
Citation: Ahmad, N.; Sidhu, G.A.S.;

Khan, W.U. A Learning Based

Framework for Enhancing Physical

Layer Security in Cooperative D2D

Network. Electronics 2022, 11, 3981.

https://doi.org/10.3390/

electronics11233981

Academic Editor: Christos J. Bouras

Received: 18 October 2022

Accepted: 25 November 2022

Published: 30 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Learning Based Framework for Enhancing Physical Layer
Security in Cooperative D2D Network
Noman Ahmad 1, Guftaar Ahmad Sardar Sidhu 1,* and Wali Ullah Khan 2

1 Department of Electrical and Computer Engineering, COMSATS University Islamabad, Park Road,
Chak Shahzad, Islamabad 45550, Pakistan

2 Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg,
1511 Luxembourg, Luxembourg

* Correspondence: guftaarahmad@comsats.edu.pk

Abstract: Next-generation wireless communication networks demand high spectrum efficiency
to serve the requirements of an enormous number of devices over a limited available frequency
spectrum. Device-to-device (D2D) communication with spectrum reuse offers a potential solution to
spectrum scarcity. On the other hand, non-orthogonal multiple access (NOMA) as a multiple-access
approach has emerged as a key technology to re-use a spectrum among multiple users. A cellular
users (CUs) can share their spectrum with D2D users (DUs) and in response, the D2D network can
help relay the CU signal to achieve better secrecy from an eavesdropper. Power optimization is
known to be a promising technique to enhance system performance in challenging communication
environments. This work aimed to enhance the secrecy rate of the CUs where the D2D transmitter
(DT) helps in relaying the CU’s message under the amplify and forward (AF) protocol. A power
optimization problem is considered under the quality of service constraints in terms of minimum
rate requirements at the receivers and maximum power budgets at the transmitters. The problem
is a non-convex complex optimization. A deep learning-based solution is proposed and promising
results are obtained in terms of the secrecy rate of CU and the rate of D2D users.

Keywords: device to device; secrecy rate; non orthogonal multiple access; amplify and forward

1. Introduction

To fulfill the exigent spectrum efficiency and capacity requirements of the fifth genera-
tion (5G) wireless communication, device-to-device (D2D) communication, which shares
cellular users (CUs)’ spectrum resources, is proposed [1]. To achieve maximum throughput,
the D2D communication includes several operational modes, including dedicated mode,
reuse mode, and cellular mode [2]. The authors in [3] minimize the total power while
satisfying the D2D communication rate requirements through the formation of a coalition
game among the D2D links for mode selection. In [4], while satisfying the quality of service
(QoS) requirements of CUs, the sum rate of D2D communication is maximized as well.

In addition, spectrum efficiency can be further enhanced using multiple access tech-
niques, i.e., non-orthogonal multiple access (NOMA) [5]. In contrast to orthogonal multiple
access (OMA), NOMA technology uses power allocation and successive interference can-
cellation (SIC) to allow numerous users to send their messages simultaneously over the
same spectrum resources [6,7]. A base station (BS) transmitter sends a mixed signal to nu-
merous users in downlink transmission under NOMA, and each user uses SIC technology
to identify and decode its signal [8].

Spectrum-efficient technologies can be integrated to reap their associated benefits.
Kazmi et al. [9] obtained an enhanced average sum rate with D2D users (DUs) under
the NOMA scheme through optimal user clustering and power control. Although the
implementation of integrated technologies has its associated advantages, it faces security
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issues due to the broadcast nature of wireless communication causing malicious over-
hearing attacks (e.g., financial statements and patients’ data related to healthcare) [10,11].
Furthermore, the complex network architecture of 5G makes high-level encryption ap-
proaches ineffective. Hence, there is a need for less complicated security techniques based
on wireless channels’ physical features [12]. The work in [13] considered an underlay
D2D communication network modeled as a Poisson cluster process (PCP) with random
eavesdroppers’ distribution and derived the expressions for secrecy outage probabilities
(SOPs) and coverage outage probabilities (COPs). Furthermore, solutions based on Tabus
Search (TS) approach and Coalition Game (CG) formation utilizing interference between
DUs and CUs to minimize eavesdropping and to ensure the minimum data rate for both
DUs and CUs are presented in [14,15], respectively. Furthermore, in [16], mutual interfer-
ence amongst CUs and DUs is employed to distract malicious user wiretapping CUs from
downlink communication as well as D2D communication.

1.1. Literature Review

With their respective communication reliability assurance, DUs can help in securing CUs’
communication. In [17], mode selection and spectrum partitioning were explored concerning the
trade-off between the security of CUs and the reliability of DUs. Furthermore, the work in [18]
designates multiple D2D pairs for spectrum sharing to protect CUs’ security. Furthermore, the
authors in [19] considered uncertainties in the channel gains of OFDMA for several CUs and
DUs, where DUs act as a friendly jammer to protect CUs from eavesdropping.

Although the detrimental interference between DUs and CUs is beneficial with regard
to security, increasing the diversity gain of CU links can protect them from eavesdrop-
pers. Based on the information theoretic method, cooperative communication (CC) can
improve CUs’ secrecy, utilizing relay to form virtual multiple inputs and multiple out-
puts (MIMO) [20]. The authors in [21] investigated two different sequential relay selection
schemes to ameliorate the CUs’ security and DUs’ throughput. Furthermore, employing CC
through untrustable full duplex D2D relay uplink communication is secured. Meanwhile,
confidential information and interference are sent towards the relay [22].

In underlay D2D communication, the PLS and sum rate, with minimum processing
delay, interference and noise can be augmented with the introduction of the successive
interference cancellation (SIC) technique for NOMA in D2D pairs [23]. The author in [24]
proposed D2D to act as a relay while employing NOMA for sending CUs’ as well its
own signals; however, an eavesdropper can wiretap both CUs’ and DUs’ data. The DT
ensures reliability and the full duplex cellular receiver (CR) ensures the security of NOMA
transmission through AN injection. Similarly, the work in [25] used a corresponding model,
which utilized beamforming to protect the legitimate user from a jamming signal.

The resource allocation decisions made using conventional optimization techniques
perform satisfactorily in terms of quality of service (QoS). To guarantee rigorous latency
requirements, however, future generations of communication systems look for more advan-
tageous alternatives with minimum computational complexity. Recently, the deep neural
network (DNN) has gained significant attention in various engineering areas such as speech
recognition [26], image processing [27], etc.

Likewise, DNN is utilized in various modern communication systems[28,29]. The
study in [28] covers the use of deep learning (DL) in communication systems for modulation
recognition, channel decoding, and detection. A DNN-based technique is reviewed in [29]
for receiver design and channel information retrieval. An approach employing DNN that is
range-based is described in [30] for the localization of wireless sensor networks submerged
in water. The author of [31] suggested a distributed intelligent-agent technique using belief–
desire intention (BDI) intelligent agents to manage the development of D2D networks.
For underlay D2D communication, transmit power control with the weighted sum rate
maximization loss function is suggested in [32]. Similarly, to minimize the co-channel
interference between DUs and CUs, the work in [33] uses deep reinforcement learning
(DRL) for the selection of available power and channel to maximize spectrum efficiency
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and system capacity while minimizing interference with CUs. However, in [34], the authors
use deep q learning (DQL) to achieve a high D2D throughput. Furthermore, [35] employed
a convolution neural network (CNN) for downlink communication to allocate power and
beamforming to maximize the spectrum efficiency of D2D within QoS and interference
constraints. For a multi-hop D2D communication scenario, the work in [36] developed a
DNN framework to find an outage probability (OP) with a small execution time. Similarly,
D2D communication in mmWave DNN-based relay selection was proposed in [37]. In
their study of conventional downlink OMA transmission, the authors of [38] examined
power allocation for sum-rate maximization. According to the research in [39], DL is used
to increase the total rate of a NOMA-based relay-aided D2D connection. The work in [40]
employed DL to jointly optimize the mode selection and allocate the transmission power
among D2D pairs in cellular networks underlaid by D2D communication. These works
have created DNN-based algorithms for power distribution issues based on system models.

A few works have been reported for the PLS of wireless communication in the literature
using DL. Under the constraint of available power and energy harvesting, the authors
in [41] maximized the minimum secrecy rate for legitimate users for a simultaneous wireless
information and power transfer (SWIPT) system. A cognitive radio (CR) network’s secrecy
rate was also optimized in [42] while being constrained by power and interference leakage.

1.2. Motivation and Problem Statement

In the previous section, for the PLS of cooperative D2D networks, most works uti-
lized traditional optimization techniques for decisions on resource allocation. However,
Future wireless networks seek out better options with the least amount of computational
complexity. Furthermore, the maximization of the secrecy rate of a legitimate user, while
maintaining the reliability of NOMA-enabled cooperative D2D networks underpinning
the BS’s downlink communication have not been further researched. Most previous works
have employed AN against eavesdroppers, which can improve secrecy performance. How-
ever, dedicated power must be allocated for AN injection, which is detrimental concerning
the energy efficiency requirements of future wireless networks.

In this research, we discuss the issue of preserving the quality of service (QoS) of
the D2D user (DU) and enhancing the secrecy performance of the cellular user (CU) in
NOMA-based cooperative D2D communications. The D2D relay passes information from
the base station (BS) to the CU, whereas a direct link between the BS and CU already exists
in our mobile network. However, there is an outside eavesdropper that wishes to wiretap
the data that the BS sends to the CU. On the other hand, CU and D2D receivers (DR) use
SIC technology to decipher their respective data. Consequently, the following are our
key contributions:

• A novel solution based on DNN for optimizing the SC of NOMA-enhanced coopera-
tive D2D communication network is presented. As compared to [41,42], we employed
the DNN framework which considers the total power budget and a minimum rate of
DT along with the channel coefficients to act as input. Hence, the power allocation
decisions are dependent on the power budget of the BS as well as the minimum
rate requirement for D2D communication, making it more practical. Furthermore,
the implementation of BN in the hidden layer provides novelty in the framework of
DNN to accelerate the training time as well as improves the accuracy without using
regularization techniques.

• Previous works have considered the optimization of the secrecy rate of D2D commu-
nication through relay selection or jamming employing artificial noise injection while
only considering the security of D2D communication. However, none focused on the
security of the CU’s downlink communication from BS, which is more vulnerable to
eavesdropping. Contrary to existing works [24,25], we employed the DT working in
spectrum reuse mode, as a NOMA-enhanced relay to maximize the SC of a cellular
user (CU) through diversity gain for downlink communication, in exchange for the
reliability of D2D transmission making the solution more practical.
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2. System Model

A NOMA-enhanced cooperative D2D communication network is considered, as shown
in Figure 1.

Figure 1. System model of NOMA-enhanced cooperative D2D communication network.

A BS broadcasts a confidential message to a CU (Alice). However, an eavesdropper
tries to wiretap the downlink communication. Aiming to hit two birds with one stone, Alice
SC is maximized whereas Bob underlays the spectrum for D2D communication. We assume
that all the nodes only have a single antenna each. The private information transmitted by
BS is received by Bob and Alice during the first hop. Then, in the second hop, Bob amplifies
and forwards the received signal to the D2D receiver (Steve) through superposition coding,
and sends it to Alice and Steve using NOMA. The channel coefficients between Alice and
BS, Bob and BS, eavesdropper and BS, Bob and Alice, and Bob and Steve are denoted by ji,
gi, ki, hi, and fi, respectively, for i = 1, 2, . . . ,N.

Under NOMA, Steve is the strong user due to being closer to Bob and Alice is the
weak user due to being at a larger distance from Bob. In the first time slot, the broadcast
signal received by Bob and Alice is given as:

Yi,bob =
√

pigixi,1 + zi, (1)

Yi,alice =
√

pi jixi,1 + ni, (2)

where pi is the power allocated by BS on the ith channel. xi,1 is a broadcast signal, which is
sent by BS and received by Alice and Bob. Furthermore, zi represents the additive white
Gaussian noise (AWGN) having zero mean and σ2

i variance. Furthermore, ni represents
the AWGN having zero mean and variance σ2

i . In the second time slot, the broadcast
signal destined for Alice is amplified by Bob using AF protocol. To satisfy Alice’s QoS
requirements, the power allocation coefficient α is set so that 1− α > α ensures that the
weak user is allocated more power than the strong user. Then, the received signal at Alice is

Yi,alice,1 = βi(
√

pigixi,1hi + σihi) + wi +
√

αqixi,2hi, (3)
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where βi represents the amplification factor given by βi =

√
qi(1− α)

pig2
i + σ2

i
. According to the

NOMA scheme in [43],
√

αqixi,2hi represents the interference signal of the strong user Bob.
Where hi is the channel between Bob and Alice, wi represents AWGN. Meanwhile, the
eavesdropper also receives a copy of the signal broadcast by BS to Alice in the first time
slot. The signal received at eavesdropper is given by

Yi,eve,1 =
√

pikixi,1 + ui, (4)

where ki represents the channel gain from BS to eavesdropper and ui is the additive white
Gaussian noise having a mean value equal to zero and σ2

i variance. The transmitted signals
are xi,1 and xi,2, respectively. Therefore, the rates at Alice [44], Steve, and eavesdropper can
be written as

Ci,alice,2 =
1
2

log2(1 + γi,alice,2), (5)

Ci,eve,1 =
1
2

log2(1 + γi,eve,1), (6)

Ci,steve,2 =
1
2

log2(1 + γi,steve,2), (7)

where

γi,alice,2 =
pi j2i
σ2 +

piqig2
i h2

i − αpiqig2
i h2

i
qih2

i σ2
i − αqih2

i σ2
i + αpiqig2

i h2
i + αqih2

i σi + pigiσ
2
i + σ4

i
,

denotes the signal-to-noise ratio (SNR) of Alice, while γi,steve,2 =
αqi f 2

i
σ2

i
and γi,eve,1 =

pik2
i

σ2
i

denote received the SNRs by Steve and Eve, respectively. With (4) and (6), the secrecy
rate [45] of AF-based NOMA system for Alice is given by

N

∑
i=1

Ci,s =
N

∑
i=1

[Ci,alice,2 − Ci,eve,1]
+, (8)

where (x)+ = max(x, 0);
We aim to obtain optimal power allocation to BS and Bob to maximize the sum secrecy

rate of Alice subject to the total power budget and NOMA power allocation constraints.
Moreover, the Steve rate is guaranteed through constraints in the optimization.

The optimization problem can be formulated as P1:

maximize
pi ,qi ,a

N

∑
i=1

Ci,s

subject to
N

∑
i=1

pi ≤ PT ,

N

∑
i=1

qi ≤ QT ,

α <
1
2

,

N

∑
i=1

Ci,steve,2 ≥ Cth.

(9)

The first two power allocation constraints make sure that the total power allocated
over all channels is within the maximum available power budget of the corresponding
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nodes. The third constraint ensures successful NOMA transmission. The fourth constraint
guarantees that Steve should achieve a data rate as per its minimum requirements Cth.

3. Proposed Solution

The aforementioned problem P1 is non-convex and, hence, standard convex optimiza-
tion techniques are unable to provide a solution. Traditional non-convex optimization
algorithms take a long time to converge [40]. This in turn is not suitable for 5G communica-
tion systems with fast-changing conditions of channels. To determine an efficient solution
for the problem P1, we appoint a deep learning-based approach.

A feed-forward DNN represents a function F(INk , θ) : RNK → RNo whose input and
output vectors are, respectively, INk ∈ RNk and ONo ∈ RNo . Furthermore, the parameters
of the neural network are defined by θ. More precisely, θr for a rth neuron consists of
θr = {ψr, νr} where ψr and νr are the respective weight and bias value of the neuron. The
architecture of DNN is composed of an input layer, a hidden layer, and an output layer,
as shown in Figure 2. The values of the BS power budget, the D2D receiver’s threshold
rate Rth, and the instantaneous channel gains are given to the input layer as vectors INk
following the suggested DNN framework. Hence, the output vector ONo (i.e., allocated
power) is obtained at the output layer, where θ represents the parameters for the neural
network. More specifically, for the rth neuron, parameter θr is characterized as θr = {ψr, νr},
where the weight is ψr and the bias of the neuron is νr.

A three-DNN model is shown in Figure 2, with an input layer, hidden layer, and
output layer. Each node of the hidden and output layer consists of a sigmoid activation
function given by:

κ(x) =
1

1 + e−x (10)

where the activation function’s input is x. Owing to the nonlinearity of the sigmoid function,
the neural network can be tailored to the objective P1 log2 function’s nonlinearity [46].

Figure 2. DNN model.

During the training phase, as shown in Figure 3, an appropriate response is learned by
the DNN in a supervised fashion from the input and output vectors with a minimizing cost
function of DNN using the Adam optimizer (a variant of stochastic gradient descent), i.e.,

min
ψrυr

E(ψr, υr) =
1
ω

ω

∑
ω=1

(
ONo,i −Opti

)2

in which ω denotes the number of samples. With a large number of samples, deep learning
can approximate an actual solution.
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Figure 3. Training of DNN.

The genetic algorithm (GA) (Algorithm 1) was first employed to solve the optimization
problem P1. For this, initially, the limits of the 36 genes of the chromosome are set according
to the constraints of the optimization problem, and the number of generations is set to
MaxIT. Following this, a parent population P is randomly generated with np chromosomes.
Furthermore, for cross-over, following the cross-over rate, nc parents are randomly selected
from P, whereas nm chromosomes whose values depend on the mutation rate have the
random gene per pair of parent chromosomes exchanged. Additionally, the best current
solution p(1) is locally searched for an optimal solution with a decrease in step size per
generation. Furthermore, the offspring generated thus far are merged in P, and top ns
chromosomes are arranged in descending order for the selection of the best solution P(1).
Finally, after MaxIT generations, the optimal solution S∗ is saved for the maximization of
secrecy capacity under the power budget and NOMA power allocation fairness constraints.

Algorithm 1 GA-based power allocation algorithm

Randomly create the parent population P with size np where
each member has 36 variables having a set limit;
for it = 1 to MaxIT do
Select nc pairs from P;
Pc ← Crossover(nc);
Select and nm individuals from P;
Pm ← Mutation(nm);

Pls ← LocalSearch(P(1));
Decrease step-size for local search (it);
P← Checkconstraints(P);
P← P

⋃
Pc
⋃

Pm
⋃

Pls; f (αi, pi, qi) = ∑12
i=1 Cs,i(αi, pi, qi);

Sort ns individuals in descending order of fitness score;
Find the best solution in the P : Pbest

s ← P(1);
end for
Save the best found solution;
Return S∗

The training process for DNN is provided in depth by Algorithm 2. First, the input
and output of the DNN are applied to the samples produced by GA simulations. The
settings of the DNN parameters, namely the learning, epochs, weights, and biases, are then
initialized. After that, each activation of k hidden layers is subjected to batch normalization
(BN). The Algorithm 3 shows the step for normalization of the mini-batch B using the
mean µB and variance σ2

B of the activation along with the scaling and shifting of activation.
Furthermore, ε is included in mini-batch variance as a constant for stability. On the other
hand, in the DNN, tuning parameters γ and β are optimized during the training to ensure
that the inputs to activation functions are not constrained in a linear regime of nonlinearity.

Furthermore, BN is applied to activations in the form of mini-batches. For a given mini
batch, the parameters of DNN are frozen for inference. Utilizing the mean and variances
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of activation in the mini-batch is part of the back-propagation process. This process is
repeated for all mini-batches and the mean and variance values used in back-propagation
for the minimization of the mean square error are averaged over all mini-batches. The
advantage of the inclusion of BN in the training process is to remove overfitting without
considering the setting of the learning rate and parameter initialization. Furthermore, the
training of DNN has a guarantee of fast convergence. In the testing phase, input parameters
are given to the DNN while maintaining a constant bias and weight value, to recover a
roughly optimal output.

Algorithm 2 Training of DNN

Obtain values of system parameters [ fi, gi, hi, ji, ki, PT , RTH ] and the resultant optimal
solutions

[
p∗i , α∗qi,

(
1− α∗

)
q∗i
]

for i = 1, . . . , 64 from a search heuristic genetic algorithm-
based solution.
Initialize epoch value, weights Ψk, biases υk, learning rate β, number of hidden layers
and number of nodes per hidden layer.
Input Network N with trainable parameters ψk and υk;
subset of activations {x(k)}K

k=1

Output: Batch Normalized network for inference, Nin f
BN

for j = 1 to epoch value do
Ntr

BN ← N //Training BN network
for k = 1. . . K do

Add transformation y(k) = BNγ(k),β(k)(x(k)) to Ntr
BN (Algorithm 3)

Modify each layer in Ntr
BN with input x(k) to take y(k) instead

end for
Train Ntr

BN to optimize parameters ψk and υk ∪ {γ(k), β(k)}K
k=1

Nin f
BN ← Ntr

BN //Inference BN network with frozen parameters
for k = 1. . . K do

for clarity, x ≡ x(k), y ≡ y(k), µ
(k)
B

process multiple training mini batches B each of size m and average over them; E[x]←
EB[µB] Var[x]← m

m− 1
EB[σ

2
B]

in Ni
BNn f , replace the transform y = BNσ,β(x) with y =

γ√
Var[x] + ε

· x + (β−

γE[x]√
Var[x] + ε

)

end for
end for
Save the trained DNN

Algorithm 3 Batch normalization transform applied to activation x over a mini batch

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned γ,β
Output: {yi = BNγβ(xi)}

µB ←
1
m ∑m

i=1 xi //mini-batch mean

σ2
B ←

1
m ∑m

i=1(xi − µB)
2 //mini batch variance

x̂i ←
xi − µB√

σ2
B + ε

//normalize

yi ← γx̂i + β ≡ BNγ,β(xi)
//scale and shift
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4. Results and Discussion

In this section, we assess the results of the proposed DNN-based solution. Using
GA, the secrecy rate maximization problem, which takes into account independently and
identically distributed Rayleigh fading channels, is addressed. For finding an approximate
optimal solution, the cross-over, mutation rate, and the number of generations were attuned
using the trial-and-error approach [47]. Unless otherwise stated, DNN was trained for
10,000 samples, split into a train and test set, with a ratio of 4:1, where the value of the
learning rate is set to be β = 0.001 for the corresponding 10,000 epochs. Furthermore,
every sample consists of input features, i.e., channel gains, the BS’s power budget, and
the minimum data rate requirement for D2D communication, i.e., RSteve. For training
and testing, we employed the jupyter notebook 6.4.6 accompanied by python 3.9.7 and
the tensor flow 2.6.0 library. Additionally, a core i7 computer with a 2.7 GHz processor
and 32 GB of RAM was used to perform the simulations. Finally, the DNN-based power
optimization solution is evaluated against the GA-based opt solution generated in Section 3.
Without sacrificing generality, we assume that σ has a value of 0.01.

Figure 4 shows the curves of the secrecy rate vs the power budget of the BS (PT) for
GA-based solutions under different D2D minimum rate requirements. The average results
are plotted with the GA tuning parameter mutation rate, cross-over rate, and the number
of generations set to the values of 10, 30, and 400, respectively. As per the anticipation, the
secrecy rate curve increases for larger values of PT . Furthermore, the secrecy rate curve for
RSteve = 0 has the best performance concerning the rest of the curves with higher values
of RSteve. However, it can also be observed that the increase in RSteve leads to a decline in
secrecy rate performance. This is due to a subsequent decrease in allocated power by DT
on the OFDM subchannels between DT and CU.

12 13 14 15 16 17 18 19 20

6.4

6.5

6.6

6.7

6.8

6.9

7

7.1

7.2

7.3

7.4

Opt RSteve = 0 Mbps

Opt RSteve = 2 Mbps

Opt RSteve = 4 Mbps

Opt RSteve = 6 Mbps

Opt RSteve = 8 Mbps

Power of BS in dBm

S
ec

re
cy

 R
at

e

Figure 4. Secrecy Rate vs. Total Power Budget of BS: GA-based solution.

We implemented the BN technique in Section 3, as mentioned previously, between
the hidden layer and the output layer. This technique is well known for accelerating the
training of DNN while overcoming the overfitting caused by a large number of neurons
in the hidden layer [48]. Figure 5 shows the graphs of the secrecy rate vs. the PT of the BS
with and without the implementation of BN in a DNN with one hidden layer consisting of
six neurons. It can be observed that DNN with BN had a closer performance to that of opt
as compared to without it.

Furthermore, Figure 6 depicts the convergence of the loss function of DNN, with and
without the implementation of BN. It can be seen that the mean square error (mse) in each
epoch converges much faster towards a value of 0 with the inclusion of BN as compared to
without it.
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Figure 5. Performance comparison of DNN algorithm with and without batch normalization.
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Figure 6. Convergence.

Figure 7 depicts secrecy rate vs. PT plots obtained through the simulation of our
proposed DNN-based solution, where RSteve = 0. As expected, it has the best secrecy rate
performance for the different numbers of neurons in the hidden layer. An increase in the
number of neurons leads to a secrecy rate performance closer to Opt. In Figure 8, while
keeping all the parameters similar to Figure 7, the value of RSteve is increased to 4 Mbps,
which results in a trade-off in-between the secrecy rate and RSteve. However, in Figure 9,
an increase in the value of RSteve to 8 Mbps leads to the worst secrecy rate performance as
compared to the previously mentioned figures.

As far as the prediction time of DNNs with 2, 3, and 6 neurons and one hidden
layer is concerned, Table 1 enlists the corresponding values. Similarly, their respective
training times are 1539.5 s, 1682 s, and 1728.4 s. Hence, considering both the training and
testing time, the average computational times are 1.545 s, 1.7 s, and 1.8 s, individually. The

following equation is used for computational time calculations. ζ =
ψ + ∑

νϕk
k=1

ν
[39]. Where

ψ is the time taken for the DNN to train, φk represents the training time of the kth sample,
and the number of samples is represented by ν. In practical communication systems, the ν

value is large and the term on the left side of the equation
ψ

ψ
will become 0. Hence, S∗ will

converge to the values mentioned in Table 1.

Table 1. Average simulation time for different numbers of neurons in the hidden layer.

Opt DNN, 2 Nodes DNN, 3 Nodes DNN, 6 Nodes

118 s 6.52 s 7.37 s 10.72 s
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Figure 7. Secrecy Rate vs. Power Budget of BS, performance of DNN Algorithm with different
numbers of nodes, where D2D communication threshold rate, RSteve = 0 Mbps.
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Figure 8. Secrecy Rate vs. Power Budget of BS, performance of DNN algorithm with different number
of nodes, where D2D communication threshold rate, RSteve = 4 Mbps.
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Figure 9. Secrecy Rate vs. Power Budget of BS, performance of DNN algorithm with a different
number of nodes, where D2D communication threshold rate, RSteve = 8 Mbps.

5. Conclusions

In this work, we studied the power optimization problem for a NOMA-enhanced
cooperative D2D communication network. The power is allocated at the BS in the first
hop and at the DT in the second hop for the downlink communication from BS to the
CU, where DT acts as an AF relay. The secrecy rate maximization problem under the
constraint of minimum rate assurance for D2D communication and the power budget
of BS and DT resulted in a non-convex problem. We presented a novel BN-DNN-based
supervised learning algorithm with data samples obtained from a GA-based solution.
Extensive simulations were performed to test the performance of the proposed algorithm.
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The simulation results demonstrated that the BN-DNN-based solution was able to have a
performance almost near to the approximate optimal results obtained through GA with
low computational time. It is also observed that the implementation of BN in the hidden
layers greatly enhanced the performance of the proposed solution.
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47. Črepinšek, M.; Liu, S.H.; Mernik, M. Exploration and exploitation in evolutionary algorithms: A survey. ACM Comput. Surv.
(CSUR) 2013, 45, 1–33. [CrossRef]

48. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 448–456.

http://dx.doi.org/10.1109/LCOMM.2012.120612.121947
http://dx.doi.org/10.1109/TSP.2019.2908906
http://dx.doi.org/10.1145/2480741.2480752

	Introduction
	Literature Review
	Motivation and Problem Statement

	System Model
	Proposed Solution
	Results and Discussion
	Conclusions
	References

