = wj

]
.

Proof.

E
[

w∗j − c

r

]
=Pr

[
w∗j = c + d · r · eε + 1

eε − 1

]
· eε + 1

eε − 1
· d

+ Pr
[

w∗j = c− d · r · eε + 1
eε − 1

]
·
(
− eε + 1

eε − 1
· d
)

+ Pr

[
w∗j − c

r
= 0

]
· 0

=
2
(
wj − c

)
/r · (eε − 1)

2eε − 2

=
wj − c

r

(16)

Lemma 2 proves the unbiasedness of the Adaptive-Harmony algorithm so that the
server can use 1

N ∑N
i=1 wi

j as an unbiased estimator of the wj mean.
The asymptotic error bound of the Adaptive-Harmony algorithm is derived below to

show that the method in this paper has an equivalent asymptotic error bound to that of

Adaptive-Duchi (i.e., O
(√

d log(d/β)

ε
√

n

)
). Lemma 3 provides the accuracy guarantee of our

mechanism:

Lemma 3. For any j ∈ [d], let Z[wj] =
1
n ∑n

i=1(w
∗
j − c)/r and X[wj] =

1
n ∑n

i=1(wj − c)/r.
With at least 1− β probability, we have
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max
j∈[d]
|Z
[
wj
]
− X

[
wj
]
| = O

(√
d log(d/β)

ε
√

n

)
(17)

Proof. First, note that for any i ∈ [d] and any j ∈ [d], the variance of (wj− c)/r− (w∗j − c)/r
is equivalent to Equation (18):

Var

[
w∗j − c

r
−

wj − c
r

]
= Var

[
w∗j − c

r

]

= E

(w∗j − c

r

)2


−
(
E
[

w∗j − c

r

])2

=
1
d

(
eε + 1
eε − 1

· d
)2
−
(wj − c

r

)2

≤
(

eε + 1
eε − 1

)2
· d

(18)

According to Bernstein’s inequality, we have Equation (19):

Pr
[
|Z[wj]− X[wj]| ≥ λ

]
≤ 2 · exp

− nλ2

2
n ∑n

i=1 Var
[
(w∗j − c)/r− (wj − c)/r

]
+ 2

3 λ · eε+1
eε−1 · 2d


= 2 · exp

(
− nλ2

2d · (O(1/ε2) + λ ·O(1/ε))

) (19)

By the union bound, there exists λ = O
(√

d log(d/β)

ε
√

n

)
such that

maxj∈[d]|Z
[
wj
]
− X

[
wj
]
| < λ holds with at least 1− β probability.

On the other hand, we proved the relationship between the global model accuracy
and the number of participating clients in Algorithm 4. In Optimal LDP-FL, it was proven
that the value of the loss function always has a particular functional relationship with the
number of clients participating in the iteration. There was an inflection point in the curve
of the loss function value, which minimized the value of the loss function. This also shows
that the loss function value was the lowest when the participating clients approached the
total number of clients. Therefore, Algorithm 4 set the self-sampling probability q1 within
the range of (0.5, 1), which could make the number of clients participating in the training
closer to the inflection point of this function. Therefore, it could effectively improve the
accuracy of the global model.

In summary, our proposed Optimal LDP-FL framework satisfies ε-LDP. The proposed
Adaptive-Harmony mechanism is unbiased, and its asymptotic error bounds are on par

with existing algorithms, as both are O
(√

d log(d/β)

ε
√

n

)
. However, in every layer W∗i of

W∗ in the Adaptive-Harmony algorithm, there was only one dimension with a non-zero
value. That means the time complexity and communication cost of each layer were reduced
from O(d) to O(1), and the total cost was reduced from O(nd) to O(n). Moreover, the
parameter-shuffling mechanism and client self-sampling technology were adopted to
improve the model’s performance under the same privacy level. Finally, we should also
note that although for a single model, the model parameters after the perturbation were
too large and too sparse compared with those before the perturbation, which were almost
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unusable for the neural network. However, when enough participants uploaded models for
aggregation, the sparse model could be filled with a large number of parameters, and the
deviation could be offset by mean value estimation, thereby restoring the high availability
of the model. Therefore, when the number of clients was large enough, the convergence
speed of our model would not be significantly different from the traditional method.

5. Evaluation
5.1. Experimental Setting

We tested the results of Optimal LDP-FL on the image classification task with a two-
layer CNN and evaluated the global model’s accuracy and time metrics as the utility
indicators. We selected the MNIST dataset [52] and FashionMNIST dataset [53], which
are commonly used in deep learning. Then, we randomly sampled the training and test
sets and distributed them equally to all clients. To ensure the model’s generalization,
the random sampling process followed the independent and identical distribution (i.i.d.)
principle. We set different ranges for the MNIST and Fashion MNIST datasets for the
clipping weights. We chose the following two algorithms for comparison: the non-private
federated averaging (FedAvg) the classic LDP-FL framework (Sun et al. [35]), along with
our proposed framework (Optimal LDP-FL).

5.2. Utility Evaluation
5.2.1. Model Accuracy vs. Number of Clients

To analyze the effect of the number of clients on the accuracy, we designed the ex-
periment shown in Figure 3. Figure 3a,b shows the accuracy performance of different
algorithms on the MNIST and Fashion MNIST datasets, respectively, with the number
of clients. As shown in Figure 3a,b, the FedAvg framework and LDP-FL model accuracy
showed a slight downward trend with the increasing number of clients because the training
set and test set would be directly and equally distributed to each client. The larger the
number of clients, the fewer data each client could obtain, and the model accuracy de-
creased accordingly. As shown in Figure 3a in the MNIST dataset, for Optimal LDP-FL, the
aggregated model was too sparse when the number of clients was small, resulting in lower
global model accuracy. However, as the number of clients increased, the model accuracy
increased back to normal with a slight upward trend, because although a smaller amount
of data broke the accuracy of the local model, at the same time, a more significant number
of clients could provide more local models to the server, which could better offset the effect
of noise on the global model during the aggregation stage. As shown in Figure 3a,b, the
model accuracies of LDP-FL and Optimal LDP-FL were slightly lower than that of FedAvg.
Optimal LDP-FL reached a better model accuracy than LDP-FL, since the reasonable restric-
tion of self-sampling probability increased the number of influential participating clients,
thus effectively improving the accuracy of the global model.

50 100 150 200 250 300
Number of clients

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

FedAvg
LDP-FL
Optimal LDP-FL

(a)

50 100 150 200 250 300
Number of clients

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

FedAvg
LDP-FL
Optimal LDP-FL

(b)

Figure 3. Model accuracy vs. number of clients for different federated learning frameworks on
MNIST and Fashion MNIST datasets: (a) MNIST and (b) Fashion MNIST.
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5.2.2. Model Accuracy vs. Privacy Budget

To analyze the impact of the privacy budget on the accuracy, we compared two LDP-FL
frameworks in Figure 4 on the MNIST and Fashion MNIST datasets with the privacy budget
set to ε ∈ [1, 10] and chose the model accuracy of FedAvg without privacy protection as
the benchmark. In our experiment, the number of clients was fixed at n = 200. The results
show that Optimal LDP-FL could maintain relatively stable accuracy across various privacy
budgets. Note that more complex data and tasks require more privacy budgets, mainly
because complex tasks require complex neural networks with a large number of model
parameters. At the same time, in complex tasks, the range of each model parameter is
also more comprehensive, which leads to more considerable variance in the estimated
model parameters. However, the model accuracy of Optimal LDP-FL on different datasets
was slightly higher than that of LDP-FL. Therefore, the performance of Optimal LDP-FL
was better.
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Figure 4. Model accuracy vs. privacy budget for different federated learning frameworks on MNIST
and Fashion MNIST datasets: (a) MNIST and (b) Fashion MNIST.

5.3. Efficiency Evaluation

To compare the communication costs of the two frameworks, we designed the experi-
ment in Figure 5. The way we measured the communication cost was mainly through the
running time of the program, because the difference in the network traffic consumed by
different frameworks could not be reflected well in the case of a single device simulating
federated learning. As shown in Figure 5a,b, the time consumed by various federated
learning frameworks increased linearly with the number of clients, and the running time
was roughly the same for different datasets. Compared with FedAvg, LDP-FL or Optimal
LDP-FL had data perturbation and a parameter shuffling process. Due to the complex logic
of data perturbation and parameter shuffling, which cannot be computed on a GPU, it
consumed a lot of time. Compared with the LDP-FL mechanism, our proposed Optimal
LDP-FL method saved a lot of time due to its concise data perturbation mechanism. In other
words, our proposed Adaptive-Harmony mechanism could achieve a higher operating
efficiency and lower communication cost under the same conditions.

To sum up, the experiment showed that the model with the highest accuracy was non-
private FedAvg. The algorithm’s accuracy could be effectively improved by restricting the
probability. Our proposed optimal LDP-FL mechanism improved the accuracy performance
to a certain extent. Both frameworks were insensitive to changes in privacy budgets and
could maintain high model accuracy at lower privacy budgets. However, the proposed
Optimal LDP-FL mechanism significantly improved the operating efficiency. Under the
same conditions, it could save more than 40% of the running time. Meanwhile, since
the client sends less data to the server, optimal LDP-FL also consumes significantly less
network traffic and can further save time on slower internet connections.
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Figure 5. Time vs. number of clients for different federated learning frameworks on MNIST and
Fashion MNIST datasets: (a) MNIST and (b) Fashion MNIST.

6. Conclusions

To achieve credible federated learning, we researched the privacy protection of fed-
erated learning and the balance of privacy, model utility, and algorithm efficiency. We
proposed an efficiency-optimized data perturbation mechanism (i.e., Adaptive-Harmony).
It adaptively configures the perturbation parameters, mainly the center and radius of the
weight, for each client and each iteration according to the gradient descent and reduces the
communication cost from each dimension to one dimension. The theoretical analysis and
proof guarantee that our improved data perturbation mechanism is unbiased, convergent,
and has an equivalent asymptotic error bound with the Adaptive-Duchi mechanism. We
also integrated Adaptive-Harmony and privacy amplification into FL to propose a new fed-
erated learning framework (i.e., Optimal LDP-FL). It has been proven that our framework
satisfies ε-LDP. It can avoid privacy leakages caused by server tracking clients through
parameter shuffling. A restrictive self-sampling probability was also proposed which
eliminated the randomness of the self-sampling probability settings in existing studies and
improved the utilization of the federated system. Due to the restrictively self-sampling
and efficient data perturbation, Optimal LDP-FL had good model performance, especially
in terms of computational and communication costs. Model accuracy was also improved
due to the combination of the restrictive client self-sampling technology. Comprehensive
experiments on different datasets showed that our framework performed well in terms of
classification accuracy and improved communication efficiency by 40%.

Our method proposes a restrictive self-sampling probability in the interval (0.5, 1).
However, the compactness of this interval has yet to be verified. In theory, 0.5 is the relaxed
lower bound of our estimate, and the tighter lower bound is an exciting direction for
future research.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial intelligence
FL Federated learning
DP Differential privacy
CDP Centralized differential privacy
LDP Local differential privacy
LDP-FL Federated learning with LDP
FedSGD Federated stochastic gradient descent
LAD Latent Dirichlet allocation
FedAvg Federated averaging
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