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Abstract: Energy management is crucial for various activities in the energy sector, such as effective
exploitation of energy resources, reliability in supply, energy conservation, and integrated energy
systems. In this context, several machine learning and deep learning models have been developed
during the last decades focusing on energy demand and renewable energy source (RES) production
forecasting. However, most forecasting models are trained using batch learning, ingesting all data to
build a model in a static fashion. The main drawback of models trained offline is that they tend to mis-
calibrate after launch. In this study, we propose a novel, integrated online (or incremental) learning
framework that recognizes the dynamic nature of learning environments in energy-related time-
series forecasting problems. The proposed paradigm is applied to the problem of energy forecasting,
resulting in the construction of models that dynamically adapt to new patterns of streaming data.
The evaluation process is realized using a real use case consisting of an energy demand and a
RES production forecasting problem. Experimental results indicate that online learning models
outperform offline learning models by 8.6% in the case of energy demand and by 11.9% in the case
of RES forecasting in terms of mean absolute error (MAE), highlighting the benefits of incremental
learning.

Keywords: incremental learning; machine learning; energy forecasting; renewable energy sources;
energy demand

1. Introduction

Forecasting is a key branch for the proper and smooth operation of the energy indus-
try. As a matter of fact, energy forecasting may refer to various quantities in the energy
environment, the main ones being grid-level or building-level load forecasting [1], energy
production forecasting from renewable energy sources (RES) such as photovoltaic (PV)
parks, wind farms and hybrid systems [2], and energy price forecasting [3], among others.
The generated forecasts are used by different stakeholders in all segments of the energy
sector for planning and operation purposes, both from the aspect of the power system and
from the aspect of a business entity [4]. Moreover, the formation of energy communities
during the last years also intensifies the need for accurate forecasts, as local energy commu-
nities are heavily reliant upon load demand forecasts to schedule energy usage ahead of
time in order to achieve higher self-sufficiency levels [5].

On the one hand, forecasting consumption in buildings is very important to maintain
an optimal level of energy performance [6]. The immense technological progress in terms
of equipment with the evolution of Internet of things (IoT) devices and smart metering
sensors has resulted in a digital transformation of buildings, which can be monitored by
smart energy management systems and digital twin platforms [7,8]. However, the existence
of all this data generated needs to be supported by intelligent algorithms and models

Electronics 2022, 11, 3962. https://doi.org/10.3390/electronics11233962 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11233962
https://doi.org/10.3390/electronics11233962
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1330-6872
https://orcid.org/0000-0001-5488-4006
https://orcid.org/0000-0001-6726-0497
https://orcid.org/0000-0002-3369-0592
https://doi.org/10.3390/electronics11233962
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11233962?type=check_update&version=1


Electronics 2022, 11, 3962 2 of 17

offering prescriptive and descriptive and predictive analytics. In this context, many time-
series forecasting models have been developed for consumption prediction in buildings,
so as to provide continuous monitoring and facilitate the development of data-driven
operational strategies.

On the other hand, RES forecasting is vital for several key activities of the energy
sector. As the penetration of RES and especially wind and solar energy has increased
in the last few years due to decarbonization goals set at the European and global levels
[9], solid forecasting models lead to a reliable integration process of RES production [10].
More specifically, solar-based generated power accounted for 3.6% of the electricity mix
in 2021, remaining the third largest renewable electricity technology behind hydropower
and wind, and this percentage is expected to rapidly increase in the next few years [11].
In this context, forecasting of PV production can be exploited for several purposes and
tasks, including energy management of smart grids, ensuring power unit commitment,
scheduling and dispatching [12], dynamic pricing, and predictive maintenance [13].

In the case of both RES production forecasting and building consumption forecasting,
several studies can be found in the existing literature [14,15]. In general, there are two broad
categories of methods: physical methods and data-driven methods. Physical methods rely
on weather data, such as surface roughness, temperature, relative humidity, and wind
speed, as well as key design parameters of the building or the PV panel, and they use
physical equations to generate the forecasts [16]. On the contrary, data-driven methods
rely on historical data of time series in order to provide predictions, and they are split into
statistical models and machine learning (ML) models, which may be combined with the
development of hybrid models to achieve increased accuracy [17].

Although the breakthrough in model development has been rapid and the predictive
performance of models is constantly improving, there is a significant gap in the field of
ML and DL model development. Most of the studies in the field focus on developing
models in a static fashion. This means that models are trained once using a set of training
data and they are evaluated on another set of hidden data, which is called test set. This is
the most common approach for evaluating the potential of an ML/DL model, but it fails
to address the aspect of online re-training of the model to further improve its accuracy.
This also creates another gap, as there is not any evidence on how the proposed models
would operate as part of a service or application. The process of employing a model in an
intelligent service by applying incremental re-training is a fundamental step towards the
successful deployment in production.

This study aims to address the above-mentioned gap by assessing the impact of apply-
ing incremental (or online) learning to DL models in the energy domain. In this context,
an integrated methodological framework is provided describing the whole data life cycle,
from connection to the smart-metering equipment to the generation of the forecasts through
incrementally trained models in a unified architectural schema. Moreover, the proposed
training procedure is applied to a real use case, i.e., a microgrid in Italy composed of a multi-
story building and a PV system. One of the most popular DL algorithms, the multilayer
perceptron (MLP), is used to develop energy forecasting models for the consumption of the
building and the production of the PV system. The online training framework is compared
with the traditional training process in order to evaluate the benefits of incremental learning
in these time-series forecasting problems.

Apart from this introductory section, the rest of the paper is structured as follows.
Section 2 introduces the problems of RES forecasting and building consumption forecasting
and provides a short literature review on these topics. Section 3 presents the methodological
approach in more detail, presenting the MLP used for developing the models, the basic
principles of incremental learning, and the proposed architecture for incremental learning.
Section 4 includes the experimental application of incremental learning in PV production
and building consumption forecasting. Finally, Section 5 concludes the paper and provides
directions for future research.
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2. Related Work
2.1. RES Forecasting

Over the last decade the number of forecasting methods that have been proposed to
forecast energy generation from RES has significantly increased. This is quite reasonable
considering that RES forecasting is a key analytic service for the support of several decisions
related to microgrid management, flexibility planning, demand-response mechanisms
development, pricing in the energy market, and many others. Most methods have focused
on wing and solar power forecasting, as these two sources are the most cost-efficient,
resulting in their high degree of penetration.

Focusing on PV production forecasting, many popular regression models have been
proposed, including traditional time-series ARIMA models [18], decision-tree-based mod-
els [19], support vector machines (SVM) [20], and artificial neural networks (ANNs) [21],
among others. Recent studies indicate that DL models result in better forecasting accuracy
compared to purely statistical models and simple ML models, but this cannot be gener-
alized for all cases [22]. Moreover, various techniques have also been tested, either with
the aim of increasing forecasting accuracy through ensembling [23] or meta-learning [24],
or with the aim of addressing data scarcity [25].

In terms of determining the most influencing factors for PV production models, liter-
ature has shown that, as expected, global horizontal irradiance (GHI) is the main driver
for estimating the energy produced by a solar panel [26]. However, solar radiation is
not the only factor exploited for predicting PV production, as other variables such as air
temperature, cloud coverage, and humidity also affect the operation of the PV system
through complex nonlinear relationships [27,28]. Apart from these, it is evident that for DL
models, a significant input feature is historical data from the PV production time series.
Finally, another distinction of ML/DL models for PV forecasting is their dependence on
numerical weather predictions (NWP). Short-term forecasting models are usually trained
and used without NWP, while models with longer forecasting horizons require integration
with a weather prediction service [29].

2.2. Building Consumption Forecasting

Buildings account for 40% of the global energy consumption and greenhouse gas
(GHG) emissions, giving them a pivotal role in the recent climate crisis and global warm-
ing [30,31]. Thus, the ability to predict the electrical consumption of a building or a specific
area of the building is extremely useful in the context of the effort made to increase energy
efficiency. However, accurately forecasting a building’s energy consumption is not a sim-
plistic task, as there are a great variety of factors that influence the energy needs such as
the building’s enclosed structure, the occupancy and energy use patterns of the occupants,
and outdoor air temperature and humidity levels [32].

Many studies can be found in the existing literature proposing forecasting methods for
short-term and mid-term consumption forecasting [33]. Some recent specialized reviews for
electrical energy forecasting in buildings have been provided by Amasyali and El-Gohari [34]
and Sun et al. [29]. More specifically, as stated in Section 1, there are two main approaches
for predicting a building’s energy consumption: the physical modeling approach and the
data-driven approach. On the one hand, physical models apply thermodynamic equations
in order to calculate the consumption of an energy subsystem through energy simulations.
Such models are implemented in specific energy simulation tools (e.g., EnergyPlus). Al-
though they can be very accurate, they require specific information as input that is not
always available to the user. On the other hand, data-driven models do not calculate the
consumption via complex equations, but they rely on historical consumption data to extract
usage patterns of the building using statistical or ML/DL-based models [35].

Regarding the second category, several models have been evaluated and tested for
this problem. For example, in [36], the authors compare SVMs and ANNs to predict
a building’s lighting energy consumption, while in [37], the authors compare a purely
statistical auto-regressive model and an SVR to forecast building consumption. Literature
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has not indicated that a specific model outperforms the others as a rule of thumb but, as
in most forecasting tasks, DL models are expected to perform better if there are plenty of
data available.

2.3. The Need for an Incremental Learning Approach

In the last few years, the amount of generated data has been continuously increasing.
The energy sector is not an exception, since the multitude of synchronously installed smart
meters generate a large amount of energy consumption data, RES generation data, grid en-
ergy flows data, and other energy data [38,39]. Furthermore, according to Sarmas et al. [23],
access to open data has been simplified, opening new opportunities for the development of
ML models and data-driven approaches. At the same time, however, the generated data
from all these heterogeneous IoT devices bring new challenges, as well as opportunities to
develop multi-scale systems and data analytics to enhance decision making [40].

A significant dimension of developing intelligent systems is their ability to continuously
learn and adapt to new conditions in their environment. According to Bouchachia et al. [41],
these systems must incorporate adaptable learning algorithms and continuous adaptation
processes, making them capable of responding to new conditions as part of their learning
process, just like any intelligent living organism that learns incrementally and dynamically
from any changes in its environment [42]. In order to enable the above-mentioned behavior,
ML models should be periodically re-trained when new data are available, thus adjusting
their behavior when new patterns are detected.

However, although several studies have focused on developing forecasting models
for energy-related time-series problems, only few of them have focused on the impact
of incremental learning on the forecasting accuracy of the models. One of these studies
has developed an incremental learning algorithm called regression enhanced incremental
self-organizing neural network (RE-SOINN) in order to predict solar irradiance, finding
that the proposed algorithm achieves higher accuracy compared to widely used models
such as the persistence model, the exponential smoothing model, and ANNs [43]. Similarly,
Qiu et al. [44] used incremental learning to increase accuracy in electrical load forecasting.
More specifically, the authors proposed a hybrid incremental learning approach composed
of discrete wavelet transform (DWT), empirical mode decomposition (EMD) and random
vector functional link networks (RVFL), which demonstrated better forecasting accuracy
compared to eight benchmark models.

Summarizing all the above statements, there is a clear gap in evaluating how incre-
mental learning can enhance the accuracy of energy forecasting models, considering both
RES production and building load. More specifically, most of the above-mentioned studies
have focused on comparing different models and algorithms, on evaluating the influence of
different input features, and on testing models on different forecasting horizons. However,
they do not assess the possibility of incrementally training the developed models in order to
further increase their abilities. Thus, the novelty of this study lies in the evaluation of how
continuous periodic re-training boosts ML models for short-term time-series forecasting
problems in the energy sector.

3. Methodological Approach

The studies presented in Section 2 pave the way towards further examining the
impact of incremental learning in forecasting problems. In this section, the methodological
approach is described in detail. Firstly, the MLP model is presented in detail, as it is the
basis of the incremental learning approach. Then, the incremental learning approach is
analyzed along with the proposed architecture.

3.1. Multi-Layer Perceptron

The multi-layer perceptron (MLP) is a feedforward ANN consisting of a system
of interconnected neurons, which are generally referred to as nodes. These nodes are
connected by weights and they are activated by a simple non-linear activation function.
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Since the activation function is non-linear, the MLP is able to provide solutions to non-linear
problems. The architecture of the MLP includes an input layer and an output layer, as well
as one or more hidden layers. Each node of the MLP is connected to every node in the
next layer and the previous layer; thus, it can be considered as a fully connected network
[45]. An example of an MLP network with two hidden layers is presented in Figure 1. As a
general rule, the output of each hidden and output node is determined by the sum of all
the weighted values of the preceding layer’s nodes. Afterwards, the result passes through
the activation function [46]. The training of the MLP determines the values for each weight
and resolves the network’s modeling. It is based on an algorithm called backpropagation,
which computes the gradient of the cost function with respect to the weights of the nodes,
aiming to minimize the cost function by adjusting the network’s weights and biases [47].

Figure 1. The architecture of the MLP, which is a fully connected network that includes an input
layer, two hidden layers, and an output layer.

The main MLP application goal is to find a function f that associates the input nodes in
X to the output vectors in Y(Y = f (X)). In that case, X = [n× k], Y = [n× j], n is number
of training patterns, k the number of input nodes/variables, and j the number of output
nodes/variables. During the process of training the model, the function f is optimized.
The optimization comes by achieving the lowest possible margin in the output given
the input vectors in X to the target values in Y. The function f is based on the adjustable
weights of the network’s nodes, and the matrices X,Y represent the training data. The
ideas behind the method used for the approximation and prediction are very much alike.
The MLP only has one output node, and the dimensions of matrices X and Y in the generic
application are n× k and n× 1, respectively, since one variable is modeled from the input
data. The prediction requires training the model to output the future value of a variable
given an input vector containing earlier values [45].

By selecting a suitable set of connecting weights and transfer functions, it has been
shown that an MLP is able to estimate all the perceptible functions within the input and
output nodes after choosing the appropriate activation/transfer functions and weights [48].
By training the MLP, the network learns the current set of training data, which formulates
the input and related output nodes. During this process of training, the MLP is constantly
introduced to the training data; by adjusting the weights, the optimal input–output map-
ping occurs. The training/learning process of a MLP is performed in a supervised approach,
and when the desired output is not met during a certain input vector, an error signal is
identified as the difference between the desired and real output. During the training pro-
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cess, this error signal is used to establish the adjustable weights in order to reduce the error
signal. As a result, the MLP is able to extrapolate to unknown but related input data when
trained with the appropriate training data [45].

3.2. Incremental Learning

Most traditional ML and DL methods use offline learning, meaning they ingest training
data at once to construct a static model. Incremental learning, or online learning, is a branch
of ML that involves processing incoming data from a data stream continuously and in real
time. Thus, a model can be trained multiple times and can be iteratively re-adjusted to new
data, while still considering older data as well.

Training the model incrementally offers multiple advantages and solves many prob-
lems of the traditional training methods. Incremental learning algorithms can be used to
solve the problem of shortages in computation power. By providing the data in the form
of batches, the model is able to fit to data quickly and efficiently, without the need for a
computationally powerful machine. Additionally, at several occasions, the size of training
data may be unknown or of very large volume, thus making storage impossible. Exploiting
incremental learning, a substantial solution is provided by offering the ability to ingest
data in batches and re-train the model. As a result, the whole dataset does not need to
be stored and can be gradually stockpiled and used. This method is also beneficial when
dealing with streaming data or with data that is provided in small chunks and not in one
unified pile. Furthermore, incremental learning helps to implement a system that gradually
improves in terms of accuracy whenever new examples emerge, offering an appealing
approach to real life problems and actual scenarios, where changes in the data distribution
are continuous and real-time monitoring of environments is important [49].

However, incremental learning brings some difficulties that are important to acknowl-
edge. In the process of training and learning new data, one of the main challenges faced
by incremental learning algorithms is catastrophic forgetting, which is the tendency of an
ANN to completely and abruptly forget previously learned information upon learning
new information [50]. For that reason, the behavior of the new obtained values should be
monitored closely. Some simple solutions include rehearsal and pseudo-rehearsal methods,
i.e., re-training the model on a part of old data when new data is introduced [51]. Another
obstacle of online learning is the concept drift. Concept drift means that the properties
of the target variable, which the model is trying to predict, change over time in unfore-
seen ways. This causes problems because the predictions become less accurate as time
passes. Concept drift can be avoided by using tracking solutions and updating the set
using features of the data in old classes [52].

3.3. Proposed Framework

In this section, we introduce the proposed methodological framework that satisfies
the needs for incrementally training the proposed ML models, as well as the methods used
to implement it. A high-level representation of the incremental learning framework is
presented in Figure 2. Firstly, the framework includes a continuous connection to an MQ
telemetry transport (MQTT) broker for collecting data streams in real time, as well as the
operations of data pre-processing, cleaning, and analysis. The collected data is aggregated
to an hourly format and stored in a database. Thus, data can be loaded from the database
once per day in order to periodically re-train the models. The re-training process requires
only the most recent data and not the whole dataset, thus offering scalability and reduced
training time. The updated models are then stored and can be used directly to produce
hourly day-ahead forecasts. More details on the process of online learning are given in the
following paragraphs.
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Figure 2. The proposed framework for incremental learning.

First, as noted above, a connection to a continuous data stream in real time is required,
which, in our case is provided via an MQTT broker. The MQTT is a lightweight, publish–
subscribe, machine to machine network protocol for message queue/message queuing
service. This software component communicates with smart metering equipment and runs
on a computing machine on-premises or in the cloud. The broker acts as a post office, since
it sends and receives information [53]. Connecting to an MQTT broker is done by using
the broker’s address and credentials. In the next step, all collected data are aggregated
hourly and pre-processed to detect any unusual details. In this use case, the pre-processing
operations focus on missing data and outliers. For instance, when data are missing for
a specific hour, missing values are filled by using a special type of linear interpolation
averaging past days’ data during the same hour. Additionally, since data originate from a
smart meter, some false data may be detected. In order to handle these outliers, a check
is performed, replacing negative or unjustifiably high values. This pre-processing routine
results in a uniform dataset that can be fed to the ML models.

Consequently, data are stored in a time-series database to allow for easy and direct
querying. In this specific use case, a PostgreSQL database is used to store and retrieve the
hourly aggregated information. Thus, data can be loaded on a daily basis to re-train ML
models. Regarding ML models, the “MLPRegressor” model of the sklearn.neural_network
library is used [54]. The proposed framework involves fitting the model to a chunk of
already collected data (one year of data), creating a solid baseline model that has learned
the patterns of a calendar year. After that period, the baseline model is periodically re-
trained once per day using the continuous flow of data previously stored in the time-series
database. Stored data is given to the model on a daily basis in mini-batches of 24 values.
Consequently, the model is re-trained with the most recent data at the end of the day. As a
result of this process, the model keeps adjusting to new data every day and is able to cope
with changes in the data distribution in near real time. At the same time, the stored model
generates day ahead-forecasts by using the most recent records of the database.

Moving to the core of the incremental learning process, it is noteworthy that in order
to perform the training process in an incremental fashion, the function partial_fit() is
used instead of the traditional fit() method. The traditional fit method clears the model
and provides a different initialization of the weights each time used. On the contrary,
the partial_fit method does not completely clear and re-initialize the model, but it updates
it with respect to the data provided [55]. The small portion of data (usually a data stream)
that is provided as input to the partial_fit method is called a mini-batch. Thus, the ability
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to learn incrementally from a mini-batch of instances is key to out-of-core learning, as it
guarantees that at any given time there will be only a small amount of instances in the main
memory [56].

As mentioned above, the algorithm used for evaluating incremental learning is the
MLP regressor of Scikit-Learn. The selection of the MLP regressor was made because of its
ability to support online learning in mini-batches, as compared to several other ML models.
A very important step of the learning process is the selection of optimal model hyper-
parameters, as this offers a significant boost to the accuracy of the ML models. The selected
hyper-parameters for the case of PV production and electricity consumption are presented
in Table 1.

Table 1. The selected hyper-parameters for the PV production and the electricity consumption
forecasting models.

Measure PV Production Electricity Consumption

Number of Hidden Layers 4 3
Neurons per Layer 641,286,432 6,412,832

Learning Rate 0.001 0.001
Solver adam adam

4. Use Case

The incremental learning framework was evaluated on a real case study located in
the distribution grid owned by ASM Terni S.p.A. ASM is a public utility owned by the
municipality of the city of Terni, in Umbria, Italy, operating in the electrical, gas, water, and
waste management sectors. Through its business unit Terni Distributione Elettrica (TDE), it
covers the role of distribution system operator (DSO), managing about 65,000 end users,
700 secondary substations, and three primary substations. Every year TDE supplies electric
users with about 400 GWh, half of which is produced by RES.

In the context of this study, a portion of Terni’s low-voltage electricity grid is used
to test the proposed models, including two secondary substations: a building, namely,
the headquarters of ASM, and a PV production plant of 185 kW. The headquarters of
ASM comprise a 4050 m2 three-story office, a 2790 m2 single-story space, consisting of
technical offices, a computer center, an operation control center, and a 1350 m2 warehouse.
The annual building consumption is about 650 MWh, mainly due to lighting, HVAC,
and powering computers and data servers.

The infrastructure for data sharing consists of a supervisory control and data acqui-
sition (SCADA) system used by ASM specifically for research and innovation activities.
Data are transmitted from the sensors via the MQTT and Modbus protocol to the broker
located in ASM’s headquarters. The sensors communicate in near real-time with a time
resolution of 1 second. Data are then transmitted, again via the MQTT protocol, to an
AVEVA Historian database, which is capable of collecting up to 2 million tags, storing and
aggregating the data, guaranteeing the authenticity of the original data, and preventing
manipulation of historical data. To access this data, the Microsoft SQL Server interface
is used.

4.1. Datasets

Two different dataset were used in the context of this study. The first dataset is a
PV production time series, accompanied by weather data for the respective dates, while
the second dataset includes the consumption of the investigated building. Although raw
PV production and building consumption data comes at irregular time intervals through
the MQTT protocol, appropriate aggregations have been applied transforming the data
resolution to hourly level. On the other hand, weather data (air temperature, humidity,
cloud coverage, and solar radiation) were obtained in hourly resolution from a weather
service. Therefore, all the data used are hourly and have a duration of about 2 years and
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nine months (23616 hours). A visualization of the PV production time series is presented in
Figure 3, while the consumption of the building is visualized in Figure 4.

Figure 3. A visualization of the PV production time series.

Figure 4. A visualization of the building consumption time series.

It is obvious that the PV production time series has both daily and yearly patterns
due to its dependency on solar radiation. Thus, the position of the sun during the day
directly affects the performance of the PV system, and at the same time, seasonal weather
differences affect the production at a yearly level, resulting in much more energy production
during the summer period compared to winter. On the other hand, as seen in Figure 4, the
building consumption time series is more irregular in general, being affected by human
factors. An indicative example is the difference observed between weekdays and weekends
due to the difference in occupancy levels (during the weekends, the offices are closed and
the building is vacant). The same applies for holidays periods.

In general, PV production is stochastic and is mainly influenced by weather conditions.
Consequently, the main features driving the performance of the PV forecasting model are
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seasonal features, such as the hour of the day and the month of the year, as well as weather
features, mainly solar radiation. The correlation plots between the PV production and
the weather features time series are presented in Figure 5. These plots confirm that PV
production is strongly related with solar radiation. On the other hand, the other weather
features, namely air temperature, cloud coverage, and relative humidity, are also related
with PV production, but to a much weaker extent. Considering all these factors and after
experimenting with several combinations of input features, the selected input features for
the PV production forecasting model are the following: (a) air temperature, (b) relative
humidity, (c) global radiation, (d) month of the year, and (e) hour of the day.
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Figure 5. PV capacity factor (%) compared with solar radiation (W/m2), temperature (◦C), cloud
coverage, and wind speed (m/s).

On the other hand, the consumption of the building is not strongly affected by weather
features. As seen in Figure 4, the consumption time series is more stochastic than the
PV production one, as it is influenced mainly by human behavior and use patterns of the
building. Thus, consumption patterns vary during the two years and nine months time span.
Nevertheless, electricity consumption demonstrates strong seasonality patterns. Figure 6
presents the auto-correlation function (ACF) of the electricity consumption time series
across a week (168 h lag). The most interesting insight is that consumption patterns tend to
repeat for the same hour of different days. This has led to using past electricity consumption
data as input features in the consumption forecasting model. Another useful observation is
that similar patterns are detected during weekends and weekdays, highlighting that the
day of the week is another useful feature. With respect to the above insights, the selected
input features for the electricity consumption forecasting model are the following: (a) hour
of the day, (b) day of the week, (c) month of the year. (d) electricity consumption at the
same hour last two days, and (e) electricity consumption at the same hour and same day
last week.
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Figure 6. Auto-correlation function (ACF) of the building’s electricity consumption across the week
(168 h lag).

4.2. Evaluation Metrics

Ensuring that the proposed model can achieve accurate forecasts is a prerequisite for
evaluating the potential of exploiting incremental learning. In this context, the performance
of the MLP models for both PV production and building consumption is evaluated with the
following procedure. The dataset is split into a training dataset and an evaluation dataset
using a 63–37% split to allow the models to learn the patterns of more than a calendar year
(since the month of the year is given as input) and to be evaluated under a whole calendar
year as well. Thus, the first 63% of the dataset (14,856 hourly observations or 619 days) is
used for the training process and the remaining 37% (8760 hourly observations or 365 days)
is used for testing the models.

The accuracy of the models is evaluated by computing the root mean squared error
(RMSE) and the mean absolute error (MAE) of the respective forecasts across the evaluation
period considered. The mathematical formula for these two metrics is presented as follows:

RMSE =

√
1
n

n

∑
t=1

(yt − ŷt)
2 (1)

MAE =
1
n

n

∑
t=1
|yt − ŷt| (2)

where yt is the real value of the PV production or the building consumption time series at
hourly interval t of the evaluation period and ŷt is the produced forecast of the respective
model. Alon with these two evaluation metrics, one additional error metric is considered
in order to make the model evaluation process more complete: the normalized root mean
squared error (NRMSE). NRMSE is an appropriate metric for comparing models of different
scales, connecting the RMSE value with the observed range of the variable [25]. It is
calculated as follows:

NRMSE =
RMSE

ȳ
(3)

where ȳ is the average of the real values.
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4.3. Results and Discussion

In this section, we present the results of the experimental application, comparing
the models that were traditionally trained and the ones that were incrementally trained
in terms of forecasting accuracy based on the above-mentioned error metrics. Results
are presented separately for the case of PV production forecasting and for the case of the
building’s electricity consumption forecasting.

A comparative plot of the predictions of the two forecasting models for PV production
is presented in Figure 7. It can be observed that the MLP model that was periodically
re-trained during the evaluation period is more accurate than the traditionally trained
one. This can be attributed to the ability of the first to better adjust to changes in the data
distribution or possible trends. If, for example, a PV system has some major performance
changes due to anomalies such as PV cell internal damages or cracks in panels, then a
traditional model will not be able to adjust to these changes. On the contrary, an incremen-
tally trained model is capable of detecting such patterns in the PV production time series,
adjusting and thus accurately forecasting even in these difficult cases.
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Figure 7. Comparative plot of the traditional and the online learning frameworks for the PV produc-
tion forecasting task.

In the case of PV production forecasting, the incrementally trained model demon-
strated an MAE index equal to 6.697 KWh, an RMSE index equal to 13.260 KWh and an
NRMSE index equal to 0.527. On the contrary, the traditional ML model demonstrated
an MAE index equal to 7.273 KWh, an RMSE index equal to 13.340 KWh and an NRMSE
index equal to 0.570, as presented in Table 2. Thus, the incrementally trained model out-
performs the traditional one by 8.6% in terms of MAE and 8.1% in terms of RMSE, further
highlighting the importance of periodical re-training in the predictive task of PV forecasting.

Table 2. Error metrics for the PV production forecasting models in the cases of traditional and
incremental learning.

Measure Incremental Learning Traditional Learning

MAE 6.697 7.273
RMSE 13.260 14.340

nRMSE 0.527 0.570
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Considering the case of electricity forecasting in buildings, the impact of re-training
the models is even higher. This could be attributed to the fact that electricity consumption is
more stochastic in nature compared to the mainly weather-driven PV production forecasting
task. This results in a more variant time series influenced by human habits, which, as
expected, is more difficult to predict. In this context, incremental re-training allows for the
model to adapt in real time to changes in the data distribution. The results of the models
for a typical week of the evaluation set are demonstrated in Figure 8.
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Figure 8. Comparative plot of the traditional and the online learning framework for the electricity
consumption forecasting task.

With regard to accuracy metrics, the incrementally trained MLP model outperforms
the traditional MLP, considering both the MAE error index (8.082 KWh for the incremental
one against 9.048 KWh for the traditional one) and the RMSE index (12.391 KWh for
the incremental one against 13.429 KWh for the traditional one), as presented in Table 3.
The respective percentages of improvement are 11.9% for MAE and 8.4% for RMSE.

Table 3. Error metrics for the electricity consumption forecasting models in the cases of traditional
and incremental learning.

Measure Incremental Learning Traditional Learning

MAE 8.082 9.048
RMSE 12.391 13.429

nRMSE 0.214 0.232

It can be observed that the impact of incremental learning is higher on the building
electricity consumption task compared to the PV production forecasting task. As expected,
this can be attributed to the more stochastic nature of the electricity consumption time
series, which is highly influenced by human behavior.

Regarding the benefits in terms of complexity, the incremental learning approach
requires over 600 times less memory space than the standard learning process in the
examined use case. This can be attributed to the incremental learning architecture, which
consumes only a single batch of data each time. In terms of time complexity, the incremental
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models were trained in significantly less time than the traditional ones, although the
training time difference depends on the computational system used.

Consequently, using standard training methods makes storage and manipulation more
difficult and time consuming. On the contrary, training a model incrementally offers the
option to use batches of data. Thus, the required space is reduced, being equal to the size
of a single batch. As for time complexity, incremental training is more efficient and quicker,
since the training time required when using a single batch is significantly lower than the
respective time when using the whole dataset in standard methods.

5. Conclusions

Progress in measurement devices and data engineering has resulted in an abundance of
generated data. In this paper an incremental learning architecture is introduced that is suit-
able for real-time data streams, recognizing the dynamic nature of learning environments
in time-series problems and adjusting to changes in the data distribution. The proposed
incremental learning framework was applied on two separate energy forecasting problems
with streaming data from a real use case in Italy composed of a PV system and a building.
The findings of this study have highlighted the need for incrementally trained ML models,
especially for production, as the incrementally trained models have been found to be more
robust, showing increased accuracy even when the patterns of incoming data change.
Furthermore, except for the increased forecasting accuracy, it should be highlighted that
the proposed approach does not require the whole dataset to be held in memory, contrary
to offline training procedures. Future research should involve evaluating the proposed
framework on other ML and DL models in order to conclude which models are the most
suitable for incremental learning processes. Furthermore, it would be beneficial to evaluate
the framework with datasets of greater volume in order to gain more insight about the
impact of online learning in forecasting accuracy and memory use. Finally, research efforts
could also focus on the periodicity with which the re-training process should take place.
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HVAC Heating, Ventilation, Air-Conditioning
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MAE Mean Absolute Error
ML Machine Learning
MLP Multilayer Perceptron
MQTT MQ Telemetry Transport
NRMSE Normalized Root Mean Squared Error
NWP Numerical Weather Prediction
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RE-SOINN Regression Enhanced Self-organizing Incremental Neural Network
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RMSE Root Mean Squared Error
RVFL Random Vector Functional Link
SCADA Supervisory Control And Data Acquisition
SVM Support Vector Machine
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