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Abstract: The 6G communication system will be designed at sub-THz frequencies due to increasing
demand in data rates, emerging new applications and advanced communication technologies. These
high-performing systems will heavily rely on artificial intelligence (AI) for efficient and robust design
of transceivers. In this work, we propose a deep neural network (DNN) beamformer that will replace
the use of phase shifters for a massive array of antenna elements employed at the ground station
for wideband LEO satellite communication at sub-THz bands. We show that the signal processing
algorithm employed using DNN is capable to match the performance of a true-time delay beamformer
as the angle of arrival of the received wideband signal at the ground station is changing due to rapid
movement of the LEO satellite. The implementation of DNN beamformer will be able to reduce
the cost of receiver and provide a way for the efficient and compact design of the massive array
beamforming for wideband LEO satellite applications.

Keywords: beamforming; deep neural network; LEO satellite; sub-THz bands

1. Introduction

The next generation of communication systems (B5G and 6G) will extensively rely on
artificial intelligence (AI) for the efficient and robust design of transceiver systems. These
transceiver systems will be designed at sub-THz bands to achieve higher spectral efficiency,
data rate and energy efficiency [1]. The lower frequency bands are also congested so the
communication systems, new emerging applications and devices are to be designed at
higher frequency bands [2]. The system design at sub-THz bands will enable many new
services beyond 5G with enhanced security and frequency reuse. The existing 5G NR
has already been planned to complement the non-terrestrial networks (NTN) to provide
access to the remote locations. In its release 15 [3], 3GPP studied the scenario of the
New Radio (NR) to support the Non-Terrestrial Network (NTN). The NTN refer to the
satellite, high altitude platforms, air-to-ground networks. The study identified the role of
NTN to support the Transportation, Safety, eHealth, Agriculture, Finance, Automotive,
Entertainment Media and Energy. The services enabled by the NTN integrated with the
Terrestrial network include the eMBB (enhanced Mobile Broadband) and and mMTC
(massive Machine Type Communications). The Release 16 Study of 3GPP focused on
adapting the NR systems to support NTN by minimizing the need for new interfaces
and protocols [4]. The Release 17 study focuses on providing support of Narrow-Band
Internet of Things (NB-IoT) and enhanced Machine Type Communication (eMTC) based
satellite access [5]. These satellite networks have been assumed to have the beam steering
capabilities towards the users on the ground using beamforming techniques [6].

As the communication system will evolve into the future generation e.g., B5G and 6G,
the NTN will be integrated into the densely connected communication network coherently
to provide cost effective services, better network capacity and coverage with higher energy
efficiency [7,8]. The larger available bandwidth at sub-THz bands will lead to a wideband
communication system with very high data rates. However, the design of communication
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system at such higher frequencies poses unique set of challenges [9]. Such challenges
include the beamforming and antenna array design [10–12], channel modelling and esti-
mation, massive MIMO communication [13] along with novel modulation techniques and
signal processing algorithm [14,15].

Several LEO satellite constellations have been launched, e.g., Starlink, Oneweb, Globas-
tar, Orbcomm to provide access and connectivity to remote and unconnected areas. There
are planned launches in 2023 by the Project Kuiper of Amazon [16]. The Lynk Global
satellite that is expected to provide satellite-to-mobile-phone connectivity will deploy its
5G payload sooner rather than later [17]. Emergency SOS via satellite, a feature provided
in iPhone-14 will connect to satellite in case of non-availability of cellular and Wi-Fi net-
works [18]. Such developments show the growing importance of the LEO communication
in providing global services and connectivity. These LEO constellations will provide the
communication services with lower latency due to faster propagation in free-space with
thousands of satellites in the orbit [19].

For the design of satellite links at the higher frequencies in sub-THz bands (100–300 GHz),
one such challenge to system design consideration comes due to higher absorption loss
of the propagating signal in the atmospheric channel. In addition, the rapid movement
of LEO satellites require phased array antenna at the ground station for electronic beam
steering that can be pointed to a desired direction in real time [20,21]. The higher losses due
to the atmospheric absorption can be compensated by using very large number of antenna
elements that employ beamforming to form very narrow pencil beams in order to achieve
very high gain in the desired direction [22,23]. The shorter wavelength allows the design of
very small antennas that can be densely packaged as massive phased arrays of antenna
elements. However, as we move to higher frequency bands above 100 GHz, the use of
phase shifters for beamforming for a wideband system at sub-THz is less recommended
due to inefficiency, non-linearity and beam squinting effects [24,25].

Currently, the design of phased array antenna mostly rely on use of phase shifters
for analog beamforming of the receiver of the massive array of elements that will cause
beam squinting problem especially for large bandwidth communication system [26]. For
a wideband system, this could degrade the performance significantly. The phase shifters
are also not efficient for attaining wide scanning angles [26,27]. The alternative option
to phase shift beamforming is the use of true-time delay (TTD) analog beamforming
though its implementation is costly. Furthermore, a very large number of antenna elements
employed at the receiver will significantly increase the cost of implementation with such
analog processing of antenna array output signals. To resolve these issues, one option is to
implement digital beamforming that will require some additional components in the front
end design of wideband receiver. However, thanks to the breakthrough advancements in
digital integrated circuits and technology, it is now becoming more affordable and with
digital processing, it is a lot easier to put into practice [28,29].

In this work, to address the aforementioned problems, we propose to implement
the beamforming algorithm of the massive number of receiver antenna elements using
a deep neural network (DNN). The output of individual array elements are fed into a deep
neural network through an analog to digital converter (ADC) and the DNN beamformer is
trained to mimic the actual output voltage generated by a TTD beamformer as the angle
of arrival (AoA) changes at the receiver due to rapid movement of the LEO satellite. The
numerical results show that DNN beamforming algorithm is able to match the voltage
output of a TTD beamformer with a very low mean square error for a wideband signal.
Such implementation of the signal processing algorithm will reduce the cost of receiver and
various nonidealities caused by the phase shifter beamformer as we employ a massive array
of antenna elements for the receiver design at sub-THz bands. To the best knowledge of the
authors, the proposed beamforming algorithm using the novel deep learning algorithm for
wideband LEO satellite applications at sub-THz bands is for the first time to be published.
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2. DNN Beamforming

The LEO satellite moves at very high velocity in its orbit and hence the angle of arrival
at the ground station receiver is constantly changing. The transmitted signals from the
satellite that arrive at the ground station based phased array elements have different delays
at the array output and thus has to be combined in such a way that there is a constructive
interference at the beamformer output. Each antenna element is thus provided a phase
shifter that delays the signal accordingly to get a constructive interference. However, the
performance of phase shifter would degrade as the frequency of arriving signal changes
and thus the spacing between antenna elements would change in terms of wavelength. This
will lead to the problem of beam squinting [30] that would cause significant degradation
in the performance of massive array receiver for a wideband system. Moreover, massive
antenna array design will also require very large number of phase shifters for phased array
receiver thus raising the cost of implementation much higher.

To avoid these problems due to phase shifters, true-time delay can be employed at
each of the array elements but it will be a costly implementation due to massive number of
antenna elements used for beamforming. The true-time delay provides exact time delay
needed at the output of each antenna elements for providing a constructive interference
at the output. Therefore, we propose to perform the signal processing of the received
signal at each antenna elements by a DNN beamforming algorithm. Recently deep learning
and machine learning algorithm has helped improved the system performance in many
scenarios and diverse range of applications [31–33]. Such an algorithm, that is mainly
data-driven once trained, can be deployed in real-time applications for the prediction,
optimization and management of scarce communication resources. It has been success-
fully implemented to improve the performance of signal processing algorithms [34,35],
design of intelligent communication systems [36], optimization of satellite resources and
its allocation [37]. The data-driven DNN algorithms have also been applied in obtaining
hybrid beamforming to solve spectral efficiency maximization problems [38], optimization
of downlink beamforming [39], and the support of highly mobile systems [40].

In our proposed algorithm, the DNN is trained such that it minimizes the error in
the predicted output voltage by tracking the output voltage of a TTD beamformer as the
AoA at the receiver changes due to movement of LEO satellite. In Figure 1, we show the
schematic of phase shift beamforming and the DNN beamforming for the phased array
antenna receiver based at the ground station for a given AoA θ0.

Figure 1. Schematic of Phase shift and DNN Beamforming.

For a uniform linear array of isotropic radiators receiver, the signal voltage at the array
output will be expressed as [41]

Vout =
N

∑
n=1

Vne−j 2πd
λ (n−1) cos θ0 (1)
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where d is the spacing between the array elements, λ is the wavelength, N is the number of
array elements, θ0 is the angle of arrival of signal at the antenna elements measured from
local zenith, and Vn is the signal amplitude at nth element.

Assuming the plane wave at the receiver with uniform illumination of the array
elements, we can express the signal amplitude at the array elements as

Vn =

√
ηTηRPTGT

LFS(θ0)LA(θ0)
(2)

where ηT and ηR are the efficiencies of transmitting and receiving antennas respectively, PT
is the transmitted power, GT is the gain of transmitting antenna, LFS(θ0) is the free-space
path loss, and LA(θ0) is the absorption loss in the atmosphere for a given AoA at the
ground station.

The losses are dependent on the AoA of the signal at the receiver as the slant path
length changes due to movement of LEO satellite. The free-space path loss as a function of
AoA is given by [24]

LFS(θ0) = (
4π

λ
)2[− R0 cos θ0 +

√
(R0 + hs)2 − R2

0 sin2 θ0
]2 (3)

where R0 = 6371 km (the radius of the earth) and hs is the altitude of LEO satellite.
The absorption losses over the atmospheric channel depends on many factors includ-

ing the frequency, gaseous constituents, pressure, temperature, humidity and the slant
path length through the atmospheric media. The atmospheric loss can be calculated by
considering the atmospheric media as several homogeneous layers of gases and calculating
the specific attenuation and path length through each layer. The atmospheric absorption
loss of the signal can be expressed as [42]

LA(θ0) =
L

∑
i=1

γidi(θ0) (4)

where L is the number of homogeneous layers of atmospheric media, γi is the specific
attenuation of each of such layer, and di(θ0) is the slant path length through each layer for
a given AoA θ0.

The proposed DNN beamformer has to be trained in order to mimic the performance
of a TTD beamformer so that we need to compute the output voltage of a TTD beamformer
to train the network in a supervised manner. The output voltage of the TTD beamformer
can be expressed as

VTTD
out =

N

∑
n=1

Vne−j[ 2πd
λ (n−1) cos θ0−2π f τn ] (5)

where τn is the time delay provided at the nth antenna element. These delay elements have
to provide a time delay of (n − 1)(d/c) cos θ0 at the nth antenna element for a constructive
interference at the output with no beam squinting problem as occurs with phase shift
beamforming.

For the phase shift beamformer (PSB), the signal voltage at the output of phase shifter
network of antenna array can be expressed as

VPSB
out =

N

∑
n=1

Vne−j[ 2πd
λ (n−1) cos θ0− 2πd

λ0
(n−1) cos θ0] (6)

where λ is the wavelength of the signal arriving at the array elements in the direction of θ0
and λ0 is the center frequency at which the phase shifter is designed to provide a phase
shift for constructive interference of the signals. We note that when the arriving signal have
a frequency of c/λ0, we get unity gain in the direction of θ0 while as the signal frequency
deviates, there will be degradation in the gain of beamforming array.
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For the DNN beamformer, we provide the input to the network as the output voltage
amplitude of each of the array elements through an ADC and the output of DNN is the
combined voltage signal that is trained to mimic the output of a TTD beamformer. The
schematic of DNN beamformer is presented in Figure 2 showing the array elements voltages
through ADC fed into the network that is combined to produce a regression output voltage.
The input to the each of the neurons in the first layer will be expressed as [43]

f (X) =
n

∑
i=1

W1
i Vi + b1 (7)

where W1
i is the weight matrix for a neuron in the first hidden layer, Vi is the column vector

of the voltages obtained from individual antenna array elements, n is the total number of
array elements employed, and b1 is the bias for the first hidden layer.

The input received to each neuron is then passed through an activation function such
that the output of the neuron can be expressed as

g(X) = σ( f (X)) (8)

where σ is the sigmoid function.
The output of this first layer of neurons are then fed as the input to the second layer

of neurons and so on. The calculation can be repeated for any given number of layers
and the output of beamformer VDNN

out can be evaluated. The output voltage of the DNN
beamformer is implemented by a linear activation function and thus can be expressed as

VDNN
out =

M

∑
m=1

W l
mgl

m(X) (9)

where gl
m(X) is the output from last hidden layer l, W l

m is the weights associated with these
outputs, and M is the number of neurons in the last hidden layer.

In order to learn the parameters of the DNN beamformer, we need to define a loss
function that will be minimized by the training algorithm [44]. We define the empirical loss
function to train the network as

Loss =
1
K

K

∑
k=1

(VTDD
out − VDNN

out )2 (10)

where VTDD
out and VDNN

out are the array output voltage with TTD and DNN beamformer
respectively, and K is the number of training samples. Our objective is to minimize this
loss function by finding the parameters of the DNN beamformer that includes its weights
and biases.

Figure 2. Schematic of the DNN Beamforming with input being fed by the voltages from individual
array antenna elements.
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To summarize, the algorithm takes the input from the output of ADC network of
the massive antenna array i.e., (V1, V2, . . . , Vn). Once the input is obtained, it is passed to
the neural network with several layers of neurons and the output of neural net VDNN

out is
obtained. With the obtained output, we compute the loss (as defined in (10)) with respect
to the TTD beamformer VTDD

out and then use backpropagation algorithm to update the
weights and biases of the network for all the training samples. Once trained, we deploy the
DNN beamformer to predict for many test samples and to test its accuracy in matching the
performance close to the TTD beamformer.

3. Numerical Results

The parameters for performing the numerical simulation are mentioned in Table 1. In
order to calculate the atmospheric losses due to gases at an angle of arrival θ0, we have used
the ITU recommendation by considering a multi-layered homogeneous atmosphere with
total of L = 922 layers and a total height of 100 km [42]. The recommendation P.676-13 [42]
provides the method to compute the absorption loss due to the gaseous atmosphere for the
frequency range upto 1000 GHz. The major contributor is the oxygen and water vapor. The
reference standard atmosphere as given in the ITU recommendation P.835-6 [45] provide
the atmospheric models to be used in the computation of gaseous absorption loss along
the Earth–space paths. It provides the calculation of atmospheric parameters i.e., pressure,
temperature and water vapor density as a function of height. In order to calculate the
pressure, temperature and water vapor profile of the standard atmosphere model, we
assume the mean annual global reference atmosphere as given in ITU recommendation [45],
which is the most commonly used model [24,46]. We consider the bandwidth of the signal
to be 2 GHz at a center frequency of 100 GHz and the signal occupying the frequency
range of 99–101 GHz. The value of absorption loss in the atmospheric channel will vary
from 0.98 dB at the elevation angle of 90◦ to 5.58 dB at the elevation angle of 10◦ for
the signal frequency of 100 GHz. The transmitter antenna is considered as the parabolic
reflector [47], whose gain can be found as (πD/λ)2. The link-budget calculation is shown
in the Appendix A for the given parameters.

The data for training and testing of the DNN beamformer are generated by varying the
angle θ0 from 0◦ to 80◦ in the steps of 0.1◦. For each of these AoA, we vary the frequency of
the received signal in the range of 99–101 GHz with a step size of 0.1 GHz and generate the
corresponding DNN beamformer output voltage VDNN

out . This creates 16,821 data samples
for the training, testing and validation of the DNN beamformer. For each of these angles θ0
and frequency of the received signal (99–101 GHz), we also obtain the output voltage of
a TTD beamformer VTDD

out . The network is then trained to minimize the MSE loss between
these two output voltages over all the training samples. Each of the antenna elements has
been assumed as an isotropic radiator with unity gain. The entire dataset is divided into
a ratio of 70%, 15%, and 15% for training, validation and test respectively.

Table 1. Simulation Parameters.

Definition Symbol Value

Transmitter power PT 2 W
Transmitter antenna diameter GT 3 m
Satellite altitude hs 1000 km
Atmospheric height 100 km
Number of array elements N 1000
Antenna efficiency ηT , ηR 0.9
Center frequency f0 100 GHz
Antenna spacing at f0 d 0.5λ0
Bandwidth B 2 GHz

The performance metric for the neural net is the mean square error between the output
voltage of a TTD beamformer and the output of the DNN beamformer as shown in (10).
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A neural network having 10 hidden layers with each layer consisting of 15 neurons is used
for the design of DNN beamformer. The value of M i.e., the last layer of DNN is 15 and
the value of K i.e., the number of training examples in our case corresponds to 11,775. The
activation function for each of the neuron is tan-sigmoid function. The training algorithm
uses Fletcher–Powell Conjugate Gradient method [48,49] to minimize the loss function over
the training samples as defined in (10). In Figure 3, we show the out-of-sample performance
of the proposed DNN beamformer with the output voltage (true) by a TTD beamformer
and the output voltage predicted by the DNN beamformer. The sample number denotes
samples selected from the generated data set that is reserved for testing. As we can observe,
the DNN is able to track the performance as desired with a TTD beamformer at a given
AoA θ0 with very high accuracy.

Figure 3. Output signal voltage predicted by the DNN beamformer and that of a true time delay
beamformer for the test set at different angle of arrival θ0 between 0–80◦ for the considered frequency
range of 99–101 GHz.

The MSE performance of the implemented DNN beamformer is shown in Figure 4 for
the train, test and validation set. We can observe that the mean square (MSE) is very low
thus showing that DNN is able to match the performance of a TTD beamformer as the AoA
changes at the antenna array receiver. The best performance was obtained in 184 epochs
with a very low mean square error as indicated in Figure 4. The MSE performance for
the training, test and validation set was observed to be 9.73 × 10−13, 10.005 × 10−13 and
9.64 × 10−13 respectively. Thus, as we can observe that for a wideband LEO satellite
communication system, it is feasible to design a DNN beamformer that will replace the
use of costly and non-ideal phase shifters for the beamforming of massive number of
antenna array elements. The DNN is able to match the performance as expected by a TTD
beamformer for a wideband LEO satellite communication system.

Figure 4. MSE Performance of proposed DNN Beamformer over the training, test and the validation
dataset. The best MSE performance obtained at 184 epochs is indicated with a circle.
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In order to compare and show the performance relative to the phase shifter implemen-
tation for a wideband signal, we show the signal voltage of the trained DNN, TTD and
PSB beamformer at different frequencies in Figure 5 for the elevation angle in the range
of 10–90◦. The output of TTD is the ideal response that is desired for a wideband signal.
It can be observed that for signal frequency of 100 GHz, the PSB also gives exact output
as expected by a TTD beamformer but as the signal frequency deviates, the performance
degrades severely. As pointed out earlier, this happens as the phase shifter is designed to
provide specific delay at a given center frequency and as the frequency deviates, the phase
response in not able to provide the constructive interference at the output. The spacing
between the antenna elements at the center frequency is taken to be 0.5λ0. We note that
the trained DNN beamformer is able to match the ideal performance as expected by a TTD
beamformer as the elevation angle is varying in the range of 10–90◦. As for massive number
of array elements, the beamwidth of receiver antenna will be narrower and thus the effect
of beam-squint can be severe.

Figure 5. Performance comparison of PSB, TTD, and DNN Beamformer for the satellite elevation
angle in the range of 10◦ to 90◦ at different frequencies of the wideband signal arriving at the
antenna array.

4. Conclusions

In this work, we have proposed a DNN beamformer to implement the signal process-
ing algorithm for a massive number of antenna array receiver at the ground station. It was
shown that the proposed beamformer performs with very high accuracy for a wideband
signal to match the output of a true time delay beamformer as the angle of arrival at the
receiver array changes due to rapid movement of the LEO satellite. Such deployment of
signal processing algorithm with a DNN beamforming will remove the use of phase shifters
and the nonidealities caused by its implementation thus making it suitable for wideband
communication systems. The implementation will lead to a highly efficient and low cost
receiver design for wideband LEO satellite applications at sub-THz bands. In future, we
will address the joint beamforming of multi-satellite station and ground station networks
for optimal allocation of satellite resources in order to maintain high quality of service to
the users.

Author Contributions: Conceptualization, R.K. and S.A.; Methodology, R.K. and S.A.; Writing—
original draft, R.K. and S.A.; Writing—review & editing, R.K. and S.A.; Supervision, S.A. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.



Electronics 2022, 11, 3937 9 of 11

Acknowledgments: The authors would like to thank Kreitman School of Advanced Graduate Studies
and Ben-Gurion University of the Negev, Israel for providing fellowships to continue the research.
The authors would also like to thank the anonymous reviewers for their valuable suggestions to
improve the article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

For the given link design parameters in Table 1, we provide the signal-to-noise ratio as
the elevation angle of LEO satellite changes in Figure A1. The SNR at the receiver array
output at the ground station would be expressed as [50]

SNR =
ηRηT PTGTGR

kTBLFSLA
(A1)

where k is the Boltzmann constant, B is the bandwidth, T is the noise temperature, LFS and
LA denote the free-space path loss and atmospheric absorption loss respectively. The value
of noise temperature TA is taken to be 500 K and the plot of SNR as a function of elevation
angle is shown in Figure A1.

Figure A1. SNR of the LEO satellite link for the range of elevation angle varying from 10◦ to 90◦.

We observe that the SNR is decreasing as the elevation angle is decreasing. This is
expected as with lowering elevation angle, as the path length through the channel increases
leading to higher absorption and free-space path loss. It should be noted that for a SNR
of 4 dB, the bit-error rate (BER) of a Quadrature PSK (QPSK) would be 1.53 × 10−7 for
the convolution coding with soft decision and code rate of 2/3. The simulation results
have been shown upto the elevation angle of 10◦ as for the next-generation of LEO satellite
networks, there will thousands of satellite in the orbit and the handover will be done at
higher elevation angles to maintain high link quality [51].
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