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Abstract: Digital platforms have begun to rely more on algorithms to perform basic tasks such as
pricing. These platforms must set prices that coordinate two or more sides that need each other in
some way (e.g., developers and users or buyers and sellers). Therefore, it is essential to form correct
expectations about how both sides behave. The purpose of this paper was to study the effect of
different levels of information on two biology-inspired metaheuristics (differential evolution and
particle swarm optimization algorithms) that were programmed to set prices on multisided platforms.
We assumed that one platform always formed correct expectations (human platform) while the
competitor always used a generic version of particle swarm optimization or differential evolution
algorithms. We tested different levels of information that modified how expectations were formed.
We found that both algorithms might end up in suboptimal solutions, showing that algorithms
needed to account for expectation formation explicitly or risk setting nonoptimal prices. In addition,
we found regularity in the way algorithms set prices when they formed incorrect expectations that
can help practitioners detect cases in need of intervention.

Keywords: evolutionary algorithms; agent-based models; price competition; algorithmic pricing

1. Introduction

A company’s profits depend on the behavior of other companies. If companies set
prices too high, they can hurt sales, while setting prices too low can generate insufficient
revenue. Setting “the right price” is complex and requires extensive knowledge of the
strategic interactions between companies. Formally, those interactions are captured in
best-response correspondences that determine how companies should react to competitors.
However, it is necessary to understand the market to respond optimally to competitors.
While this might be simple in traditional brick-and-mortar markets, it is becoming difficult
in highly dynamic markets, such as digital ones. In these cases, we find a growing interest in
pricing algorithms that set prices autonomously and automatically in response to changes
in demand and competitors.

The key challenge is that markets are nonstationary. A company’s profits depend on
the actions of other companies. In this sense, the use of metaheuristics can be tempting
since they make few or no assumptions about the problems being optimized and, therefore,
can be applied to a large number of markets with minimal changes. Although preliminary
evidence shows that these algorithms can learn to set prices in multiple markets or environ-
ments [1–3], there is also evidence to suggest that they can learn to collude or set suboptimal
prices [4,5] and that even simpler algorithms can outperform them [6–8]. In addition, a
common assumption in the literature has been that algorithms compete with other equal
algorithms. In reality, algorithms are more likely to compete with different algorithms or
humans [9]. For example, some authors found that the competition between reinforcement
and evolutionary learning did not always lead to optimal outcomes [3], that competition
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between humans and reinforcement learning algorithms led to collusive results [9], or that
particle swarm optimization algorithms were superior to genetic algorithms in pricing
games [10].

Although particle swarm optimization (PSO) and differential evolution (DE) are well-
known algorithms, their use in economic theory is scarce. This is not the case with other
artificial intelligence (AI) techniques, such as reinforcement learning, which enjoys a great
deal of attention in the modern economy [1,5,11]. There are many reasons why this literature
is scarce and scattered. One key reason is the difficulty in supporting some modeling
assumptions that may seem arbitrary from an economic point of view. On the other hand,
economists have recently begun to pay attention to pricing algorithms and their role in
markets [12,13]. The combination of these two factors explains the scarcity of works that
apply these two well-known algorithms to simple frameworks such as theoretical markets.

To contribute to this nascent literature, we focus on two well-known nature-inspired
metaheuristics (PSO and DE) and address the effect of different levels of information
(expectations) when competing against a best-response agent (human platform). The main
question we aim to answer is: could we reuse the same algorithms for setting prices in
markets with different levels of information? To answer this question, we consider a
theoretical market model that is characterized by only a few parameters. In this way,
we simplify the problem and can address how the algorithms behave in a controlled
environment. Moreover, we adopt the basic versions of these algorithms, which make
fewer assumptions and allow us to establish links between them and economic theory.
The novelty of this work lies in addressing the role of expectations in how these two
algorithms set prices. Previous work has focused on financial problems [14,15], markets
where expectations play no role [3,16], or problems that are unrelated to prices [17].

We find preliminary evidence that PSO outperforms DE. In general, PSO performs
as well as the best-response agent with minimal variations. However, we find that the
algorithms can oscillate between various equilibria, raising doubts about their use as
pricing tools. In other words, they could be manipulated to arrive at a suboptimal (or
supraoptimal) price. Interestingly, our results highlight that although algorithms need to
make few or no assumptions, the level of information (or how people form expectations) is
a key component that needs to be taken into account at the design stage. Otherwise, these
algorithms risk being suboptimal. Therefore, our results call for caution and open the door
to studying the conditions necessary to improve these algorithms for pricing. Overall, this
article makes the following contributions:

1. For pricing, we find that the basic version of PSO works better than the basic version
of DE.

2. Basic versions of these algorithms are not capable of adapting to changes in consumer
expectations.

3. The more passive consumers are, the more errors both algorithms generate.
4. These errors imply that the algorithms set suboptimal prices, which reduces profit.

The rest of the paper is organized as follows. In Section 2.1, we provide a small
introduction to biologically inspired algorithms. In Section 2.2, we present the theoretical
market that we used to perform our simulations while in Section 3, we present our main
results. Finally, we summarize our findings and next steps in Section 4.

2. Materials and Methods
2.1. Biologically Inspired Algorithms

Evolutionary computation is a subfield of AI now used to solve multidimensional
problems more efficiently than humans [18]. Although this literature is vast, two algo-
rithms stand out for their simplicity and their links with economic theory: particle swarm
optimization (PSO) and differential evolution (DE). Another potential option is genetic
algorithms (GAs) but their modeling choices can look arbitrary from an economic point of
view (and have a considerable impact on the results), and PSO and DE are more efficient
and accurate than many GAs [10,19].
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2.1.1. Particle Swarm Optimization (PSO)

PSO is a stochastic optimization technique that generates random points in a multidi-
mensional space (particles) that move towards an optimal solution by sharing information
about which points perform better. The idea of PSO came from watching the way flocks of
birds, fish, or other animals adapt to avoid predators and to find food by sharing informa-
tion [20]. This concept is closely related to a trial-and-error process. In other words, we
can assume that a company (PSO) tests a limited set of prices (particles) and chooses those
prices that perform better (higher profits) and omits those that perform worse. Companies
can set the best price given specific market/regulatory conditions by repeating this opera-
tion multiple times. Initially, each company considers a set of k potential prices, where k is
the number of particles. The position of each particle in the set of real numbers represents a
price. Thus, companies can evaluate the performance of each particle (price) in terms of
profits. The initial prices are randomly drawn from a uniform distribution between 0 and
1, U(0,1), but as time passes, prices change as new information about their performance
is available.

In other words, change in prices (position of each particle) depends on the other prices
that generate more profits (locations of the best particles), and such an influence is called
“evolutionary velocity (vi,k)”. Thus, a price (a particle position) is determined by the best
position it has found before (pl

i) and the best price found so far (position of any other
particle in its swarm or in the global swarm if there is only one swarm), pg. Formally, the
price pi,t at a time t is updated as follows:

pi,t = pi,t−1 + vi,t−1 (1)

vi,t−1 = wvi,t−2 + l1u1(pl
i − pi,t−1) + l2u2(pg − pi,t−1) (2)

where w is an inertia weight factor representing how past actions (prices) influence the
current action (price); l1 and l2 are learning parameters and are called self-confidence and
swarm confidence factors, respectively; and u1 and u2 are random numbers uniformly
distributed between 0 and 1, U(0, 1). In economic games, the payoff of a company also
depends on the prices of other companies. Thus, a price that was optimal in a previous
iteration may not perform well in the current iteration and vice versa. Thus, pl

i and pg

may change over time. In fact, at each iteration, we may have new different values for
these parameters.

Finally, the inertia weight w in Equation (2) is critical for the PSO’s convergence
behavior [21]. There is a trade-off between exploration and exploitation. Thus, we choose a
model of exploration that vastly explores at the beginning and, as time goes by, it starts
exploiting the best outcomes. Formally, wt = (1 − wo)t where w0 is a constant initial
decrease parameter.

2.1.2. Differential Evolution (DE)

Intuitively, differential evolution (DE) also resembles a trial-and-error process. How-
ever, the way it is calculated is different. DE is a stochastic optimization technique based on
maintaining a population of candidate solutions and creating new ones by combining exist-
ing ones according to simple formulas [22]. DE can also be easily interpreted in terms of
price optimization. DE resembles a manager who keeps a set of potential prices and makes
convex combinations to find the best price before going to market. For example, a company
might consider USD 1, USD 5, or USD 10 as prices for its product. This algorithm will make
convex combinations of those prices and try to find the best one in terms of profits.

DE has evolved significantly in the last decade, and many variations can be found
in the literature. However, we are interested in the simplest version, which is defined
by three parameters: the population size (NP), the crossover probability (CR), and the
differential weight (F). Another reason for choosing the simpler version is that our problem
is also simple. In fact, our pricing problem is one-dimensional, and the interpretation of
the parameters is straightforward. NP represents the set of potential prices that companies
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may consider. CR represents the incentive to recombine or try new prices. In contrast with
PSO, we keep this parameter constant. We make this assumption to show that convergence
does not depend on some notion of inertia. In this way, we deviate from the exploration–
exploitation trade-off to focus on the action–response process that is closer to the trial-and-
error argument or best-response behavior. Finally, F controls the recombination process
that generates new candidate solutions. This is the least intuitive in economic terms, but its
role will become clear in a moment.

Initially, each company generates a set of NP potential prices. In the first iteration, an
item of NP is randomly chosen as the initial price p0. In addition, a new price (pm) is created
as a recombination of three random prices (a, b, c) from NP. Formally, pm = a + F(b− c).
Companies evaluate the performance of their initial prices in terms of profits and decide
whether to test the recombination of prices with probability CR. Formally, at time t,
companies make the following decision:

CR ≥ r ∼ U[0, 1] pt+1 =

{
pt, If π(pt, ·) ≥ π(pm, ·)
pm, If π(pm, ·) > π(pt, ·)

}
CR < r ∼ U[0, 1] pt+1 = pt

(3)

where π(p, ·) are the profits that depend on their own prices (p) and competitors’ (·).
Therefore, with probability CR, companies compare pt and pm, and with probability 1−CR,
they keep their current prices, pt. This process is repeated over time, testing whether the
current or new prices generate more profit. If the new price generates more profit, they
stick to that price. If not, they keep the one chosen in the previous iteration. As time passes,
other prices may become optimal as new mutations or recombination are tested (either
by the company or its competitors). The key challenge facing both algorithms is that the
optimal direction or recombinations may become suboptimal. Thus, a priori, it is not clear
whether they will be able to reach an optimum if the objective function changes at each
iteration as a consequence of the competitors’ behavior.

2.2. Market Environment and Parametrization

We adopted the model proposed by [23] to test our hypotheses. We chose this model
because it was analytically tractable and allowed us to address how rational agents behaved
under different information scenarios. Other authors adopted theoretical frameworks such
as logit, linear, Cournot, or Hotelling models [3,4,10]. However, none of these models con-
sider expectations. In this regard, among the models that allowed us to address consumer
expectations, the one chosen was the simplest.

In the following, we present the basic concepts of this model and its main predictions.
Figure 1 represents the model. Each company (platform) sets a price (blue arrows) for each
consumer group (users and developers). Regardless of the pricing rules, both companies
(platforms) try to attract both groups by setting prices that maximize their profits. The
main challenge in this model is that platforms have to attract both sides in tandem, and
each side forms expectations about what the other side will do (black arrows). In other
words, the two platforms compete for two sets of agents (users and developers) that need
each other in some way.

Figure 1. Algorithms, platforms, and relationships in this model. Source: Own and Freepik.com.

Freepik.com
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Each group (users and developers) has N agents uniformly distributed on a line with
unit length, and the two platforms are at locations 0 and 1 on the unit line. The agents’
position on that line represents their tastes; thus, the distance from their position to the
platforms represents the disutility of adopting a platform that does not perfectly match
their tastes. The model assumes that each agent (user or developer) participates only
in one platform, and each agent compares the two platforms and chooses the one that
provides a higher utility. To make such a decision, agents consider the price of joining the
platform, the intrinsic value of the platform, its disutility with respect to their tastes, and the
number of agents from the other group present on each platform. For example, users prefer
to join platforms with many developers because that guarantees content (applications,
video games, etc.), while developers prefer to join platforms with many users because that
guarantees a market for their products. Formally, the utility of users and developers located
at xu

j and xd
j , respectively, from participating on platform i is

uu
j = z− pi − µ|xu

j − li|+ αune,i
d ud

j = z− vi − µ|xd
j − li|+ αdne,i

u (4)

where µ captures the level of horizontal differentiation between the platforms and measures
the intensity of competition. A smaller value of µ implies a lower level of differentiation
and a higher competition intensity. The mismatch cost, µ|x− li|, captures such consumer
heterogeneity. Some agents are closer to one of the platforms and find it less costly to
consume those platforms. The parameter z captures the intrinsic value of the platform that
we assume is high enough to guarantee that all consumers participate. We also assume
3
2 µ < z, which guarantees that all consumers buy at least from one company. pi and vi

represent the price paid by users and developers, respectively, for joining the platform i.
Finally, each user (and developer) forms expectations about how many developers (users)
will join each platform. In other words, users expect ne

d developers to join, and developers
expect ne

u users to join.
Moreover, we assume the surplus derived by a user from the participation of an

additional developer on the platform is αu > 0, while the profit made by a developer from
the participation of an additional user is αd > 0. Therefore, αjni

−j, where j ∈ [u, d], captures
the network effect (i.e., how valuable the presence of the opposite group on the platform is),
where ne,i

−j is the expected number of agents on the other side of the platform-i. Intuitively,
the more people use the services, the more valuable they are.

Following [24], users demands are:

nu
1 =

1
2
+

αu

(
ne,1

d − ne,2
d

)
+ p(2) − p(1)

2µ
(5)

where j ∈ [u, d]. However, how people expect others to join the platform depends on their
expectations. In the original model, all developers are informed of all prices and hold
responsive expectations about user participation. In other words, their expectations about
user participation always match the realized participation, which means that developers are
able to forecast how a change in their fees affects users’ decisions and how those decisions
affect them, and so on. On the other hand, users can either hold responsive, passive, or
wary expectations.

When users are passive, they do not observe the fees paid by developers and do not
adjust their expectations if their fees go up or down. If users are wary, they cannot revise
their expectations regarding developer participation based on changes in developer fees
(which they do not observe). However, users may adjust expectations based on changes
in user prices (which they do observe). In other words, when a user sees a change in user
prices, they infer that developer-side fees should have changed as well, unlike passive
users, who assume that developer prices would not have changed after a change in user
prices. Table 1 shows a summary of these cases and a combination of two that is common
in the literature.



Electronics 2022, 11, 3927 6 of 14

Table 1. Different types of information levels or ways to form expectations. Source: Own.

Information Levels Intuition

Responsive Users and developers are aware of the prices paid by all groups

Passive Users and developers are not aware of the prices paid by the other group
(expectations are fixed)

Semipassive Users are not aware of the developer price, but developers know all prices
(expectations are fixed for users but responsive for developers)

Wary Users do not observe developer prices but infer their price from user prices
(expectations are responsive for all agents, but for users, they are more rigid)

Finally, the profits are πi = (pi − c)nu
i + (vi − c)nd

i , where c is the marginal cost.
In all our simulations, profits were the objective function to maximize. Note that profits
depended on the company’s own and competitor actions but also on feedback loops from
other actions on the other side of the market. Market equilibria were different depending
on the assumptions made regarding expectations.

When both platforms recognize that users and developers behave differently, they
adapt their pricing. In Table 2, we show how different expectations affect the theoretical
equilibria. However, it is not clear whether algorithms can recognize this without specific
instructions. For example, in some cases, algorithms can recognize how users react to prices
and adapt their pricing, but it requires simulating a trial-and-error process [25]. It is less
clear whether more generic algorithms, such as PSO or DE, can “learn” about these features.

Table 2. Price equilibria for each information level. Source: Ref. [23]

Equilibria by Expectations Developer Price User Price

Responsive v = µ + c− αu p = µ + c− α f

Wary v = µ + c p = µ + c− α f −
α f αu

3µ

Semipassive v = µ + c p = µ + c− α f

Passive v = µ + c p = µ + c

In our experiments, one platform set prices following a classical trial-and-error process
that we knew converged to the theoretical equilibrium. On the other hand, the competitor
platform set prices using a PSO or DE algorithm, as defined in the previous section. By
simulating these interactions between known algorithms in a controlled environment, we
could infer whether PSO or DE could deal with different levels of information.

Parametrization

The baseline PSO algorithm consisted of 5 particles (k = 5) with l1 = l2 = 1.75 and
w0 = 0.025. We chose these parameter values to allow cross-comparisons with other works
that used PSO for pricing, see [16] or [3]. We also limited the range of evolutionary velocity,
vi ∈ [−0.3, 0.3]. This is a common assumption to avoid jumping between corner solutions.
Similarly, typical settings in the basic version of the DE algorithm are F ≥ 0.6 and CR ≥ 0.6
or F ∈ [0.5, 1] and CR ∈ [0.3, 0.9] , see [26,27]. Throughout this paper, we present results
when F = 0.8 and CR = 0.9.

Although these parameters were fixed during the simulations, we experimented with
different configurations. We performed a sensitivity analysis for each algorithm in which
we considered ten 5% change steps on the parameters presented in this section, and no
significant differences were found. Moreover, we focused on this parameterization because
it was common to other works and allowed cross-comparisons.

3. Results
3.1. Baseline Model Responsive Expectations

Only two parameters characterized the theoretical market model, differentiation (µ)
and network effects (α). Therefore, we considered all combinations of these two parameters
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to study how the algorithms behaved. Our base case corresponded to the theoretical model
in which all agents had responsive expectations. This case corresponded to the same
experiments performed by [28], but instead of having two competing algorithms, we had
one algorithm and a best-response agent. This case was an useful benchmark to evaluate
whether the algorithms were able to learn how to set optimal prices when the competitor
followed different behavioral rules.

We know from the literature that algorithms learn to play some notion of equilibria (in
some markets) that may be different from that considered by a best-response agent [29].
A key difference in our case is the presence of network effects, which creates the need to
address how expectations are formed [30]. Since we were interested in the simplest version
of the algorithms, our algorithms were not modified to account for different expectations.
Therefore, the main question was whether they could address such differences without
explicitly programming them to do so.

In Figure 2, we observe how the algorithms deviated from the theoretical equilibrium
when considering the demand. Values around zero meant that the algorithms set the
optimal theoretical price. Any deviation from zero implied that the algorithms made errors
in setting the optimal price. The theoretical prices we used for comparison were those in
Table 2. In this case, we assumed that all players held responsive expectations. Therefore,
pricing was symmetric on both sides. The size of each point on the graph represented how
common that specific result was. In general, algorithms made small errors, and only when
network effects were high or differentiation was low did we observe significant deviations
from equilibrium. However, in those cases, the model had two equilibria (one interior and
another corner solution) and what we observed was a coordination problem.

(a) Estimation error. Increases in α.

(b) Estimation error. Increases in µ.

Figure 2. Demand estimation by parameter. Left = network effects; Right = differentiation. Source: Own.
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When considering prices (Figure 3), we observed a similar pattern, except in the case of
the DE algorithm, whose dispersion was large. This happened because the algorithm could
not reach the equilibrium but oscillated around it. On the contrary, PSO could set prices
closer to equilibrium and showed small deviations as a consequence of its stochastic nature.
Putting both dimensions (price and demand) together, it seemed that algorithms could be
a tool for pricing in dynamic markets. We found only a few cases in which intervention
would be necessary, but these were extreme cases (low differentiation or high network
effects). These results provide a rationale for the increasing use of algorithms as pricing
tools in digital markets. Note that we used generic algorithms and not tailored versions
that might facilitate the way the algorithms set prices. Therefore, it is likely that other
versions may improve the performance we observed here.

(a) Estimation error. Increases in α.

(b) Estimation error. Increases in µ.

Figure 3. Price estimation by parameter. Left = network effects; Right = differentiation. Source: Own.

Finally, we can compare the algorithms head-to-head with the best-response agent. In
Figure 4, we show the difference between the profits of the best-response agent and each
algorithm. As expected, the gains were equal to or less than those of the best-response
agent. However, those cases in which profits were lower were concentrated in the same
problematic regions that we discussed before (low differentiation and network effects).
Therefore, our first key result should reassure those using PSO or DE-based algorithms as
pricing tools, as we found that they worked reasonably well.
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(a) Increases in α.

(b) Increases in µ.

Figure 4. Difference between algorithms and a best-response platform. Left = network effects;
Right = differentiation. Source: Own.

3.2. Cases with Different Information Levels

So far, we have assumed that both parties (users and developers) share the same
expectations (responsive expectations). However, in some cases, it is more realistic to
assume that developers know their fees and user prices, while users only know their prices
but have different levels of information about developer fees. In the following cases, we
consider three different levels of information, see Table 1. The theoretical equilibria of those
cases were characterized by Ref. [23] (see Table 2), but whether algorithms can recognize
this situation and set prices accordingly is unclear.

Since the levels of information (or expectations) are independent of the differentiation
effect, we did not consider them in the following analysis (the intuitions were the same
as in the previous section). However, since expectations are closely related to network
effects (or how people expect others to join the platform), we only paid attention to this
case. Since we considered different expectation formation processes for users, we focused
on how algorithms set prices on this side. Developers behaved as in the previous section,
that is, algorithms set prices as before and made minimal errors.

Figure 5 shows the divergence between what the algorithms simulated and the the-
oretical equilibrium demand in each case. Interestingly, when users were passive, the
algorithms could not simulate demands correctly as network effects increased. This hap-
pened for both algorithms. Therefore, it was not a problem of a specific configuration or
method but of how these algorithms interpreted the network effects. In fact, when we ap-
proached the previous case by increasing the “reactiveness” of network effects (semipassive
or wary expectations), we observed results closer to the equilibrium (albeit with dispersion).
The passive case was an extreme case. It assumed that network effects were present, but
people did not react immediately. Our results showed that PSO and DE might have trouble
dealing with this case in its basic version if they were not given such information explicitly.
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Figure 5. Demand estimation error. Source: Own.

If we look at how these algorithms simulate prices, we have a clear idea of the root
of this problem. As shown in Figure 6, when users were passive and network effects
increased, algorithms were confused between two equilibria: the real equilibrium with
passive expectations (which corresponds to those results around zero) and the equilibrium
with responsive expectations (which corresponds to those results with negative difference,
lower prices). In other words, in cases where users were passive and network effects were
high, the algorithms could increase competition beyond the optimum.

In addition, it could make prices lower than when the best-response agent set prices
(e.g., humans). However, this case was not unique. As we observe in Figure 6, when users
had semipassive or wary expectations, the algorithms were confused too, but the degree
of divergence was not as striking as when users were passive. This result suggested that
if algorithms could not account for how users formed expectations or if they assumed
generic ways of dealing with expectations, we would likely obtain mixed results when
implementing them in real cases.

Figure 6. Price estimation error. Source: Own.

These results should call for caution when implementing pricing algorithms, as it is
likely that the same architecture is used in different markets that share the same set of
characteristics, such as differentiation or network effects. Thus, it is critical to address that
each market may have different network effects and how they are generated, as our results
illustrate. Two markets may highly value the presence of other users, but one may be quite
reactive to changes in the user base while the other may be more “passive”. Without taking
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these characteristics into account, the same algorithm can give good results in our market
and suboptimal results in other markets.

Finally, we can look at the profits when addressing the consequences of how the
algorithms learn about expectations. More specifically, we can focus on the difference
between the profits of a best-response agent and those of the algorithms. In Figure 7, we
show that as we increased the network effects, the gap between what a best-response agent
and the algorithms earned became larger. This reinforced the previous insights by showing
that algorithms might require refinements depending on how people form expectations
and should discourage the use of generic solutions.

Figure 7. Difference in profits between the best-response agent and algorithms. Source: Own.

Recently, we have seen a steady increase in services offering pricing algorithms to
retailers. In many cases, this could be an optimal solution for those who cannot track
market changes or know little about how to react to competitors. However, it may come at
a cost if algorithms cannot adapt (or are not instructed to do so) when network effects are
present and expectations differ.

In this regard, note that our algorithms did not address the different ways in which
people formed expectations, but only recognized their presence. Intuitively, if algorithms
learn from their environment, we can instruct them to recognize the presence of network
effects and let them learn from their environment how they are formed. However, we
show that this may not be a good idea because when we introduce network effects in their
objective functions, we are making assumptions about how expectations are formed. This
is the root of the problem that led to the results we presented in this paper. Therefore, we
encourage the need to create specific modules for this type of market that are sensitive to
the presence of other people.

4. Discussion

Users prefer to join platforms with content or services, and developers prefer to join
platforms with a large user base. In other words, digital platforms are based on network
effects. The more users, the more developers the platform can attract, and vice versa.
In this regard, the economic literature has emphasized that understanding how people
form expectations about how others will behave is fundamental to price setting [23]. On
the other hand, in recent years, we have observed how simple algorithms without prior
knowledge of the market have been able to learn the market dynamics and set optimal
prices or even learn to collude [4,5]. These two facts lead to an immediate question: Can
simple algorithms learn about how people form their expectations?

In this work, we contributed to the literature by addressing how two well-known
algorithms (PSO and DE) behaved when setting prices. The key difference with other
works was that we assumed a market with indirect network externalities (users cared
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about the number of developers, and developers cared about the number of users) in
which competitors were best-response agents. First, we showed that when algorithms
formed correct expectations, it did not matter if we had algorithms or best-response agents
in the market. The market reached its theoretical equilibrium. However, the accuracy
could vary depending on the chosen algorithm and the market characteristics. We noted
an exception when several equilibria were possible, in which the algorithms exhibited a
coordination problem.

Once we had considered that algorithms could not form correct expectations, this
problem was exacerbated, and algorithms did not coordinate in theoretical equilibria,
leading to a suboptimal solution where competition was stronger than expected. Since
algorithms impose a higher degree of competition than usual, this should not worry
consumers or the authorities. However, it poses a challenge for companies, as it highlights
that algorithms are as dependent as best-response agents on what assumptions we make
about the expectation formation process. In this paper, we assumed that the algorithms
reacted to network effects. If prices for developers changed, algorithms considered that it
would affect users. While that may be true, it imposes a subtle behavior on the algorithms
that can lead to suboptimal results, as we observed here.

In this paper, we adopted a basic version of PSO and DE. At this point, some readers
may wonder what the impact would be of adopting deep learning methods. On the one
hand, they are likely to improve the performance we document here. On the other hand,
the literature linking algorithms and their use as a pricing mechanism in economic theory
is still in its infancy. In other words, we are still learning the pros and cons of using basic
algorithms for pricing. A key challenge is to link specific parameterizations with economic
intuitions, which is not always easy or feasible. This is the main limitation so far and poses
an interesting problem for future work.

In addition, our results showed that it was necessary to find a way to provide algorithms
with knowledge about how expectations were formed. General solutions may not work and
may be counterproductive, as our results illustrated. Therefore, even if an algorithm promises
faster repricing or more elaborate pricing strategies, a nuanced approach is required. In future
work, our goal will be to address how we can help algorithms recognize how consumers form
expectations without the need to impose assumptions about network effects.
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