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Abstract: The control synchronization of multiple electrohydraulic actuators (MEHAs) is initially
discussed to ensure the consensus of every electrohydraulic actuator (EHA) with three-order iso-
morphic dynamics. First, the EHA model is linearized using the Lie derivative method to obtain the
state-space model of MEHAs. Then, the disturbance observer is used to estimate and compensate
for the unknown external load caused by the driving force of a motion plant. Via the Lyapunov
technique, this protocol asymptotically achieves consensus to a zero neighborhood with the ultimate
boundaries of the MEHAs’ state errors. The effectiveness of the synchronous control protocol is
verified by both simulation and experimental benches with two-node EHAs.

Keywords: multiple electrohydraulic actuators; synchronous control protocol; disturbance observer;
feedback linearization

1. Introduction

An electrohydraulic servo system (EHSS) represents a popular driving actuator used in
some areas of mechanical engineering such as hydraulic exoskeletons [1], hydraulic bounc-
ing systems [2], quadruped robotics [3], hydraulic manipulators [4], shaking tables [5], etc.
Previous works on EHSS and other mechatronics focused on uncertain parametric estima-
tions [6–10] and external load compensations [11–16]. By not addressing the uncertainty
and external load, the EHSS output performance will decline. In addition, some uncer-
tainties and disturbances are well handled in pneumatic loading systems [17] and electric
power systems [18] by using adaptive control and data-mining technologies. Furthermore,
some parallel mechanisms driven by multiple electrohydraulic actuators, such as shak-
ing tables [19] and spatial electrohydraulic robots [20], are more challenging for realizing
collaborative control since the coupling nonlinearity should be addressed in advance.

The problem of the synchronous control of multiple EHSSs was initiated by Jafari et al.
[21]. The author proposed a distributed average consensus protocol used in the velocity
control loop of four EHSS nodes. This is the first time that multiagent control theory and
network topology has been integrated into an EHSS plant. Actually, distributed multiagent
cooperation [22] has recently garnered a lot of attention in the information domain, such
as formation spacecraft flight [23], distributed sensor networks [24], and collaborative
surveillance [25]. Nowadays, the distributed consensus is a fundamental problem for
multiagent collaborative control, which is closely related to formation control [26] and
flocking problems [27]. The consensus protocol is designed to guarantee that many agents
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achieve an agreement on finite quality. In the past twenty years, many researchers have
studied multiagent consensus problems from different perspectives and written several
papers. For example, a theoretical framework for the consensus algorithms [28] was
designed in multiagent network systems based on modern control techniques, matrix
theory, and algebraic graphs. Meanwhile, the cooperative control of autonomous mobile
agents [29] was studied with multiple leaders using different interconnection methods. To
address the consensus of multiagent systems with general linear and Lipschitz nonlinear
dynamics, Li et al. [30,31] presented both distributed adaptive static and dynamic consensus
controllers. Subsequently, an adaptive robust NN control for every node was given in [32]
to address the tracking consensus for nonlinear systems with high-order dynamics. In
addition, the consensus problem of directed multiagent networks [33] was discussed with
a variable delay and intrinsic nonlinear dynamics. The finite-time consensus issue of
multiagent systems was considered in [34]. The necessary and sufficient conditions for
common linear and a two-order multiagent consensus [35,36] were derived to solve the
linear multiagent consensus problem. Many distributed consensus algorithms [37–39]
were often handled by linear matrix inequality to achieve consensus. Considering switch
control theory, Wen et al. [40] provided proof that a multiagent system’s consistency with a
spanning tree could be converted into the stability proof of many low-dimensional systems.
Meanwhile, the consensus algorithm was also proposed in the smallest real part of the
Laplacian matrix with non-zero eigenvalues [41–43], which adopted both its own and
its neighbors’ local data. To avoid known global data of the Laplacian matrix, adaptive
consensus protocols were presented by Li et al. [44] and Su et al. [45], which depended
on the neighbors’ relative states. Unlike [46], this work considers an average consensus
rather than a lead-following tracking synchronization based on an undirected graph for
network topology.

Thanks to the above references for multiagent distributed control, this study has the
following contributions:

(i) A basic synchronous controller is tested in multiple EHAs to realize the consensus
of every EHA node with three-order nonlinear dynamics and an unknown external load.
To the best of the authors’ knowledge, this synchronous controller based on graph theory
has not been applied to an electrohydraulic plant until now.

(ii) By using the feedback linearization method, the linear model of MEHAs is set
up to conveniently design the synchronous consensus algorithm. Furthermore, a state-
feedback matrix is derived from the pole placement technique, which is considered in the
synchronous controller and improves the stable margin of MEHAs. Meanwhile, the general
disturbance observer is adopted to estimate the external load.

(iii) Unlike many of the previous references, a two-DOF robotic bench driven by
electrohydraulic actuators is used as the experimental bench for MEHAs with two nodes,
which can verify the proposed synchronous consensus protocol.

This manuscript has the following organization. The multiple electrohydraulic motion
model is constructed in Section 2. The synchronous control protocol is given in Section 3.
The simulations and the experimental verification of MEHAs are given in Sections 4 and 5.
Finally, the conclusion is drawn in Section 6.

2. Motion Plant Description

A synchronous control scheme for MEHAs’ average consensus in a network topology
based on undirected graph theory is described in Figure 1. Every electrohydraulic node has
an isomorphic model and standalone control protocol. A MEHAs cooperation guarantees
every EHA’s consensus to their center balance state O using the synchronous control
protocol design of the corresponding EHA.
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Figure 1. The synchronous control scheme for MEHAs’ average consensus in a network topology
based on undirected graph theory.

2.1. Nonlinear Dynamics of MEHAs

Jn Reference [47], the EHA had three system states such that Xi = [xi1, xi2, xi3]
T =

[y, ẏi, Ap pLi]
T . Hence, the linear state space model for the ith EHA is described as

ẋi1 = xi2

ẋi2 =
1
m
(xi3 − Kxi1 − bxi2 − FLi)

ẋi3 = −
4βe A2

p

Vt
xi2 −

4βeCtl
Vt

xi3

+
4βeCdwKsv Ap

Vt
√

ρ

√
ps − sgn(ui)xi3/Apui

, i = 1, . . . , n (1)

where sgn(·) is a signum function.
If the hydraulic parameters are assumed to be constant and a priori in every EHA

model, then the model in (1) is rewritten as
Ẋi = AXi + Bφ(xi3)ui + DLi

= f (Xi) + g(Xi)ui + DLi

yi = CXi = h(Xi)

, (2)

where

A =

 0 1 0
−θ1 −θ2 θ3

0 −θ4 −θ5

, B =

 0
0
θ6

, DLi =

 0
dLi
0

,

C = [1, 0, 0], θ1 = K/m, θ2 = b/m, θ3 = 1/m, θ4 = 4βe A2
p/Vt, θ5 = 4βeCtl/Vt, θ6 =

4βeCdKsvwAp/(Vt
√

ρ), dLi = −FLi(t)/m, φ(xi3) =
√

ps − sgn(ui)xi3/Ap, f (Xi) = AXi, g(Xi) =

[0, 0, θ6

√
ps − sgn(ui)xi3/Ap]T .

Remark 1. The function φ(xi3) is bounded and positive because the state xi3 yields 0 < pr <
x3/Ap < ps.

Assumption 1 ([11]). The external load FL is a variable disturbance that relies on the mechanical
plant motion, i.e., FL(t) = FL(t, X). However, FL is bounded such that |FL(t)| ≤ FL max, where
FL max is an unknown constant.
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2.2. Feedback Linearization Transformation

Consider the single-input and single-output systems for the ith EHA (2). Via the Lie
derivative method [48], the precise feedback linearization model of MEHAs is derived
using the following procedure.

At first, a new state vector is described such that zi = [zi1, zi2, zi3]
T = [xi1, xi2,−θ1xi1−

θ2xi2 + θ3xi3]
T . Because the derivative

...
y i = −θ1 ẋi1 − θ2 ẋi2 + θ3 ẋi3 includes the control

ui, the nonlinear model (2) has three relative orders. Therefore, żi1 = zi2, żi2 = zi3, and
żi3 yield

żi3 = −θ1 ẋi1 − θ2 ẋi2 + θ3 ẋi3

= θ1θ2xi1 − (θ1 − θ2
2 + θ3θ4)xi2 − (θ2θ3 + θ3θ5)xi3

+ θ3θ6

√
ps − sgn(ui)xi3/Apui − θ2dLi

. (3)

Secondly, the dynamic żi3 is linearized using the Lie derivative technique as follows:

L f h(Xi) =
∂h
∂x

f (Xi) = xi2

L2
f h(Xi) =

∂L f h
∂Xi

f (Xi) = −θ1xi1 − θ2xi2 + θ3xi3

L3
f h(Xi) =

∂L2
f h

∂Xi
f (Xi) = θ1θ2xi1

− (θ1 − θ2
2 + θ3θ4)xi2 − (θ2θ3 + θ3θ5)xi3

. (4)

In a linearized model, ui in (2) is converted into the new control variable vi, which has
the following condition

ui = α(Xi) + γ−1(Xi)vi (5)

where

α(Xi) = −
L3

f h

LgL2
f h

= − θ1θ2xi1 + (−θ1 + θ2
2 − θ3θ4)xi2

θ3θ6

√
ps − sgn(ui)xi3/Ap

+
(θ2θ3 + θ3θ5)xi3

θ3θ6

√
ps − sgn(ui)xi3/Ap

,

γ(Xi) = LgL2
f h = θ3θ6

√
ps − sgn(ui)xi3/Ap.

(6)

Hence, the feedback linearization model for (2) is derived as follows:{
żi = Aczi + Bcγ(Xi)[ui − α(Xi)] + D̄Li

yi = Cczi
, (7)

where

Ac =

 0 1 0
0 0 1
0 0 0

, Bc =

 0
0
1

, D̄Li =

 0
dLi
−θ2dLi

,

Cc =
[

1 0 0
]
.

In (5)–(7), the feedback linearization model of the MEHAs’ nonlinear dynamics is
described as 

żi1 = zi2

żi2 = zi3 + dLi

żi3 = vi − θ2dLi

yi = zi1

, (8)
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and is standardized to the state space form

żi = Aczi + Bcvi + D̄Li. (9)

Remark 2. The model in (9) is a precise linearization of the primary model in (1). Moreover, the
control ui in (5) and its transformed form vi in (9) are inverse.

3. Synchronous Protocol Derivation

For a compact denotation, the state vector of MEHAs ξ = [ξ1, . . . , ξn]T = [z1, . . . , zn]T ∈
R3n×1 and the corresponding synchronous protocol v = [v1, . . . , vn]T ∈ Rn are defined.
Then the state space model of MEHAs is given by

ξ̇ = (In ⊗ Ac)ξ + (In ⊗ Bc)v + D̄L, (10)

where D̄L = [D̄L1, . . . , D̄Ln]
T ∈ R3n×1.

Definition 1 ([49]). A graph is a pair (Vn, εn), where Vn = 1, 2, . . . , n is a finite nonempty node
set and εn ⊆ Vn× ⊆ Vn is an edge set of ordered pairs of nodes. The edge (i, j) in the edge set of a
directed graph denotes that vehicle j can obtain the information from vehicle i, i.e., (i, j) ∈ εn. If
(i, j) ∈ εn, then the called weight of an edge aij > 0, else aij = 0. An undirected graph is a special
case of a directed graph, where an edge (i, j) in the undirected graph corresponds to edges (i, j) and
(j, i) in the directed graph. Then, a Laplacian matrix of MEHAs is defined as Ln = [lij] ∈ Rn×n

as follows:

lii =
n

∑
j=1,j 6=i

aij, lij = −aij, i 6= j. (11)

Since the external load D̄L is unknown in (10), the disturbance observer d̂L = [dL1, . . . , dLn]
T

is designed as follows:
˙̂dL = −QT

d (LT
n ⊗ BT

c )e−Mdd̂L, (12)

where Md denotes a diagonal gain, Qd is a state feedback gain of the disturbance observer,
e is the transformation of the state vector ξ defined as e =

(
Ln ⊗ P−1)ξ, and P is a positive

definite matrix to be selected.
The synchronous control protocol of the MEHAs is given by

vi = cKv
n
∑

j=1
aij(ξi − ξ j)+K̄pξi + qi d̂Li, i = 1, . . . n

⇔ v = (Ln ⊗ cKv + In ⊗ K̄p)ξ + Qdd̂L

, (13)

where v = [v1, . . . , vn]T , the constant c = 1/λmin, λmin is the minimal eigenvalue of Ln,
Kv = −BT

c P−1, K̄p is a state-feedback matrix using pole placement, and Qd = diag{q1, . . . , qn}.

Remark 3. The MEHAs’ consensus is directly guaranteed by the first item of vi in (13). The second
item K̄pξi is the pole configuration, which improves the system-stable margin of each EHA. The
external disturbance D̄Li is compensated for by the last item qi d̂Li.

Remark 4. The state-feedback matrix K̄p is used to transform the system matrix Ac into a stable
system matrix Āc using pole placement as Āc = Ac + BcK̄p. In other words, the new system
matrix’s eigenvalues λ(Āc) < 0.

Theorem 1. The MEHAs system in (10) involves the synchronous control protocol in (13) and
the disturbance observer in (12) under Assumption 1. If there exists a positive definite matrix P,
it yields (

ĀcP + PĀT
c + 2δI3 − 2BcBT

c

)
+ kP < 0, (14)



Electronics 2022, 11, 3925 6 of 16

where Āc = Ac + BcK̄p, δ and k are positive constants, then every node state ‖ξi(t)− ξ j(t)‖ <√
∆/(αλmin(P−1)), (i, j = 1, . . . , n, i 6= j), t → ∞, where ∆ is bounded and α is a positive

constant, i.e., the protocol in (13) asymptotically achieves consensus to a zero neighborhood with an
arbitrarily small size.

Proof. For the state vector ξ of the MEHAs in (10), the candidate Lyapunov function is
chosen as follows:

V =
1
2

n

∑
i=1

{[
n

∑
j=1

aij(ξ
T
i − ξT

j )P−1
n

∑
j=1

aij(ξi − ξ j)

]
+ d̃2

Li

}

=
1
2
[(Ln ⊗ I3)ξ]

T
[
(In ⊗ P−1)(Ln ⊗ I3)ξ

]
+

1
2

d̃T
L d̃L

=
1
2

eT(In ⊗ P)e +
1
2

d̃T
L d̃L

(15)

where the first evaluation item is the consensus errors of the MEHAs and the other item
d̃L = dL − d̂L is the observer estimation errors.

Then, the derivative V̇ yields

V̇ = ξT(LT
n ⊗ I3)(In ⊗ P−1)(L⊗ I3)ξ̇ + d̃T

L
˙̃dL

= ξT(LT
n ⊗ I3)(In ⊗ P−1)(LT

n ⊗ I3)·
[(In ⊗ Ac)ξ + (In ⊗ Bc)v + D̄L] + d̃T

L
˙̃dL

. (16)

Substituting the synchronous control protocol in (13) into (17), V̇ yields

V̇ = ξT(LT
n ⊗ I3)(In ⊗ P−1)(Ln ⊗ I3)[(In ⊗ Ac)ξ

+ (In ⊗ Bc)
(

In ⊗ K̄p + Ln ⊗ cKv
)
ξ

+ (In ⊗ Bc)Qdd̂L + D̄L] + d̃T
L

˙̃dL

= eT(In ⊗ ((Ac + BcK̄p)P) + Ln ⊗ cBvKvP
)
e

+ eT(Ln ⊗ I3)D̄L + eT(Ln ⊗ Bc)Qdd̂L + d̃T
L(ḋL − ˙̂dL)

≤ eT(In ⊗ (Ac + BcK̄p)P + Ln ⊗ cBvKvP
)
e

+
δ

2
eTe +

1
2δ

D̄T
L (LT

nLn ⊗ I3)D̄L +
δ

2
eTe

+
1
2δ

dT
L QT

d (LT
nLn ⊗ BT

c Bc)QddL

− eT(Ln ⊗ Bc)Qdd̃L − d̃T
L

˙̂dL + d̃T
L ḋL

≤ 1
2

eT(In ⊗ ((Ac + BcK̄p)P + P(Ac + BcK̄p)
T

+ 2δI3) + 2Ln ⊗ cBcKvP)e +
1
2δ

D̄T
L (LT

nLn ⊗ I3)D̄L

+
1
2δ

dT
L QT

d (LT
nLn ⊗ BT

c Bc)QddL

− d̃T
L [

˙̂dL + QT
d (LT

n ⊗ BT
c )e] +

1
2

d̃T
L d̃L +

1
2

ḋT
L ḋL

=
1
2

eT
(

In ⊗
(

ĀcP + PĀT
c + 2δI3

)
+ 2Ln ⊗ cBcKvP

)
e

− d̃T
L [

˙̂dL + QT(LT
n ⊗ BT)e]

1
2δ

dT
L [
(

1 + θ2
2

)
LT

nLn

+ QT
d (LT

nLn ⊗ BT
c Bc)Qd]dL +

1
2

d̃T
L d̃L +

1
2

ḋT
L ḋL

(17)
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where
D̄T

L (LT
nLn ⊗ I3)D̄L

= (dT
LLT

nLn ⊗
[

0 1 −θ2
]
)(dL ⊗

[
0 1 −θ2

]T
)

= dT
LLT

nLndL ⊗ (1 + θ2
2)

= (1 + θ2
2)d

T
LLT

nLndL

. (18)

Let ∆= 1
2δ dT

L [(1 + θ2
2)LT

nLn + QT
d (LT

nLn ⊗ BT
c Bc)Qd + δMT

d Md]dL +
1
2 ḋT

L ḋL, and substi-
tuting the disturbance observer in (12) into (17), V̇ is given by

V̇ =
1
2

eT(In ⊗ (ĀcP + PĀT
c + 2δI3) + 2Ln ⊗ cBcKvP)e

+ d̃T
L Mdd̂L +

1
2δ

dT
L [(1 + θ2

2)LT
nLn

+ QT
d (LT

nLn ⊗ BT
c Bc)Qd]dL +

1
2

d̃T
L d̃L +

1
2

ḋT
L ḋL

≤ 1
2

eT(In ⊗ (ĀcP + PĀT
c + 2δI3) + 2Ln ⊗ cBcKvP)e

− d̃T
L(Md − In)d̃L + ∆

. (19)

In (19), the item 2Ln ⊗ cBcKvP involves the unknown variable matrix P and the
specified matrix Kv. If Kv is designed as Kv = −BT

c P−1, then the first item in (19) is
converted into an LMI as follows:

V̇ ≤ 1
2

eT(In ⊗ (ĀcP + PĀT
c + 2δI3)− 2Ln ⊗ cBcBT

c )e

− d̃T
L(Md − In)d̃L + ∆

. (20)

For the Laplacian matrix Ln of MEHAs, there exists an orthogonal matrix U such that
UTLnU = Λ, where Λ is a diagonal matrix. Then, a linear transformation is defined as
ẽ = (U ⊗ Im)e, and V̇ is rewritten as

V̇ ≤ 1
2

eT((UT ⊗ Im)[In ⊗ (ĀcP + PĀT
c + 2δI3)](U ⊗ Im)

− 2(UT ⊗ Im)(ULnUT ⊗ cBcBT
c )(U ⊗ Im))e

− d̃T
L(Md − In)d̃L + ∆

≤ 1
2

ẽT(In ⊗ (ĀcP + PĀT
c + 2δI3)

− 2Inλmin ⊗ cBcBT
c )ẽ− d̃T

L(Md − In)d̃L + ∆

=
1
2

eT(In ⊗ (ĀcP + PĀT
c + 2δI3 − 2cλminBcBT

c ))e

− d̃T
L(Md − In)d̃L + ∆

(21)

where λmin is the minimal eigenvalue of Ln, except for the only zero eigenvalue.
Since the constant c is designed as c = 1/λmin in (13), according to the LMI condition

(14), V̇ yields

V̇ ≤ − k
2

eT(In ⊗ P)e− 1
2

d̃T
L [2(Md − In)]d̃L + ∆. (22)

Let α = min{kλmin(In ⊗ P), 2λmin(Md − In)}; V̇ satisfies

V̇ ≤ −αV + ∆. (23)
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Integrate the two sides of (23) and V yields

V(t) ≤ V(0)e−αt +

t∫
0

∆e−α(t−ε)dε

≤ V(0)e−αt + ∆(1− e−αt)/α

. (24)

Now, from (24), let t → ∞, the convergence domain for the MEHAs’ synchronous
error is Hr =

√
∆/(αλmin(P−1)). Furthermore, the dimension of Hr mainly relies on the

magnitude ∆/α. Thus, the larger constant k and the smaller constant α can reduce the
dimension of Hr when t→ ∞.

Figure 2 shows the flow chart of the average consensus control scheme of the MEHAs.
The MEHAs’ nonlinear dynamics are set up (2). Using the feedback linearization method,
the MEHAs’ linear form is represented (9), from which the state space model of the MEHAs
is derived (10). To address the unknown external load, the disturbance observer (12) is
designed and compensated for in the synchronous control protocol (13). This synchronous
protocol is based on the undirected graph shown in Figure 1, which means that each node
can share its respective information. The objective of the proposed synchronous protocol is
to guarantee the state consensus of all nodes.

MEHAs
systems (2)

 Feedback 
linearization (9)

Disturbance 
observer (12) 

Consensus
control protocol

(13)

  MEHAs model 
(10)

State  transformation
1( )ne L P  

( 1, , , 1, 2,3)ijx i n j 

e

ˆ
Ld

iv

( 1, , , 1, 2,3)ijz i n j 

Figure 2. The flow chart of the average consensus control scheme

4. Simulation Results

For the convenience and consistency of the following experiments, two EHAs are
simulated to verify the proposed synchronous control scheme. Some model parame-
ters of MEHAs are given by θ1 = 500, θ2 = 50, θ3 = 0.5, θ4 = 5.63 × 105, θ5 = 348,
θ6 = 1.13 × 103, ps = 40 bar, pr = 2 bar, and Ap = 4.91 cm2. The two external load
disturbances are assumed to be FL1 = 0.5 sin(0.5πt) and FL2 = 0.3 sin(0.5πt). The dis-
turbance observer parameters are Qd = diag{10, 10} and Md = diag{4, 4}. The syn-
chronous control parameters are Ln = [1,−1; 1,−1], c = 1/2, k = 1, δ = 0.1, and
P = [0.14,−0.33,−0.14;−0.33, 1.03,−1.47;−0.14,−1.47, 15.89]. The state-feedback ma-
trix is K̄p = K̄p1 = [−600,−250,−29] and its corresponding pole placement is λ1(Āc) =
[−10,−15,−4] for the matrix Ac. The initial values of the two EHAs are x11(0) = 30 mm,
x12(0) = 10 mm/s, x13(0) = 100 N, x21(0) = −20 mm, x22(0) = −10 mm/s, and
x23(0) = −100 N.

4.1. Simulation Verification of the Two Nodes

The simulation results of the average consensus controller are shown in Figures 3–5.
Since MEHAs have an undirected topology, as shown in Figure 1, the corresponding state
responses of the two nodes achieved consensus, as shown in Figure 3. In other words, the
synchronous state errors involving the cylinder position error x11 − x21, the velocity error
x12 − x22, and the load pressure error x13 − x23 converged to zero using the synchronous
control protocol (13), as shown in Figure 4. In addition, by using the disturbance observer
(12), the disturbance estimation d̂Li is well regulated to track the real disturbance value dLi
with a satisfactory disturbance estimation error d̃Li, as shown in Figure 5.
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Figure 3. The MEHAs’ state responses of the two nodes in the simulation: xi1—the cylinder position;
xi2—the cylinder velocity; xi3—the cylinder load pressure; ui—the control voltage of the servo valve.
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Figure 4. The MEHAs’ state errors of the two nodes in the simulation: x11 − x21 (the red line) —the
cylinder position error; x12 − x22 (the pink line) —the cylinder velocity error; x13 − x23 (the blue line)
—the cylinder load pressure error.

0 1 2 3 4 5
−100

0

100

200

Time(s)

d̂ L
1
(N

)

 

 

d̂L1

dL1

0 1 2 3 4 5
−100

0

100

200

Time(s)

d̃ L
1
(N

)

0 1 2 3 4 5
−15

−10

−5

0

5

Time(s)

d̂ L
2
(N

)

 

 

d̂L2

dL2

0 1 2 3 4 5
−15

−10

−5

0

5

Time(s)

d̃ L
2
(N

)

Figure 5. The disturbance observers and their corresponding errors of the two nodes in the simulation:
dLi is the disturbance actual value, d̂Li is the disturbance observer estimation, d̃Li is the disturbance
estimation error.

4.2. Comparison with Different State-Feedback Matrices

To analyze the consensus rate of the two nodes, the other two state-feedback matrices
mentioned in the synchronous control protocol (13) are selected as K̄p2 = [−2400,−580,−43]
and K̄p3 = [−5250,−1025,−60]. The respective pole placements are λ2(Āc) = {−15,−20,−8}
and λ3(Āc) = {−35,−15,−10}. The corresponding comparative state response results are
shown in Figures 6–8. The consensus rate with the state-feedback matrix K̄p = K̄p3 was
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faster than that of the other two conditions since its matrix had the largest gain elements
among the three conditions. In other words, the larger the state-feedback gain K̄p, the faster
the consensus rate. Furthermore, the three steady-state errors |x1i − x2i|(i = 1, 2, 3) with
respect to the largest matrix gain K̄p3 were less than those of the other two conditions, which
indicates the favorable consensus effect using the proposed synchronous control protocol.
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Figure 6. The comparative position response results of the three state-feedback matrixes using pole
placement in the simulation.
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placement in the simulation.
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5. Experimental Verification

To verify the synchronous control scheme for MEHAs, the experimental bench with
two electrohydraulic actuator nodes is built, which is shown in Figure 9. Each EHA node is
composed of a servo valve and a hydraulic cylinder, respectively, which drive the robotic
upper arm and forearm motion simultaneously. In fact, the dynamics of the two robotic
arms become the two external loads of the MEHAs. The MEHAs’ three states are measured
by the displacement and pressure transducers, respectively. The measured resolutions for
the displacement and pressure transducers are less than 10−3. The range of the hydraulic
cylinder is 80 mm due to the joint constraints of the robotic arm. An accumulator is
adopted to supply the hydraulic transient flow. The disturbance observer parameters
are Qd = diag{30, 30} and Md = diag{2, 2}. The synchronous control parameters are
Ln = [1,−1; 1,−1], K̄p = K̄pb = [−4400,−860,−52], c = 1/2, k = 1, δ = 0.01, and
P = [0.39,−2.02, 0.18;−2.02, 12.76,−30.9; 0.18,−30.9, 502.6]. The initial values of the two
EHAs are x11(0) = −11 mm, x12(0) = 0 mm/s, x13(0) = −324 N, x21(0) = 67 mm, and
x22(0) = 0 mm/s, x23(0) = −325 N.

5.1. Experimental Verification of Two Nodes

The MEHAs’ state responses of the two nodes in the experiment are shown in Figure 10.
The nodes 1 and 2 EHAs drive the robotic upper arm and the forearm rotations, respec-
tively. After 2 s, a consensus is achieved using the proposed synchronous control protocol.
The steady-state pressures x13 and x23 of the two nodes are not close to zero since the
existing external loads should be compensated for by xi3 from the driving force of the two
robotic arms. Note that 8.5 s later, two cylinder positions gradually approach the zero point
(mechanical balance state) due to the gravities of the two robotic arms. Meanwhile, the
load pressure of the robotic upper arm is increased to hold the two static gravities of both
robotic arms. Hence, the load pressure errors of the two nodes |x13 − x23| are of greater
magnitudes than the corresponding position and velocity errors |x1i − x2i|(i = 1, 2), as
shown in Figure 11. At the mechanical balance states, the control voltages of the servo
valve are zero, which means that the two hydraulic flows are cut off to supply the constant
load pressures for the respective gravities of the robotic arms.

5.2. Experimental Comparison Results

Similar to the simulation comparison, the other two state-feedback matrices are se-
lected as K̄pa = [−1200,−395,−36] and K̄pc = [−6000,−1150,−65]. Certainly, the cor-
responding initial state values could also be selected as (1) x11(0) = 42 mm, x12(0) = 0
mm/s, x13(0) = 340 N, x21(0) = −8 mm, x22(0) = 0 mm/s, and x23(0) = 383 N; (2)
x11(0) = −11 mm, x12(0) = 0 mm/s, x13(0) = −345 N, x21(0) = 69 mm, x22(0) = 0
mm/s, and x23(0) = −323 N. The corresponding comparative state responses are shown in
Figures 12–14. Since the state-feedback matrix K̄pc had the largest gain elements, its consen-
sus rate was faster than the other two conditions, which is consistent with the simulation.
Meanwhile, the steady-state error |x11 − x21| < 2 mm with respect to the largest matrix
gain K̄pc verified the effectiveness of the proposed synchronous control protocol. The
steady velocity values of the two nodes entirely approached zero for the three conditions,
as shown in Figure 13. Note that in the fast-response condition (i.e., K̄p = K̄pc), the load
pressure error of the two nodes x13 − x23 was quickly reduced from 2600 N to 400 N, as
shown in Figure 14, since the supply pressure of the hydraulic pumps was relieved by the
relief valve. This operation can reduce the scattering loss of the EHSS.
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Figure 9. The experimental bench construction of the MEHAs with two EHA nodes: 1—node 1 (servo
valve 1 and hydraulic cylinder 1); 2—node 2 (servo valve 2 and hydraulic cylinder 2); 3—robotic
upper arm; 4—robotic forearm; 5—displacement transducer; 6—pressure transducer; 7—bench torso;
8—accumulator.
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Figure 10. The MEHAs’ state responses with two nodes in the experiment: xi1—the cylinder position;
xi2—the cylinder velocity; xi3—the cylinder load pressure; ui—the control voltage of the servo valve.
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Figure 11. The MEHAs’ state errors of two nodes in the experiment: x11 − x21 (the red line)—the
cylinder position error; x12 − x22 (the pink line)—the cylinder velocity error; x13 − x23 (the blue
line)—the cylinder load pressure error.
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Figure 12. The compared position response results of the three state-feedback matrices using pole
placement in the experiment.
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placement in the experiment.
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Figure 14. The compared pressure response results of the three state-feedback matrices using pole
placement in the experiment.

6. Conclusions

In this study, a synchronous controller is used in multiple electrohydraulic actuators
to realize the average consensus of every EHA node based on undirected graph theory.
The feedback linearization model of the EHA with external load disturbance is set up to
derive the linear state space model of MEHAs. Then, the synchronous control protocol
is designed based on undirected network topology. Finally, a two-DOF robotic bench is
set up to verify the effectiveness of the distributed control scheme. To be honest, the EHA
nodes in this study are not adequate due to the robotic bench constraints. However, the
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proposed synchronous control method can be promoted in general mechatronic systems
driven by multiple electrohydraulic actuators based on graph theory and cooperative
control protocol. In the future, distributed synchronous control will be investigated based
on directed spanning-tree topology and communication delays.
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Nomenclature
Cd Discharge coefficient of the servo valve
w Area gradient of the servo valve
ps, pr Supply pressure and return pressure
pL Load pressure of the hydraulic cylinder
ρ Density of the hydraulic oil
Ctl Total leakage coefficient of the hydraulic cylinder
βe Effective bulk modulus
Ap Annulus area of the hydraulic cylinder chamber
Vt Total volume of the hydraulic power mechanism
K Spring stiffness coefficient of the hydraulic cylinder
m, b Load mass and viscous damping coefficients
FL External load of the electrohydraulic system
Ksv, u Gain and control voltage of the servo valve
⊗ Kronecker product for the matrix
In Identity matrix with n orders
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