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Abstract: Deep-learning-based methods have been widely used in hyperspectral image classification.
In order to solve the problems of the excessive parameters and computational cost of 3D convolution,
and loss of detailed information due to the excessive increase in the receptive field in pursuit of
multi-scale features, this paper proposes a lightweight hybrid convolutional network called the 3D
lightweight receptive control network (LRCNet). The proposed network consists of a 3D depthwise
separable convolutional network and a receptive field control network. The 3D depthwise separable
convolutional network uses the depthwise separable technique to capture the joint features of spatial
and spectral dimensions while reducing the number of computational parameters. The receptive field
control network ensures the extraction of hyperspectral image (HSI) details by controlling the convo-
lution kernel. In order to verify the validity of the proposed method, we test the classification accuracy
of the LRCNet based on three public datasets, which exceeds 99.50% The results show that compare
with state-of-the-art methods, the proposed network has competitive classification performance.

Keywords: image classification; feature extraction; classification accuracy; depthwise separable;
receptive field; LRCNet; hyperspectral image

1. Introduction

Hyperspectral images (HSIs) contain a large amount of spectral and spatial data, which
provide abundant information based on the spectral characteristics of the objects and retain
the overall shape of an object and its association with the surrounding objects [1]. Consid-
ering the characteristics of HSI data, it is important to analyze and extract the spectral and
spatial features. HSI processing technology possesses the capability to satisfy military and
civilian needs, such as medical image processing, agriculture and geological exploration,
and sea resource investigation [2–8]. Consequently, hyperspectral image classification
(HSIC) has become a research hotspot in image processing and remote sensing [9].

In the early works of HSIC, convolutional neural networks (CNNs) were usually used
to extract the features [10–14]. Cheng et al. proposed a simple, effective method in order to
extract hierarchical deep spatial features for HSI classification by exploring the power of
off-the-shelf CNN models [15]. Makantasis et al. exploited a convolutional neural network
to encode pixels’ spectral and spatial information, and a multi-layer perceptron to conduct
the classification task [16]. Many deep neural networks have been developed to handle
HSIC tasks. Jiao et al. applied fully convolutional networks (FCNs) to the HSIC task for
the first time by combining the weighted extracted features and spectral information [17].
Sun et al. introduced a supervised network for better performance and proposed a fully
convolutional segmentation network (FCSN) [18]. Kang et al. believed that the CNN-based
methods are unable to effectively extract the discriminant features and proposed a dual-
path network (DPN) by combining a residual network and dense convolutional network to
perform HSIC [19]. In order to obtain additional neighborhood information, Soucy et al.
proposed the clustering ensemble U-Net (CEU-Net) by combining clustering methods with
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U-Net [20]. Si et al. used DeepLab v3+ technology and a support vector machine (SVM)
classifier for HSI feature extraction and classification recognition [21].

The aforementioned methods perform 2D convolution-based operations. However,
some researchers [22] believe that 2D CNNs cannot effectively extract the features because
they do not consider the correlation information between channels [22]. On the contrary, 3D
convolution effectively combines the spatial and spectral features to improve the accuracy.
Based on a 3D CNN for feature extraction [13], Hamida et al. presented an efficient method
that enables a joint spectral and spatial information process [23]. He et al. proposed a
multi-scale 3D deep convolutional neural network (M3D-DCNN) in order to jointly learn
both 2D multi-scales and 1D spectral features from HSI data [24]. Zhong et al. introduced
additional residual blocks by using 3D convolutional layers and proposed the spectral
–spatial residual network (SSRN) [25]. Roy et al. proposed HybridSN by combining 2D and
3D convolutions to obtain a higher classification accuracy [22]. Zhu et al. proposed the 3D
deep capsule network based on the abundant feature representation capability [26]. Sun
et al. proposed the cubic capsule network (EMAP-Cubic-Caps) in order to overcome the
shortcomings, including the inability to capture fine spatial features, and loss of important
information of PCA dimensionality reduction [27].

Despite the fact that 3D convolution effectively obtains the joint features from spatial
and spectral dimensions, it has its own limitations [22,28,29]. A network that incorporates
3D convolutions has a large number of parameters, leading to a higher computational
cost [22]. In addition, most networks using 3D convolution do not consider the impact
of controlling the receptive field size on the classification accuracy, and they emphasize
expanding the receptive fields to obtain a better performance [30,31]. Actually, due to
the low spatial resolution of HSIs, there is a considerable loss of detail in large receptive
fields [9,32]. Although multiple pooling operations are useful for acquiring multi-scale
features, they also have an adverse effect on the classification accuracy due to the loss of
detailed features, creating confusion among similar category features [31]. However, if
the receptive field is too small, it is not possible to consider the multi-scale features. This
may lead to underfitting in the network. Therefore, a suitable receptive field is essential for
enhancing the network’s classification accuracy.

Recently, researchers have tried to address the above problems. Considering the
low spatial resolution of HSIs, Pan et al. proposed the dilated semantic segmentation
network (DSSNet) [31]. The authors presented a concept for controlling the receptive field
of convolution kernels at 13 × 13 [31]. However, it is difficult to focus on the joint features
of the space and spectrum because DSSNet still extracts features using 2D convolutions. Li
et al. argued that existing networks do not effectively combine 2D and 3D convolutions, so
they alternately used 2D and 3D units to solve the redundancy of the model structure [33].
Although the method proposed by them can reduce the size of the model, it does not
specifically reduce the consumption of 3D convolution. Howard et al. proposed depthwise
separable convolution in order to reduce the number of parameters and computations in
the 2D convolution process. The authors used the proposed convolution in the lightweight
network Mobilenetv1 [34]. Fırat et al. introduced 2D depthwise separable convolution in
HSIC tasks to decrease the computational cost [35]. Sandler et al. upgraded the depthwise
separable convolution and proposed the inverted residual structure [36]. These methods
lessen the number of parameters and computational costs that convolutions introduce.
Additionally, these methods are aimed at 2D convolution instead of 3D convolution. We also
found that in other research fields, researchers have modified and introduced 3D depthwise
separable convolution to reduce the computational cost [37–39]. In order to effectively
obtain the multi-scale information from HSIs, Gong et al. proposed the multi-scale squeeze-
and-excitation pyramid pooling network (MSPN) [28]. The classification accuracy of
this network is affected due to the introduction of a pooling layer without controlling
the size of the receptive field. Although there are solutions available for addressing the
aforementioned issues, it is difficult to resolve the defects.
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From the previous work, two problems can be summarized as follows. First, although
3D convolutions effectively capture the spectral and spatial features, the number of param-
eters and computations introduced during the training process is large [22]. Second, the
spatial resolution of HSIs is usually low and some details are presented only based on a
few pixels [31,32]. It is noteworthy that the details may disappear after multiple pooling
operations, and the lost details cannot be retrieved by up-sampling [40]. If the network is
too deep, it may lose some details during the feature extraction process due to the large
receptive field of the convolution kernel. As a result, the classification accuracy is affected.

For the purpose of solving the above problems, the 3D lightweight receptive control
network (LRCNet) is proposed in this paper. We combine 2D and 3D convolution to
effectively integrate the features from the spatial and spectral dimensions. Next, in order to
lower the computational cost and reduce the number of parameters, we employ depthwise
separable convolution and convert it from 2D to 3D format. In order to reduce the negative
impact of a low spatial resolution, we control the size of the receptive field based on dilated
convolutions. Below is a summary of this work’s contributions:

1. The application of 3D depthwise separable convolution decreases the computational
costs of 3D convolution. Additionally, 3D depthwise convolution can effectively cap-
ture spatial and spectral features, while pointwise convolution can extract information
from adjacent spectral bands, improving the learning ability of the spectral domain.

2. The receptive field control strategy is adopted. To prevent the loss of detailed infor-
mation when learning multi-scale features, the receptive filed is gradually increased
through dilated convolution. Moreover, the receptive field is left unchanged during 3D
convolution to enhance the robustness of the model and lower the risk of overfitting.

3. The experimental results show that the proposed method has a better classification
accuracy in three public datasets, indicating that the model is competitive.

The rest of this paper is organized as follows: The LRCNet architecture and the
functional block are presented in Section 2. The experimental results and analysis are
discussed in Section 3, and the conclusion is presented in Section 4.

2. Methods

The proposed LRCNet’s architecture is depicted in Figure 1. For the input HSI, we
use principal component analysis (PCA) to reduce the dimensions of the data. Next, a 3D
depthwise separable convolutional network comprising three 3D-DW modules is used.
Afterwards, a reshape operation is applied, and the resulting data are used as the input
of the receptive field control network. This network is followed by a fully connected (FC)
module, which consists of three FC layers. Finally, the classification results are obtained.
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2.1. Initial Data Input and Processing

As an HSI contains mixed land categories, there is a similarity between different
categories. Additionally, a significant percentage of spectral bands exhibit redundancy,
which makes it difficult to train models [16]. As shown in Figure 1, in order to reduce
the impact of redundant HSI data during the training process, we use PCA before further
processing [41]. Assume that the initial hyperspectral image is represented by I ∈ <H×W×D,
where I represents the input HSI data, H and W represent the height and width of the
input data, respectively, and D represents the number of bands in the input images. The
data cube after dimension reduction based on PCA is X ∈ <H×W×B, where X represents
the data cube and B represents the number of bands after dimension reduction. Next, we
divide X into equal sizes and obtain P ∈ <S×S×B, where P represents the data cube after
partition, B is the number of bands, and S× S represents the height and width of P.

2.2. 3D Depthwise Separable Convolutional Network

Depthwise separable convolution was first proposed by Howard et al. and used in
Mobilenetv1 [34]. The standard convolution is split into two parts through the depthwise
separable convolution. The first part is the depthwise convolution, which is utilized to extract
the features from each input channel separately. The second part is the pointwise convolution,
which uses 1 × 1 convolution to combine the output of the depthwise convolution.

Compared with the standard convolution, the depthwise separable convolution sig-
nificantly reduces the number of parameters and the computational complexity of the
convolution layer. We assume that the size of the input feature map is H ×W × Cin and
the parameters of a standard convolution layer are K2D × K2D × Cin × Cout, where H and
W represent the height and width of the input data, respectively, Cin denotes the number
of channels in the input feature map, K2D represents the size of the convolution kernel
for performing 2D convolutions, and Cout represents the number of output channels. If
the feature map size is still H ×W, we set CostS as the computational complexity of the
standard 2D convolution. Next, CostS is calculated as follows [34]:

CostS = K2D·K2D·Cin·Cout·H·W (1)

If 2D depthwise separable convolution is adopted, we assume its computational cost
is CostDW . CostDW consists of two parts. The first part denotes the computational cost of
the 2D depthwise convolution, and the second part denotes the computational cost of the
2D pointwise convolution. The costs are represented by CostD and CostP, respectively. In
order to compare the computational costs of the 2D depthwise separable convolution and
standard 2D convolution, we assume that the size of the convolution kernel is K2D, the
numbers of input and output channels are Cin and Cout, respectively, and the height and
width of the input data are H and W, respectively. Next, CostDW is calculated as follows:

CostDW = CostD + CostP
= K2D·K2D·Cin·H·W + Cin·Cout·H·W

(2)

By comparing the computational costs of the two convolutions, the ratio of the compu-
tation is obtained as follows:

CostDW
CostS

= K2D ·K2D ·Cin ·H·W+Cin ·Cout ·H·W
K2D ·K2D ·Cin ·Cout ·H·W

= 1
Cout

+ 1
K2D2

(3)

For convenience, we define the computational cost factor ξ2D as the ratio of the
computational cost of the current 2D convolution to that of the standard 2D convolution,
as shown in Equation (4):

ξ2D =
CostDW
CostS

(4)
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Generally, the values of Cout and K2D are greater than 2; thus, ξ2D < 1 can be obtained
from Equations (3) and (4), which shows that 2D depthwise separable convolution can
effectively decrease the computational costs. If a convolution kernel of size 3 × 3 is
used, the computational cost of 2D depthwise separable convolution can be reduced by
about 9 times as compared with the standard 2D convolution. Therefore, a lightweight
network can be created using depthwise separable convolution, which can also increase
the network’s training effectiveness.

In the 2D depthwise convolution part, the features are extracted separately from each
input channel. If 2D depthwise convolution is adopted, the connection between different
bands of the same pixel is ignored, and the spectral features cannot be learned completely.
Moreover, it is easy to ignore the relationship between spatial and spectral features in
channel-by-channel convolutions. Although pointwise convolution addresses this defect,
there are still many features that cannot be obtained.

Considering the limitations of 2D depthwise separable convolution, we propose
the 3D depthwise separable convolution technique, which can fully extract the spatial–
spectral features and learn joint features from multiple bands to enhance the classification
performance. As each 3D convolution convolves a data block, it is possible to capture the
features of adjacent groups of bands. Figure 2 depicts the structure of the proposed 3D
depthwise separable convolution (3D-DW) module. The proposed technique also splits
the standard 3D convolution into halves, including 3D depthwise convolution and 3D
pointwise convolution.
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In addition, the proposed 3D depthwise separable convolution retains the advantages
of 2D depthwise separable convolutions. Note that the computational complexity of 3D
depthwise separable convolution is lower as compared to the standard 3D convolution.

Assume that the size of the input data cube is Cin × H ×W × B, where Cin is the
number of input channels, B is the number of bands, and H and W are the height and width
of the data cube, respectively. The number of parameters in a standard 3D convolution
is K3D × K3D × K3D × Cin × Cout, where K3D is the size of the 3D convolution kernel and
Cout is the number of output channels. If the space size of the output data cube remains
unchanged, we consider Cost3D−S as the computational cost of the standard 3D convolution.
Cost3D−S is computed as follows:

Cost3D−S = K3D·K3D·K3D·Cin·Cout·B·H·W (5)

If 3D depthwise separable convolution is adopted, we assume its computational cost
is Cost3D−DW . Cost3D−DW consists of two parts, i.e., computational cost of 3D depthwise
convolution, and computational cost of 3D pointwise convolution, which are denoted as
Cost3D−D and Cost3D−P, respectively. To compare the computational costs of 3D depthwise
separable convolution with those of the standard 3D convolution, we assume that the
size of the convolution kernel is K3D, the numbers of input channels and output channels
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are Cin and Cout, respectively, and the height and width of the input data are H and W,
respectively. Next, Cost3D−DW is calculated as follows:

Cost3D−DW = Cost3D−D + Cost3D−P
= K3D·K3D·K3D·Cin·H·W·B + Cin·Cout·H·W·B

(6)

To compare the computational costs of the convolutions, we define the computational
cost factor ξ3D as follows:

ξ3D =
Cost3D−S

Cost3D−DW

= K3D ·K3D ·K3D ·Cin ·H·W·B+Cin ·Cout ·B
K3D ·K3D ·K3D ·Cin ·Cout ·B·H·W

= 1
Cout

+ 1
K3D2

(7)

Since Cout ≥ 2 and K3D ≥ 2, ξ3D < 1 is obtained using Equation (11). Therefore, it is
evident that 3D depthwise separable convolution greatly reduces the computational cost.

Figure 3 shows the difference between the filters of the 3D depthwise separable
convolution and the filters of the standard 3D convolution. Since each input layer channel
is convolved separately in depthwise convolution, it is difficult to efficiently utilize the
feature information from many channels in the same spatial position. The convolution
kernels of the 3D depthwise convolution have three dimensions, so each convolution
kernel extracts features from a group of adjacent bands, effectively avoiding the defects of
depthwise convolution. Additionally, the number of channels is adjusted, and features are
captured again using 3D pointwise convolution. Note that the size of the convolution kernel
is only 1 × 1 × 1. Therefore, as compared with the standard convolution, the 3D depthwise
separable convolution has significantly fewer parameters and a lower computational cost.
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Figure 3. A comparison of a 3D standard convolution kernel and a 3D depthwise separable convolu-
tion kernel.

The 3D depthwise separable convolutional network contains three 3D-DW modules.
After each depthwise convolution and pointwise convolution, batch normalization (BN)
is applied, along with the ReLU activation function. The parameters of the three 3D-DW
modules are different. Since all the bands corresponding to each pixel in the HSI image
collectively reflect the features of a pixel, it is necessary to aggregate the information
from multiple bands as much as possible when extracting the features. Therefore, we set
the size of the convolution kernels for the 3D depthwise convolution to (7, 3, 3), (5, 3, 3),
and (3, 3, 3).
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In addition, the stride and padding parameters of the depthwise convolution and
pointwise convolution are set to 1 and 0, respectively. As a result, the number of channels
can be increased without changing the height and width of the input images. Due to the
low spatial resolution of HSIs, it is easy to lose small features if the data size is compressed
too early. This operation ensures that the receptive field of the convolution kernels does not
increase during the 3D convolution and that spectral and spatial dimension information
can be aggregated.

The essence of 3D depthwise convolution is still 3D convolution. For pixels with
spatial position (x, y, z) in the jth feature map of the ith layer, we assume that the activation
value vx,y,z

i,j is expressed as follows [22]:

vx,y,z
i,j = f (bi,j +

dl−1

∑
τ=1

η

∑
λ=−η

γ

∑
ρ=−γ

δ

∑
σ=−δ

ω
σ,ρ,λ
i,j,τ × vx+σ,y+ρ,z+λ

i−1,j ) (8)

where f represents the ReLU activation function, bi,j represents the bias parameter for the
jth feature map of the ith layer, dl−1 denotes the number of feature maps in the (l − 1)th
layer and the depth of kernel ωi,j for the jth feature map of the ith layer, 2γ + 1 is the width
of the convolution kernel, 2δ + 1 is the height of the convolution kernel, and 2η + 1 is the
depth of the convolution kernel along the spectral dimension.

2.3. Receptive Field Control Network

This network includes a standard 2D convolution layer and two dilated convolution
layers. The BN operation and ReLU activation function are also applied after each con-
volution operation. Since the data format output by the 3D convolution includes four
dimensions, we multiply the number of bands and channels to reshape the data into three
dimensions. However, this operation results in too many channels of data input. To avoid
the impact of data redundancy on the training results, we compress the number of chan-
nels using a standard 2D convolution layer. Two dilated convolution layers are added to
increase the receptive field for obtaining the multi-scale features. The dilation convolution
can also obtain the features between neighbors, which can help to improve the classification
accuracy. The stride parameter of the two dilated convolutions is 1, the padding parameter
is 0, and the dilation rate is 2. The lower side of each 2D convolution layer in Figure 1 also
shows the size of their receptive fields. It can be seen that the size of the final receptive field
is 11× 11.

Assume that the receptive field after convolution is rout, and the receptive field for
introducing the dilated convolution operation is [31]

rout = (rin − 1)·stride + (t× 2 + 1) (9)

where rin represents the size of the receptive field of the upper layer, stride is the stride
parameter of the convolution layer, and t represents the dilation parameter of the dilated
convolution.

2.4. Fully Connected Module

The proposed LRCNet consists of three fully connected (FC) layers. The first FC layer
converts the feature map output by the last dilation convolution layer into a 1D vector
with 256 nodes. Due to the similarity between the classes of HSI data, we further compress
256 nodes into 128 nodes by using an FC layer. As a result, the influence of the feature
location on the classification results is reduced in order to improve the network’s robustness.
To reduce the risk of overfitting, a dropout layer is added after each FC layer. Finally, we
use an FC layer with the number of nodes equal to the number of classes in the dataset.
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Suppose that the 1D vector output by the FC layer is
⇀
A = (a1, a2, a3 . . . ai−1, ai), where

ai represents the ith element of
⇀
A. Next, ai is calculated as follows:

ai = bi +
q

∑
κ=1

(Gκ ·Wi,κ) (10)

where Gκ represents the κth feature map, Wi,κ denotes the weight matrix of the κth feature
map of the ith element, and q denotes the total number of feature maps output by the
receptive field control network.

2.5. Classification Result Output

After the third FC layer, we map the output to (−∞, 0] by using the logsoftmax func-
tion. Since the softmax activation function performs exponential operations, overflow or
underflow may occur during the calculation; therefore, by using the logsoftmax activation
function, problems can be avoided, data stability can be improved, and the operation can
be sped up [31]. Assuming that xh ∈ <1×C is the output vector of pixel h after passing
through the FC layer, where C is the number of object categories in the dataset, the output
is expressed as:

_
y c = log

exh(c)

C
∑

n=1
exh(n)

(11)

where
_
y c represents the possibility that xh belongs to category c, and xh(c) is the cth

element in xh.
The cross-entropy loss is chosen as the loss function. Assuming the loss of classifying

pixel h is lossCE(h, ct), lossCE(h, ct) can be calculated as:

lossCE(h, ct) = −
_
y ct

= − log
exh(ct)

C
∑

n=1
exh(n)

(12)

where ct represents the correct class of pixel h, and xh(ct) is the element in xh that belongs
to class ct.

3. Results
3.1. Dataset Introduction

In this work, we used three public datasets to verify the performance of LRCNet in
HSIC tasks [42], including Indian Pines (IndianP), Pavia University (PaviaU), and Salinas
Valley (SalinasV).

3.2. Experimental Setup

We used a GTX 1080 Ti with 10GB of memory for training the network. The hyperpa-
rameters of LRCNet were set as follows. We set the learning rate to 0.00008, epochs to 100,
and batch size to 128. We divided the input image into small windows of 25× 25 pixels and
reduced the band number to 30. The Adam algorithm was adopted to optimize the learning
rate. The cross-entropy function was selected as the loss function. We reserved 30% of the
data for testing and 70% of the data for training the network. In this paper, we used the
OA, kappa, and AA metrics to evaluate the classification performance. OA represents the
number of correctly classified test samples, AA represents the average accuracy of each
class, and kappa combines the diagonal and non-diagonal terms of the confusion matrix
and is a robust measure of consistency.
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3.3. Classification Results and Analysis

We compared the proposed LRCNet with other methods in detail, including two
classical methods, i.e., SVM and 2D-CNN [16,43], five 3D convolutional networks, i.e.,
3D-CNN, HybridSN, M3D-CNN, SSRN, and 3D-Caps [22–26], a method for controlling
the receptive field named DSSNet [31], and some state-of-the-art methods such as EMAP-
Cubic-Caps (EMAP-C-C), MSPN, and SST-M [27,28,44].

Table 1 shows the OA, AA, and kappa values of the different methods based on the
three public datasets. The proposed LRCNet clearly performs well on the three datasets,
and its classification accuracy has a certain competitiveness. Based on the PaviaU and
SalinasV datasets, the classification accuracy of LRCNet is close to 100. However, the
classification performance obtained using the IndianP dataset reaches the ideal result, and
the AA index score is only 98.40%. Based on the confusion matrix shown in Figure 4, we
find that the proposed LRCNet easily misjudges the Soybean-mintill class as the Corn-notill
class and Grass-pasture class. The additional observations of the ground truth map of
IndianP show that the three classes are very close in the image. We infer that the details of
the three categories are wrongly fused together during feature learning.

Table 1. The classification accuracy comparison for the IndianP, PaviaU, and SalinasV datasets (%).

Method
IndianP PaviaU SalinasV

OA Kappa AA OA Kappa AA OA Kappa AA

SVM [43] 85.30 83.10 79.03 94.36 92.50 92.98 92.95 92.11 94.60
2D-CNN [16] 89.48 87.96 86.14 97.86 97.16 96.55 97.38 97.08 98.84
3D-CNN [23] 91.10 89.98 91.58 96.53 95.51 97.57 93.96 93.32 97.01

M3D-CNN [24] 95.32 94.70 96.41 95.76 94.50 95.08 94.79 94.20 96.25
SSRN [25] 99.19 99.07 98.93 99.90 99.87 99.91 99.98 99.97 99.97

HybridSN [22] 99.56 99.51 98.50 99.85 99.80 99.88 100 100 100
3D-Caps [26] 90.20 90.15 93.00 88.34 84.93 90.14 88.95 87.74 94.35
DSSNet [31] 97.61 97.27 96.31 99.62 99.50 99.22 98.51 98.34 97.56

EMAP-C-C [27] 98.20 96.72 97.95 98.81 98.42 98.49 98.55 98.38 99.08
MSPN [28] 96.09 95.53 91.53 96.56 95.42 94.55 97.00 96.66 97.33
SST-M [44] 99.08 98.95 99.01 99.61 99.48 99.23 / / /

LRCNet 99.60 99.54 98.40 99.97 99.96 99.95 100 100 100
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Figure 4. The confusion matrix obtained using the proposed method by using the IndianP, PaviaU,
and SalinasV datasets in the first, second, and third matrices, respectively.

Figures 5–7 show the classification results obtained using LRCNet, HybridSN, and
DSSNet on three public datasets. The results show that the classification results obtained
with the proposed LRCNet are close to the ground truth.
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In order to further verify the LRCNet’s high classification performance, we performed
a one-sample t-test experiment to study if the mean values of OA, kappa, and AA were
substantially different from those in Table 1. We repeated 10 tests on three datasets, and the
results are shown in Table 2. The results in Tables 1 and 2 do not significantly differ from
one another. It can be inferred that the outstanding classification performance of LRCNet is
not an accidental result.
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Table 2. The classification accuracy of LRCNet repeated experiments on three datasets (%).

Datasets OA Kappa AA

IndianP 99.31 ± 0.34 99.22 ± 0.38 98.40 ± 0.72
PaviaU 99.95 ± 0.04 99.93 ± 0.06 99.92 ± 0.04

SalinasV 99.99 ± 0.01 99.99 ± 0.01 99.98 ± 0.02

Table 3 displays the proposed LRCNet’s classification performance under different
training set partition ratios. IndianP was used in the experiment. It can be found that the
decline in the OA and kappa indicators is small. When the training set only accounts for
10%, the score of the OA indicator also reaches 97.90%. It is evident that the proposed
LRCNet learns most of the spatial and spectral features by using a small number of training
samples.

Table 3. The classification accuracies obtained using a small number of training samples (%).

Proportion of Training Samples OA Kappa AA

30% 99.60 99.54 98.40
20% 98.68 98.50 95.10
10% 97.90 97.60 88.16

Table 4 shows the number of parameters and the computational cost of training
the proposed LRCNet and HybridSN by using the IndianP dataset. It is evident from
Table 4 that the proposed method effectively reduces the number of parameters and the
computational cost of 3D convolution. The LRCNet has only 3,857,330 parameters, and the
floating point operations per second (Flops) is only 95.71MB, which is 152.91MB less than
that of HybridSN. Therefore, it can be verified that the 3D depthwise separable technology
ensures classification accuracy and reduces the calculation cost.

Table 4. The comparison of the number of parameters and computational cost.

Method Params Flops (MB)

LRCNet 3,857,330 95.71
HybridSN 5,122,176 248.62

3.4. Ablation Experiments

In order to confirm the impact of the 3D-DW module on the classification accuracy,
we performed ablation experiments. We contrasted the proposed LRCNet and the two
modified networks in terms of classification performance. In Net1, we replaced the third
3D-DW module with a 2D-DW module. Similarly, in Net2, we replaced the second and
third 3D-DW modules with two 2D-DW modules.

We tested the classification performance of the three networks based on IndianP.
Table 5 displays the results. It is evident from the results that the classification performance
reduces significantly after the 3D-DW module is replaced with the 2D-DW module, and
the AA index decreases the most. When only one 3D-DW module is used, the score of
the AA index is only 84.29%. When the number of 3D-DW modules is increased to 2, the
score of the AA index increases to 93.75%. For some classes with a small number, it is
difficult to learn the corresponding features using the 2D-DW module, and they are often
classified as other classes during classification. Although the scores of the OA and kappa
indicators do not drop considerably, the scores of the AA indicator are much lower. This
shows the validity of the 3D-DW module, which learns the joint features of the spectral
and spatial dimensions.
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Table 5. The classification accuracy obtained using a small number of training samples (%).

Networks Architecture of 3D-DW Part OA Kappa AA

LRCNet three 3D-DW modules 99.60 99.54 98.40

Net1 two 3D-DW modules and one 2D-DW
module 97.16 96.75 93.75

Net2 one 3D-DW module and two 2D-DW
modules 97.09 96.68 84.29

In order to verify the effectiveness of the receptive field control strategy, we also
conducted ablation experiments. We changed the dilation rate of the dilated convolution
in the receptive field control network by using three different values, i.e., 1, 3, and 4. The
corresponding networks are Net3, Net4, and Net5.

We tested the classification accuracies of the three networks and compared them with
LRCNet. The results are presented in Table 6. It is evident from the results that no matter
whether the size of the receptive field continues to increase or decrease, the classification
accuracy decreases by varying degrees. When the receptive field is 7× 7, it is too small to
capture the multi-scale information. Therefore, for smaller categories, the network is unable
to learn all the features and is prone to incorrect classification results. When the receptive
field is increased to 15× 15 and 19× 19, OA decreases to 98.68% and 98.45%, respectively.
It can be inferred that a large receptive field loses some details. More details are lost when
the receptive field is larger. Therefore, the strategy for controlling the receptive field of
LRCNet is successful.

Table 6. The classification accuracy of different receptive fields (%).

Networks Dilation Rate Receptive Field OA Kappa AA

LRCNet 2 11 × 11 99.60 99.54 98.40
Net3 1 7 × 7 99.37 99.28 98.06
Net4 3 15 × 15 98.68 98.49 97.25
Net5 4 19 × 19 98.45 98.24 92.94

4. Conclusions

In this work, we proposed the LRCNet for performing HSIC tasks, which is an end-to-
end framework comprising two functional modules, including a 3D depthwise separable
convolutional network, which is used to reduce the computational cost of the convolution
and the number of parameters, and the receptive field control network, which is used
to control the receptive field for capturing multi-scale features. In the 3D convolutional
network, we propose the 3D depthwise separable convolution technique to decrease the
number of parameters and the computational costs. In the receptive field control network,
we use dilated convolutions to control the receptive field for capturing the multi-scale
features and to avoid the loss of detailed features. In the ablation study, we found that
the strategy of mixing 3D and 2D convolutions and controlling the receptive field can
enhance the classification accuracy. In order to verify the classification performance of the
proposed LRCNet, we tested it on three public datasets and obtained competitive results.
The proposed method can be applied to accurately identify and classify ground objects in
hyperspectral images.
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