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Abstract: Information regarding newly added construction land can be extracted from high-resolution
remote sensing images. The retrieval accuracy of land cover changes across the country has improved,
and the illegal use of land is actively monitored. To address the imbalance between positive and
negative training samples in extracting information regarding newly added construction land, a
method for identifying newly added construction land by weakening the weight of negative samples
was proposed. A focal loss function was used to weaken the negative samples’ weights and improve
the overfitting U-net. Since the two parameters of the focal loss function are not independent of
each other, they need to be selected at the same time. Therefore, this paper developed a formula for
selecting the balance factor α based on a large number of experimental results. First, the GF-2 image
was combined with the historical land change survey data and monitoring vector results to construct
a dataset, and then the training dataset was input into a fully convolutional neural network (CNN)
integrated with feature fusion and a focal loss function. Finally, the accuracy of the trained network
model was verified. To demonstrate the applicability of the method of determining the parameters
of the focal loss function, the validation set was divided into four subsets for accuracy verification.
The experimental results showed that the F1-score of newly added construction land information
extracted by this method reached 0.913, which is 0.078 and 0.033 higher than those of the U-net and
the improved U-net. The parameters obtained by the method proposed in this study achieved the
best results on the four verification sets, which shows that the method for extracting newly added
construction land information and that for selecting parameters have strong applicability.

Keywords: high-resolution remote sensing image; newly added construction land; negative sample
weakening weight; fully convolutional network; focal loss function; parameter selection

1. Introduction

Since the implementation of its reform and opening-up policy, China’s urbanization
and industrialization have continued to advance, and the land use situation has changed
rapidly. In particular, the expansion of construction land has had a very large impact on
high-quality cultivated land, hydrology, and the ecological environment in its regions [1].
Remote sensing technology is real, objective, up-to-date, low cost [2], and has great potential
in the extraction of newly added construction land [3]. With the increase in satellite
loads and the continuous improvement in image resolution, remote sensing data have
been well applied in urban development research. In the current stage, manual visual
interpretation to extract newly added construction land [4] is still the main monitoring
approach, despite problems such as the increasingly high cost of manpower, limited
material and financial resources, and the difficulties in monitoring the land use situation
throughout the whole country in real time. Therefore, artificial intelligence algorithms
can quickly and accurately extract newly added construction land, real-time monitoring
of the construction and demolition of buildings, and timely and accurate detection of
information regarding newly added construction land nationwide in violation of reforms
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and expansions. It plays an increasingly important role in scientific urban planning and
construction, and in promoting sustainable urban development.

Traditional methods of extracting newly added construction land generally use the
watershed method [5]; energy minimization method [6]; homogeneous region recognition
method [7]; clustering extraction urban change algorithm [8]; and morphological housing
index [9] based on the pixel extraction method and object-oriented extraction method.
However, these methods have the following disadvantages: different texture features need
to be selected according to the geographic conditions; and the selection of texture features
often requires complete features.

The emergence of the deep learning method solves the above problems well, and
extracts features mainly through deep learning models. High-level semantic information
features are automatically extracted through convolution pooling and other methods, so as
to obtain higher segmentation accuracy. In the deep learning network, the convolutional
neural network has a better effect on extracting features, which is widely used in tasks such
as semantic segmentation [10–12], object detection [13,14], and object extraction [15–17].
The earliest convolutional neural network was LeNet proposed by reference [18]. Its basic
framework included a convolution layer, pooling layer, and fully connected layer. The
fully convolutional network (FCN) [19] proposed by Long et al. in 2015 deleted the fully
connected layer and realized feature extraction and output results by convolution. Com-
pared with the traditional segmentation algorithm, this method had a higher processing
speed. However, due to its low output resolution [20], the relationship between pixels
was not fully considered, and the results lacked spatial consistency. In the same year,
U-net [21], proposed by Olaf Ronneberger et al., solved the problem of low positioning
accuracy and spatial consistency check of output pixels through codec and feature mapping.
Due to the good classification effect of U-net network, many studies used U-net as the
basic framework and improved it on the basis of it. The reference [22,23] improved the
U-net to extract buildings, and the effect was relatively good. Reference [24] combines the
semantic segmentation network U-Net and the feature extraction network ResNet into an
improved Res-UNet network. The network model is used to classify aerial orthophoto
images of Gaofeng Forest Farm in Nanning, Guangxi, China. The results are better than
the U-Net and ResNet networks. Reference [25] proposed to apply refinement and other
improvements to the U-net network to extract newly added construction land, which had
strong spatial consistency. Reference [26] used the improved U-net network to improve
the expression ability of newly added construction land features, to improve the extraction
accuracy. However, the above methods are prone to over-fitting, which lead to the prob-
lems that the construction land change information cannot be accurately extracted, and the
imbalance of classification samples are not concerned.

In practical applications, the scale of construction land in China has changed little.
The newly added construction land information extraction samples based on deep learn-
ing have particularity, which leads to the imbalance of the proportion of positive and
negative samples. The quality of the samples directly determines the applicability of the
deep learning network model. In the current stage, deep learning supervised classifica-
tion methods are very dependent on samples; hence, a good sample set is essential for
training generalized models. However, in the newly added construction land information
extraction, the number of positive samples is much lower than the number of negative
samples. In the traditional cross-entropy loss function, no specific factor exists to balance
this lack of quantity. In this study, the problems existing in the U-net were improved,
and the focal loss (FL) function [27], which weakens the weight of negative samples and
shifts the focus to positive samples, was used to solve the above sample problem. The
characteristic neural network solved the problem of sample imbalance, and based on a large
number of experiments, summarized the selection of the balance factor α. The accuracy
of four independent datasets was evaluated to prove the applicability of the methods and
parameters selected in this article. Compared with the classical U-net network and the
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improved U-net network model, this method is better than the other two groups in both
extraction speed and extraction accuracy.

2. Newly Added Construction Land Information Extraction Process

Figure 1 shows a technical flow chart of the proposed construction land extraction
method in this chapter. This new extraction method includes four stages: preprocessing
the dataset, training the network model, determining the parameter α, and predicting the
result. The data preprocessing method involves mainly sample enhancement, and the
number of enhanced samples is shown in Section 4. Second, the network model is designed
to extract features and perform images deconvolution, add cavity convolution to increase
the receiving field, uses the limiting factor and balance factor in the FL function to solve the
problem of proportional imbalance between positive and negative samples, and explores
the optimal parameters for the extraction of newly added construction land information
through the setting of each parameter. According to the experimental result regularity,
the mathematical formula for determining the parameter α is obtained. Four independent
verification sets are used to verify the applicability of the mathematical formula for de-
termining the parameter α. By multi-logistics regression analysis of the four verification
sets, the model fit is verified, and the model fit information (significance), goodness of fit
(significance), camouflage R-square and likelihood ratio test are analyzed. The value of
(significance) is analyzed, indicating that the mathematical formula for parameter selection
has mathematical significance. Finally, the verification set is input to the network model
with the optimal parameters, and the newly added construction land extraction results are
obtained. Then, the images of the real and predicted values are used to verify this method.
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Figure 1. Technical flow chart.

As shown in the technical flow chart, the technical process mainly includes four parts:
dataset construction, network model training, FL function parameter determination, and
an accuracy evaluation. The technical methods included in each part are as follows.

The construction of the dataset involves mainly the preparation of training samples,
the enlargement of the dataset, the preprocessing of the experimental data and the estab-
lishment of four independent verification sets. The network model training part mainly
introduces the design of the network structure, including the parameter settings. For the
new construction, the unbalanced ratio of positive to negative training samples is resolved
by the FL function. The FL function parameter setting is carried out mainly by controlling
variables to determine the parameters α and γ of the FL function, and according to the
experimental comparison and analysis results, the method for determining the parameter
α is found through regression analysis. The formula for selecting the parameter α has
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mathematical meaning; the accuracy evaluation primarily involves using four independent
verification sets to verify the values of the parameters α and γ, selecting the network model
of the best parameter, and extracting information regarding newly added construction
land. By comparing with U-net and improved U-net network, the accuracy of the results
extracted from the network is compared, and the conclusion is drawn.

3. Related Algorithm Theory

First, the network used in this study compensates for the lack of information extraction
regarding newly added construction land based on the U-net. Second, the accuracies of
the models trained by the traditional cross-entropy loss function and the FL function are
compared, which proves that the FL function can more effectively solve the imbalance
between positive and negative samples. According to the ratio of the number of positive
and negative pixels of the training samples, the method for selecting the balance factor α
is determined by verification and analysis. Finally, a heterogeneous dataset is selected to
verify the applicability of the training model.

The network structure of this study is symmetrical. The size of the input image is
the same as that of the final output image. The network includes 12 convolutional layers,
three convolutional holes, three pooling layers, and three deconvolutions, while no fully
connected layers are contained. The left side of the network is the classic traditional neural
network structure. The features in the image are gradually extracted by reducing the
dimensions of the input image layer by layer. This part contains eight convolutional layers,
with each pair of convolutional layers as a group. The convolutional kernels are all 3 by
3 in size. From the shallow neural network to the deep neural network, the number of
convolution kernels increases from 32 to 1024. Each group performs merging operations and
dimensionality reduction, and some non-critical feature information is randomly filtered
out. After each convolution operation, this study uses the Swish [28] activation function
instead of the traditional Relu activation function. The Swish function is an activation
function that is better than the Relu function on large datasets. It is a variant formula based
on the Relu function, i.e., the Relu function multiplied by the scaling parameter β:

σ(x) =
x

1 + e−βx (1)

where β is the scaling parameter of the variable x. Generally, the value of the scaling
parameter is 1. When β→∞, then σ(x) = 0 or 1, and the Swish function becomes the Relu
function. Therefore, the Swish function is a smoothing function between the Relu function
and the linear function. The Swish activation function performs better than the traditional
Relu function on a large number of datasets and can prevent gradient dispersion to a certain
extent. After each down-sampling operation, a batch normalization (BN) layer is added to
allow each batch to normalize the characteristics of each layer in the network in batches,
making the characteristics of each layer uniformly distributed, which can accelerate the
model’s convergence speed and improve its generalization ability [29].

The right half of the network consists of three deconvolutional layers and three atrous
convolutional layers [30]. Deconvolution yields deeper abstract features and the corre-
sponding shallow layer in the left half of the local features and uses the channel connection
method to perform element fusion on the input elements to restore their details and spatial
dimensions. In the up-sampling process, the atrous convolution operation is added because
it introduces a new parameter called the “expansion rate” to the convolutional layer. This
parameter mainly controls the image spacing of the convolution kernel process. Expanded
convolution can guarantee a satisfactory feature resolution, which can expand the receiving
field. The formula for calculating the exponent of the extended convolution receiving field
is as follows:

F(I+1) = (2(I+2) − 1)
2

(2)

F is the exponential field of the receptive field, and I is the height and width of
the image (considering only images with equal width and height). Although traditional
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dimensionality reduction methods can effectively reduce the dimensionality of data and
reduce the number of parameter calculation parameters, a reduction in the receptive field
will lead to a reduction in the number of features or loss in the feature extraction process
and result in spatial inconsistencies and poor segmentation accuracy. Atrous convolution
reduces the impact of the pooling layer and the loss of image information [31] to ensure
that the neural network learns more features.

The degraded learning rate algorithm is adopted in this study. The learning rate
is an important hyperparameter in deep learning. A suitable learning rate determines
whether the objective function can converge to a local minimum and when to converge to a
minimum. How to adjust the learning rate is one of the keys to determining whether the
objective function can converge to a local minimum in a suitable time. Therefore, setting the
learning rate as a dynamic parameter is a practical way to find a good learning rate. This
study uses a decay learning rate to set the learning rate. The application of a large learning
rate could rapidly decrease the loss value during the initial training, while in subsequent
trainings, the learning rate will continuously decrease to yield an optimal solution and to
improve the classification accuracy. The specific formula is:

DLR =
LR

DR
GS
DS

(3)

LR is the initial learning rate, DR is the attenuation rate, GS is the total number
of iterations, and DS is the number of attenuations. The initial learning rate is 0.1; as
the number of iterations increases, the learning rate decreases by 0.9 per iteration. The
maximum number of iterations is 83,001, and the batch size is set to 10.

The loss function used in this study is the FL function, which is an extension of the
traditional cross-entropy loss function. The loss function reduces the weight of negative
samples, which can be regarded as positive sample mining. The formula of the traditional
cross-entropy loss function is:

l = −y log y′ − (−y) log(−y′) (4)

y′ is obtained after being processed by a neural network, and its output is a probability
value ranging from 0 to 1. For the traditional loss function, the larger the output probability
value of y′ is, the smaller the loss value.

For negative samples, the smaller the output probability value is, the smaller the loss.
At this time, the loss function is slower in the iterative process of calculating the loss and
cannot even iterate to an optimal solution. Therefore, the negative sample weight of the
parameter γ (with, as in [27], 0 < γ � 5) needs to be limited to ensure that the neural
network focuses on the positive samples. At the same time, a balance factor α is added to
adjust the imbalance between the positive and negative samples. The formula for the FL
function is:

lFL =

{
−α(1− y′)γ log y′, y = 1
−(1− α)yγ log(1− y′), y = 0

(5)

Assuming γ = 2, for a positive sample, a prediction accuracy of 0.95 or more is a
negative sample. In this case, 0.95 squared will be very small, and the loss function will
decrease. A sample loss with a prediction accuracy of 0.3 is relatively large. For negative
samples, the sample with a prediction of 0.1 must be much smaller than the sample with
a prediction of 0.8. When the prediction result is 0.5, the loss value is only reduced by
0.25 times; thus, the network will focus more on the distinction of this positive sample and
therefore reduce the effect of the negative samples.

4. Network Model Construction

The image overlay method is adopted in this study. The original network is suitable
only for an ordinary three-band image input, while the number of image bands is increased
to six after image overlay processing. The number of input channel parameters is not
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suitable for the input operation. No well-trained weight model of the deep learning
method is available to conduct the newly added construction land information extraction
at this stage. Therefore, the initial weight of this research model is obtained by random
initialization. The specific network structure is shown in Figure 2.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 17 
 

 

Assuming γ = 2, for a positive sample, a prediction accuracy of 0.95 or more is a neg-

ative sample. In this case, 0.95 squared will be very small, and the loss function will de-

crease. A sample loss with a prediction accuracy of 0.3 is relatively large. For negative 

samples, the sample with a prediction of 0.1 must be much smaller than the sample with 

a prediction of 0.8. When the prediction result is 0.5, the loss value is only reduced by 0.25 

times; thus, the network will focus more on the distinction of this positive sample and 

therefore reduce the effect of the negative samples. 

4. Network Model Construction 

The image overlay method is adopted in this study. The original network is suitable 

only for an ordinary three-band image input, while the number of image bands is in-

creased to six after image overlay processing. The number of input channel parameters is 

not suitable for the input operation. No well-trained weight model of the deep learning 

method is available to conduct the newly added construction land information extraction 

at this stage. Therefore, the initial weight of this research model is obtained by random 

initialization. The specific network structure is shown in Figure 2. 

Concat

Convolution

Swish

Batch 

Normalization

Max-pool

Deconvolution

Atrous

convolution

Image

overlay

512×512

5
1
2

×
5

1
2

2
5
6

×
2

5
6

1
2
8

×
1

2
8

6
4
×

6
4 6
4
×

6
4

2
5
6

×
2

5
6

1
2
8

×
1

2
8

Softmax

Focal Loss

512×512

Image

overlay
Model

Final

prediction

 

Figure 2. Network Structure. 

This structure contains eight network layers, not including the input layer. For the 

specific network parameter settings of each layer, please refer to the parameter settings in 

each convolutional layer, pooling layer, deconvolutional layer, atrous convolutional layer, 

and fusion layer above. The input layer of the network structure takes the preprocessed 

6-band image as input and enters it into the improved U-net model. The size of the image 

is 512 × 512 × 6. The initial weight is a tensor of 3 × 3 × 6 × 16. The first four layers of the 

network structure have the same parameter settings as in Chapter 3, including two con-

volutional layers and a maximum pooling layer. The first convolution operation uses 16 3 

× 3 volumes of the product core, and the second convolution operation uses 32 3 × 3 con-

volutional kernels. The Swish activation function is added after each convolution opera-

tion. After the second activation function is utilized, the maximum pooling layer is used, 

the filter size is 2 × 2, and zero padding is applied. The BN layer is added after the pooling 

layer. The last four layers of the network structure are the deconvolutional layer, the ten-

sor stitching layer, the convolutional layer and the atrous convolutional layer. The decon-

volutional layer restores the image after the pooling operation of the previous layer to the 

size before the pooling operation of the previous layer. The tensor stitching layer is used 

Figure 2. Network Structure.

This structure contains eight network layers, not including the input layer. For the specific
network parameter settings of each layer, please refer to the parameter settings in each convolu-
tional layer, pooling layer, deconvolutional layer, atrous convolutional layer, and fusion layer
above. The input layer of the network structure takes the preprocessed 6-band image as input
and enters it into the improved U-net model. The size of the image is 512 × 512 × 6. The initial
weight is a tensor of 3× 3× 6× 16. The first four layers of the network structure have the same
parameter settings as in Chapter 3, including two convolutional layers and a maximum pooling
layer. The first convolution operation uses 16 3× 3 volumes of the product core, and the second
convolution operation uses 32 3 × 3 convolutional kernels. The Swish activation function is
added after each convolution operation. After the second activation function is utilized, the
maximum pooling layer is used, the filter size is 2 × 2, and zero padding is applied. The BN
layer is added after the pooling layer. The last four layers of the network structure are the decon-
volutional layer, the tensor stitching layer, the convolutional layer and the atrous convolutional
layer. The deconvolutional layer restores the image after the pooling operation of the previous
layer to the size before the pooling operation of the previous layer. The tensor stitching layer is
used mainly to stitch the feature tensor of the deconvolved image, the corresponding contracted
feature tensor, and the tensor of the prediction result. The convolution operation uses 512 3 × 3
convolutional kernels. The atrous convolution operation uses 256 3 × 3 convolutional kernels,
with an expansion rate of 2 and zero padding. The Swish activation function is added after
the convolution and atrous convolution operations, and the BN layer is added after the atrous
convolution. Used for the prediction of the next layer and the calculation of the loss value of
the loss function, the eighth layer of the network structure contains a convolutional layer to
extract the changes in newly added construction land. Two convolutional kernels of size 1 × 1
are included. The number of convolutional kernels is based on the classification category to
obtain a map of the new increase in construction land information.

The loss function of the method in this chapter is the FL function. The parameter
settings of this function are detailed in Section 6.
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5. Data Collection and Processing

The data used in this research were collected by the Land Use Change Surveying
project of the Liaoning and Shanxi provinces in 2015 and 2017 and include the remote
sensing image data of the GF-2 satellite. The resolution of the GF-2 satellite is 1 m, with
three bands, and the bit depth is 24 bits, covering hundreds of square kilometers in the
Liaoning and Shanxi provinces. The data used in this experiment come from the national
annual land use change survey project. The land use change survey project is an annual
update based on the results of the national land survey organized and implemented by
the Ministry of Natural Resources. The results of remote sensing monitoring provide
basic data for local land change surveys and provide a reference for the country to carry
out the authenticity audit of land change survey data. The monitoring results also play
an important role in land supervision, land planning, land supervision and other works.
Therefore, the research on the automatic extraction method of newly added construction
land based on the results of this project can well meet the needs of the country and play
a research value. The main results of the project are divided into image data and newly
added construction land vector results data. In the newly added construction land results
data, there are MDB database files, etc. The database files contain urban boundary vector
data, built-up area vector data, P-spot vector data and newly added construction land
vector data. The newly added construction land vector data is the ground-truth lable in
this chapter.

The dataset was in TIF format, and the real values were vector data. Therefore, the
rasterization operation was applied to process the vector data into a single-band true
label, which was then processed into a recognizable format by using the tool embedded in
raster in ArcGIS. Figure 3 shows some newly added construction land information labels.
The newly added construction land in Figure 3 includes newly added construction land,
new land for roads, illegal expansion of building land, new hydraulic construction land,
new ground-breaking land and new photovoltaic land. In each real label, the white area
represents the changed area, and the black area represents the unchanged area. In the
experimental dataset, images were cut out, and samples of newly added construction land
were selected from high-resolution images combined with survey data of land use change
as the dataset. After removing the original data, 4328 images were produced, with a size of
512 × 512 each. The dataset was divided into a training dataset and a test dataset with a
proportion slightly greater than 9:1. The test data exceeded 10% of the total sample [32],
which met the required sample selection proportion.
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In the dataset of this study, there are fewer road samples and smaller changing features.
Although the number of building land samples is large, some areas with small changes in
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the characteristics of building land are not easy to be identified. To prevent underfitting
due to the small amount of data and enhance the generalization ability of the model, in
this study, a series of operations, including translation and rotation [33], were applied
to the road samples and construction land samples. The newly added dataset contained
5394 images, while the sample expansion operation was not applied to either the training
or test dataset. The expanded training dataset is shown in Figure 4.
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6. Parameter Determination of the Focal Loss Function and Analysis of
Experimental Result
6.1. Parameter Determination of Focal Loss Function
6.1.1. Determination of the Parameter α

In this paper, the balance factor and limiting factor of the focus loss function are used
to balance the weight of positive and negative samples. For positive samples, negative
samples with prediction accuracy above 0.95 have little effect on the loss value of the loss
function, while negative samples with prediction accuracy below 0.3 have relatively large
loss value. For negative samples, a 0.1 forecast must have a much smaller sample loss than
a 0.8 forecast. When the prediction result is 0.5, the loss value is only reduced by 0.25 times,
which will make the network pay more attention to the distinction of this positive sample,
thus reducing the impact of negative samples. This method can be applied to all samples,
which not only solves the time-consuming and laborious problem of screening samples,
but also ensures the spatial range of the original samples and the feature expression ability
of the model.

This experiment used TensorFlow 1.12.0 as the development framework, and the
computer hardware configuration was an Nvidia Titan Xp (12 G). The network training
took approximately 28 h. The training accuracy rate on the dataset created in this article
was 99.7%. To explore the optimal parameters of the FL function for the extraction of newly
added construction land information, four models were trained. The parameter settings
and specific accuracy evaluations are shown in Table 1.

Table 1. The value of α when γ = 2.

Focal Loss
Function

Parameter Setting

Change Area
F1-Score

Unchanged Area
F1-Score Kappa

α = 0.1 0.895 0.993 0.897
α = 0.2 0.900 0.993 0.902
α = 0.25 0.871 0.992 0.869



Electronics 2022, 11, 3959 9 of 17

In [27], the α parameter was concluded to be one that controls the sample weight. As
α decreases, the weight of each negative sample decreases accordingly within a relatively
stable range. The two parameters α and γ affect each other and must be selected at the same
time. Generally, owing to the relationship between the two parameters, when α increases
slightly, γ also increases (in [27], the experiments with α = 0.25 and γ = 2 had the best effect).
Therefore, this study first defined the value of the parameter α when γ = 2. From the above
accuracy evaluation, when γ = 2, the F1-score and Kappa coefficient of the change area
increase with decreasing α.

Because α controls the proportion of positive to negative samples, the value of α is
the ratio of the total number of pixels in the positive samples of the training dataset to the
total number of pixels in the negative samples. To verify this conclusion, this study further
conducted verification experiments. The ratio of the number of positive to negative total
pixels in this experimental training dataset was approximately equal to 0.05. To investigate
whether α = 0.05 and γ = 2 are the optimal solutions, three models of α = 0.04, 0.05, and
0.06 were selected to verify the experiment. The specific accuracy evaluation is shown
in Table 2.

Table 2. Accuracy evaluation of the α model for determining parameters.

Focal Loss
Function

Parameter Setting

Change Area
F1-Score

Unchanged Area
F1-Score Kappa

α = 0.04 0.885 0.995 0.888
α = 0.05 0.912 0.996 0.913
α = 0.06 0.885 0.995 0.888

From the accuracy evaluation in Table 2, when α = 0.04 and α = 0.06, the F1-scores of
the two model change regions are almost the same as the Kappa coefficient. When α = 0.05
and γ = 2, the F1-score and Kappa coefficient of the change area reach the maximum
value of the interval, indicating that α = 0.05 and γ = 2 yield the best result in this interval.
However, since the two parameters are not independent of each other, the value of α needs
to be controlled to determine the value of γ.

6.1.2. Determination of the Parameter γ

Because the parameters α and γ are not independent of each other, the two parameters
need to be selected at the same time. Therefore, this study chooses to train the model for
when (1) α = 0.05, γ = 1; (2) α = 0.05, γ = 2; (3) α = 0.05, γ = 3; (4) α = 0.05, γ = 5; (5) α = 0.05,
γ = 1; and (6) α = 0.1, γ = 3. The specific accuracy evaluation is shown in Table 3.

Table 3. Accuracy evaluation of the γ model for determining parameters.

Focal Loss
Function

Parameter Settings

Change Area
F1-Score

Unchanged Area
F1-Score Kappa

α = 0.05, γ = 1 0.774 0.993 0.761
α = 0.05, γ = 2 0.912 0.996 0.913
α = 0.05, γ = 3 0.881 0.992 0.882

From the above table, when α = 0.05 and γ ≥ 2, the value of the F1-score and the
Kappa coefficient of the change area decrease as γ increases. Therefore, when α = 0.05 and
γ = 2, the F1-score and Kappa coefficient of the change area are the highest. Considering
that α also increases with increasing γ, to determine the optimal parameters, the values of
α and γ were increased to 0.1 and 3, respectively, at the same time in this experiment.

As indicated in the above table, the F1-score and Kappa coefficient of the model change
area with α = 0.1 and γ = 3 were both 0.01 higher than the highest F1-score and Kappa
coefficient of other parameters but decreased by 0.11 and 0.10 compared with the optimal
parameters. Therefore, the network model has the highest accuracy when α = 0.05 and
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γ = 2. However, since these two parameters are the optimal solutions for a validation set,
to explore their applicability, four independent validation sets were also adopted in this
study to verify the applicability of the parameter.

6.2. Experimental Data Analysis
6.2.1. Research on the Applicability of the Focal Loss Function

In this study, four independent validation sets, i.e., validation set 1, validation set
2, validation set 3, and validation set 4, were used for accuracy validation. The specific
verification results are shown in Table 4.

Table 4. Parameter setting and accuracy evaluation.

Focal Loss Function
Parameter Setting

Validation Set 1 Validation Set 2 Validation Set 3 Validation Set 4

F1-Score Kappa F1-Score Kappa F1-Score Kappa F1-Score Kappa

α = 0.1, γ = 2 0.930 0.939 0.786 0.770 0.800 0.787 0.906 0.904
α = 0.2, γ = 2 0.944 0.935 0.801 0.784 0.791 0.778 0.932 0.926

α = 0.25, γ = 2 0.935 0.923 0.820 0.804 0.719 0.706 0.893 0.886
α = 0.3, γ = 2 0.905 0.892 0.777 0.759 0.748 0.736 0.870 0.862

α = 0.04, γ = 2 0.943 0.944 0.818 0.800 0.764 0.743 0.922 0.912
α = 0.05, γ = 2 0.962 0.952 0.829 0.814 0.806 0.794 0.944 0.940
α = 0.06, γ = 2 0.951 0.93 0.809 0.791 0.768 0.749 0.915 0.900
α = 0.05, γ = 1 0.827 0.812 0.705 0.684 0.671 0.663 0.793 0.777
α = 0.05, γ = 3 0.934 0.922 0.809 0.789 0.783 0.769 0.900 0.893
α = 0.05, γ = 5 0.923 0.909 0.780 0.760 0.772 0.757 0.891 0.883
α = 0.1, γ = 3 0.940 0.941 0.804 0.794 0.786 0.780 0.935 0.928

As shown in the above table and the experimental results, the highest accuracies are
reached in all verification sets when α = 0.05 and γ = 2. Therefore, the ratio of the total
number of pixels of the positive samples to the total number of pixels of the negative
samples in the training dataset can be taken as the value of α. Since the value of α in this
experiment is 0.05, the value of γ also decreases as α decreases. Therefore, the value of γ in
these experimental data is 2. The formula for determining α is shown in Formula (6):

α = (
m,n

∑
i=0,j=0

Pw
i,j)/(

m,n

∑
i=0,j=0

Pb
i,j) (6)

where m and n are the length and width of the image, i and j are the pixels of the (i, j)
sample, pw is a positive sample pixel, and pb is a negative sample pixel. Regression analysis
of the influence of parameters α and γ on the precision.

Formula (6) is not supported by the corresponding mathematical theory. Thus, regres-
sion analysis of the parameters α and γ on the four verification sets and of the extraction
accuracy is conducted below, and the curve diagram used to fit the values and accuracy of
the two parameters are shown in Figures 5–8.
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From the above Figure, a higher brightness of yellow means a higher accuracy. In
verification sets 1, 3 and 4, the yellow highlights are concentrated within 0 < α < 0.1 and
1 < γ < 3, which shows that the two parameters have the highest accuracy within these two
intervals. In verification set 2, the yellow highlights are concentrated within 0 < α < 0.1,
1 < γ < 3 and 0.2 < α < 0.3, 1 < γ < 3. However, from Table 4, when 0 < α < 0.1 and 1 < γ < 3,
the F1-score and Kappa coefficient are both higher than 0.2 < α < 0.4.

From the trend of accuracy change in the above Figs., the two parameters are not
linearly related to accuracy. Therefore, the regression algorithm uses multiple logistic re-
gression analysis. In this multiple regression analysis, parameters α and γ are independent
variables, and the F1-score and Kappa coefficient are dependent variables. The specific
analysis results are shown in Table 5.

Table 5. Multivariate logistic regression analysis of two parameters and their accuracy on the four
verification sets.

Parameter
Model Fitting

Information (Sig)

Goodness of Fit
(Sig) Pseudo R-Squared Likelihood Ratio Test

(Sig)
Pearson Deviation Cox Negorco McFadden α γ

F1-score of
verification set 1 0.000 1.000 1.000 0.992 1.000 1.000 0.001 0.179

Kappa of
verification set 1 0.000 1.000 1.000 0.992 1.000 1.000 0.001 0.179

F1-score of
verification set 2 0.000 1.000 1.000 0.992 1.000 1.000 0.001 0.179

Kappa of
verification set 2 0.000 1.000 1.000 0.992 1.000 1.000 0.001 0.179

F1-score of
verification set 3 0.000 1.000 1.000 0.992 1.000 1.000 0.001 0.179

Kappa of
verification set 3 0.000 1.000 1.000 0.992 1.000 1.000 0.001 0.179

F1-score of
verification set 4 0.000 1.000 1.000 0.992 1.000 1.000 0.001 0.179

Kappa of
verification set 4 0.000 1.000 1.000 0.992 1.000 1.000 0.001 0.179

From the above table, the F1-score of the four verification sets and the Kappa coefficient
in multivariate logistics regression, the values of the model fitting information (significance),
goodness of fit (significance), camouflage R-squared and likelihood ratio test (significance)
are all equal because the results extracted on the four verification sets are all extracted under
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the same model. The statistical meanings represented by the values of each parameter are
analyzed in detail below.

(1) Model fitting information (Sig)

First, the values of the model fitting information (significance) are all 0. The signifi-
cance judgement condition is that the significance value is less than 0.05, which means that
the model is statistically meaningful and has passed the test;

(2) Goodness of fit (Sig)

Second, the Pearson chi-square and deviation in the significance of goodness of fit are
closer to 1, which indicates that the original hypothetical model can fit the data well, with
a high probability. Thus, the original hypothesis is valid, and the model fits the original
data well;

(3) Pseudo R-squared

The closer the values of the three pseudo R-squares are to 1, the better the fit of the
model. The Cox value of the pseudo R-squared in this chapter is 0.992, and the values
of Negorco and McFadden are both 1. Thus, the model can explain the variation in the
original variables very well, and the fit is very good;

(4) Likelihood ratio test (Sig)

In the likelihood ratio test, the significance of α is 0.001 < 0.05, and the significance of
γ is 0.179 > 0.05, indicating that α has a significant effect on the construction of the model.
Because of the mathematical formula for the value of α in this chapter, the significance
value of α above also shows that it is of mathematical significance to study the value of α in
this model.

By comparing the precision of the training model after each parameter is selected and
through regression analysis of the precision, this study concludes that studying the value
formula of α is of mathematical significance and that the original hypothesis model holds.

6.2.2. Comparative Analysis of Experiments

In this study, the U-net, improved U-net, and improved U-Net with the FL function
were compared for accuracy analysis. The analysis results are shown in Table 6.

Table 6. Accuracy evaluation of different networks.

Network Model
Category

U-Net Improved U-Net Method of This Article

F1-Sorce Kappa F1-Score Kappa F1-Sorce Kappa

Change area 0.834
0.845

0.879
0.887

0.912
0.913Unchanged area 0.971 0.991 0.996

From the table, the F1 score of the method in this paper is improved by 0.05 compared
with the unchanged area of the U-net. For sensitive change regions, the F1-score is increased
by 0.078, and the Kappa coefficient is increased by 0.068. Compared with the improved
U-net (where the loss function is the cross-entropy loss function), the F1-score of the
unchanged region is increased by 0.05. For sensitive change areas, the F1-score is increased
by 0.033, and the Kappa coefficient is increased by 0.026. According to the provision of
the score rate of the Kappa coefficient, a Kappa coefficient greater than 0.8 means that the
classification effect is almost consistent. The Kappa coefficient of this research reaches
0.913, which explicitly indicates its feasibility. However, due to the limitation of computer
performance, the edge segmentation still needs to be strengthened. Some results of the
newly added construction land information extraction are presented in Figure 9.
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The Figure above reveals that the U-net does not perform effectively on the bridge
samples. It shows a weak ability to recognize false changes in space, and the results of
edge segmentation on the building samples are relatively poor. On the other hand, the
improved U-net produces better extraction accuracy on the samples depicting moving
ground, buildings, bridges, and photovoltaic land but exhibits deficiencies in the extraction
of details in some changing areas. Additionally, the improved U-net lacks integrity in the
overall patch extraction, leaving vacant parts on the large patch. Compared with the former
two methods, this method demonstrates an improved ability to identify spurious changes
in space due to the use of the FL function and the weight of the positive sample, making
the neural network focus on the positive sample.

In conclusion, the effect of the method for extracting information related to newly
added construction land is the closest to the real label, and its segmentation details are more
complete. The U-net uses a deconvolution operation during up-sampling. The reduction in
the receptive field leads to insufficient feature extraction capabilities and the inability to
identify false changes in the Figure. Although the improved U-net could extract the change
pattern, the overall performance is unsatisfactory. In the improved U-net, the traditional
cross-entropy loss function is introduced, which gives the same weight to the positive and
negative samples. However, when newly added construction land information extraction
is performed by using the improved U-net, the proportion of positive to negative samples
is seriously unbalanced, resulting in a poor overall integrity of the extracted information.
In fact, the method proposed in this paper uses the FL function in reference target detection,
which also has the problem of imbalance between positive and negative samples. Therefore,
a change detection method in the field of remote sensing is introduced in this paper. The
experimental results show that applying the FL function to change detection yields a
satisfactory extraction effect.

7. Concluding Remarks

This paper proposed a series of improvements to prevent the U-net from overfitting
and to address the inability to adequately detail newly built construction land in the U-net.
To resolve the imbalance of positive and negative samples in the information extraction
of newly added construction land, a FL function was introduced to adjust the weighting
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of positive and negative samples. The experimental results show that compared with
those of the U-net, the F1-score and Kappa coefficient of the change area produced by
the proposed method increase by 0.078 and 0.068, respectively, and increase by 0.033 and
0.026, respectively, compared with those of the improved U-net. This proposed method
demonstrates the great advantage of newly added construction land information extraction
and provides a practical reference for determining the parameter α by using a FL function
in the field of deep learning change detection. In addition, this method has significant
advantages in extracting information related to newly added construction land and has
great application potential for future work

Although the newly added construction land extraction method proposed in this
paper has achieved good results in F1 value, the training time becomes longer due to
the addition of many improved algorithms. Later, consider how to reduce the time of
network training without changing the performance of the model. In addition, because
the dataset used in this paper does not include all types of newly added construction
land, the classification accuracy of validation set 2 and validation set 3 is slightly lower
than the other two validation sets when the accuracy of the four independent validation
sets is verified. In the later work, all the data of newly added construction land types are
considered to be constructed into a new dataset, and the original network model is fully
trained by transfer learning to identify more newly added construction land types, so as to
improve the extraction accuracy of the model.

In addition to the above discussion, the focus of this paper is to explore how to
reduce the weight of negative samples by controlling the parameter α, so as to improve the
information of newly added construction land after the focal loss function is used in U-net
network. Since this research is based on U-net as the basic framework, our main purpose is
to explore the correctness of our determination and analysis of the parameter α and play a
positive role in the semantic segmentation of the improved U-net network, so we take the
U-net network and the improved U-net network as the comparison experimental group.
We consider it to verify the effectiveness and advancement of our proposed method under
the condition of controlling the basic framework. Based on the above considerations, we
did not compare the method proposed in this paper with other network models, and the
purpose of this is to illustrate the feasibility of the method proposed in this paper as much
as possible. Although this practice reflects the correctness of our method well, it lacks
comparison with other network models, which causes certain limitations. Therefore, in
the future research, our focus will be on a more comprehensive and detailed comparative
analysis of the proposed method by using different models and different improved category
imbalance methods, including extraction speed, extraction accuracy, model practicability,
and model structure complexity. At the same time, more types of data will be segmented
extraction verification, not just limited to a limited type of data, as these are essential
and necessary.
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