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Abstract: Electromyography is a diagnostic medical procedure used to assess the state of a muscle
and its related nerves. Electromyography signals are monitored to detect neuromuscular abnormali-
ties and diseases but can also prove useful in decoding movement-related signals. This information
is vital to controlling prosthetics in a more natural way. To this end, a novel analog integrated voting
classifier is proposed as a hand gesture recognition system. The voting classifiers utilize 3 separate
centroid-based classifiers, each one attached to a different electromyographic electrode and a voting
circuit. The main building blocks of the architecture are bump and winner-take-all circuits. To confirm
the proper operation of the proposed classifier, its post-layout classification results (91.2% accuracy)
are compared to a software-based implementation (93.8% accuracy) of the same voting classifier. A
TSMC 90 nm CMOS process in the Cadence IC Suite was used to design and simulate the following
circuits and architectures.

Keywords: analog VLSI implementation; centroid-based classifier; hand gesture recognition; low-
power design; voting classifier

1. Introduction

A new generation of devices, based on the development of circuits and systems
that enable real-time health monitoring, prevention, and personalized medicine for a
variety of chronic and acute diseases, has generated a high amount of interest in wearable
technology [1]. Such devices provide relevant information and analyses directly to users,
enabling real-time feedback. To this end, wearable biosensors have evolved to the point
that they can be considered ready for clinical application [2–4]. In the next few years,
wearable systems will be a part of clinical evaluations, mostly in cases involving continuous
patient monitoring over extended periods of time [5]. In addition, these biosensors allow
healthcare providers to monitor the physiological traits of patients and prevent high-risk
sudden acute events.

The progress in wearable technology has resulted in the creation of compact, low-cost,
energy-efficient, and real-time integrated circuits (ICs) [6]. More specifically, at a system-
level analysis, these new advancements are combined with new computing paradigms and
machine learning (ML) techniques to provide smart wearable biosensors [7–9]. This can be
a promising alternative for both clinical patient monitoring and disease detection. There are
different examples of measuring biopotentials, such as an electrocardiogram (ECG), elec-
troencephalogram (EEG), electromyogram (EMG), or electrooculogram (EOG) [10]. In the
case of an EMG, muscle response or electrical activity in response to a nerve’s stimulation
of the muscle can be measured [11]. Pairs of electrodes are used on a specific muscle and a
separate location is used as a reference for EMG measurements. This continuous activity
can detect neuromuscular abnormalities. However, besides measuring biopotentials, there
are other sensors to monitor human gestures, such as optical sensors [12], piezoelectric
sensors [13], skin-friendly soft elastic material sensors [14], and biochemical sensors [15].
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Recently, there are cases in which health monitoring is necessary for an extensive
period of time while away from a hospital [16]. Smart, battery-dependent, area-efficient
wearable devices can help patients maintain normal lives. New computing methods
have been provided as promising alternatives to power-hungry–high latency biosensors.
These methods are based on a combination of two basic paradigms; edge computing and
analog computing [7,8]. With distributed computing, the processing and monitoring are
achieved as close to the originating sources as possible. Moreover, in analog computing,
by incorporating application-specific mathematical approaches and sub-threshold region
techniques, both area and power efficiency are provided [17].

We were motivated by the need for low-power biosensors [18,19]; thus, we combined
sub-threshold-based analog computing techniques with ML ones [17]. To this end, in this
work, a low-voltage (0.6 V), low-power (31.5 µ) voting classifier analog is introduced as a
hand gesture recognition circuit. It is based on the mathematical modeling of the software-
based classifier using two main circuits. An ultra-low power Gaussian function circuit [20]
and an argmax operator circuit [21] were employed as building blocks. The classifier
was trained and tested on a real-world hand gesture recognition dataset [22]. Post-layout
simulation results were conducted on a TSMC 90 nm CMOS process using the Cadence IC
suite; results were compared with a software-based implementation. Moreover, the Monte
Carlo analysis confirmed the proper sensitivity of the implemented architecture [23].

The remainder of this paper is organized as follows. Section 2 refers to the background
of this work. More specifically, the fundamentals of EMG and related applications as well as
the mathematical model of the voting and the centroid-based classifier are explained. The
basic building blocks and the proposed high-level architecture of the analog classifier are
presented in Section 3. The proper operation of the implemented classifier was confirmed
via a real-world hand gesture recognition dataset, as discussed in Section 4. A performance
summary regarding analog classifiers is provided in Section 5. Our concluding remarks are
presented in Section 6.

2. Background
2.1. Electromyography and Applications

An EMG refers to the technique of detecting and measuring muscular movements
from the electrical activity of the nerves. By using specialized probes, called electrodes,
the signal is detected, amplified, and visualized at an oscilloscope. Generally, the detection
is achieved by intramuscular detectors, which are injected under the skin, or with surface
detectors, where the signal is also called surface EMG (sEMG) [11]. Depending on the
method, the EMG signal ranges from 0.1 to 10 mV and 50 to 150 Hz [24]. After the detection,
analog pre-processing circuits are vital in order to amplify the signal’s voltage range
and filter it in various denoised sub-signals. This procedure increases the quality of the
extracted EMG.

The detection of the EMG signal has numerous clinical applications, including diag-
nosing muscular disorders (e.g., Parkinson’s disease) or controlling prosthetic parts [25,26].
The latter is especially important in the development of dynamic prosthetic limbs, such
as arms, legs, and fully functioning hands. The most common approach for this pursuit
involves the installation of intramuscular electrodes. Multiple filtering stages, beginning
with a low pass filter, such as the fourth order Butterworth, a high pass, and a notch filter,
are paramount. After that, the EMG signals become smooth, amplified, convert to pulses,
and pass in the servo motors, which move the artificial parts [24,27,28].

In the literature, ML is a highly researched technique used for decomposing and
decoding EMG signals [29]. Typical neural networks (NNs) have been utilized in diagnoses
and human–computer interaction (HCI) methods. For instance, the recognition of various
neuropathies can be automated by monitoring EMG signals [30]. Alternatively, biosignals
can be decoded and then inserted as commands into a prosthetic machine. There are also
hardware implementations that aim to analyze EMG signals. Specified circuitry, such as
system-on-chips capable of performing classification by implementing a support vector
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machine (SVM) and neuromorphic spiking NN are paramount for low-power, fast-response
classification systems aiming for wearable or portable biomedical devices [31,32].

2.2. Mathematical Modeling of Centroid-Based Classifications

A voting classifier is composed of multiple sub-classifiers that manage the predictions
In essence, the prediction of each sub-classifier is a vote toward a specific class. The voting
classifier counts each vote and indicates the class with the most votes. In this work, all
votes are equal and all sub-classifiers are identical but they receive data from different EMG
electrodes. This, however, is not necessary for a voting classifier and one may introduce
weights on each vote as well as different designs and ML models for each sub-classifier.
The classifiers used in this work are built on a classical, centroid-based, ML procedure, i.e.,
the nearest class with a multi-centroid classification scheme. With the usage of multiple,
strategically selected, sub-classes per class, this algorithm is generally more capable than
a more naive form of centroid-based classification, the nearest class mean classifier. The
training of this ML model includes the first unsupervised clustering part along with a
supervised labeling one.

The clustering of the dataset is performed by the K-means algorithm. The K-means is
a simple hierarchical-based clustering technique that attempts to group objects without di-
rectly specifying the relation between them. Instead, the clustering is performed with a
reference centroid object c that does not necessarily belong in the dataset. The cj usually
represents the mean value of every object of cluster j. Therefore, the number of cj is also
the number of clusters that the algorithm attempts to derive. Given the number of clusters,
the calculation of the means is performed by a gradient descent type procedure [33,34].

After the optimization with the K-means algorithm, every class is represented by a
number of cij vectors where i is the class index and j is the subclass index referring to the
class [35,36]. The classification is then performed by the nearest class mean classifier, which
compares the data points of the dataset with all the sub-class mean vectors. As a result,
the classifier’s predictions are given by:

y(q) = argmax
i∈[1,N]&j∈[1,Ki]

{sim(q, cij)}, (1)

where y(q) is the label of the data point q, Ki is the number of centroids assigned to class
i, and sim() is a similarity function. In this work, sim() is chosen as the multivariate
Gaussian function:

N (X|M, Σ) =
e−

1
2 ·(X−M)T ·(Σ)−1·(X−M)√

(2π)N |Σ|
, (2)

where each sub-class M is the vector representing the chosen centroid and Σ is the singu-
lar matrix.

3. Proposed Architecture

The proposed voting classifier is composed of a centroid-based classifier and a simple
voting circuit, aimed at 4-class and 10-feature classification problems. However, the same
design methodology can be applied to any classification problem with different numbers of
classes or input features [37]. Another tunable hyperparameter is the number of sub-classes,
which was optimized using the K-means algorithm [35] at 6, 6, 4, and 3 for each class,
respectively. This optimization also considered the complexity of the model, since in an
application-specific classifier, power and area efficiency are paramount. Both architectures
utilized bump (Gaussian function) [37] and WTA [21] circuits as their main building blocks.
The power supply rails are set as VDD = −VSS = 0.3V and, hence, all transistors operate in
the sub-threshold region.



Electronics 2022, 11, 3915 4 of 15

3.1. Centroid-Based Classifier

Bump circuits are used as compact ways to implement Gaussian functions [20,38].
In this work, a fully electronically tunable bump circuit, proposed in [37], is utilized and
shown in Figure 1. To achieve a higher quality in the produced Gaussian curve, shown in
Figure 2, an increase in the dimensions of the differential block transistors was applied.
This modification affects the linearity of the differential pair’s sigmoidal output current,
at the cost of the chip-area [39]. As shown in Figure 1, this aspect ratio is set to 7 and the
transistor dimensions are summarized in Table 1.

7 : 1 1 : 7

Figure 1. The utilized bump circuit. The parameter voltages Vr, Vc, and the bias current Ibias control
the Gaussian function’s mean value, variance, and peak value, respectively.

Figure 2. The output current of the modified (orange) and the baseline (blue) bump circuits. The con-
trolling parameters for both circuits are set to Vr = 0 V, Vc = 150 mV, and Ibias = 6 nA.
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Table 1. MOS Transistor Dimensions (Figure 1).

NMOS Differential Block W/L (µm/µm) Current Correlator W/L (µm/µm)

Mn1,Mn4 2.8/0.4 Mp1,Mp2 1.6/1.6
Mn2,Mn3 0.4/0.4 Mp3-Mp6 0.4/1.6
Mn5-Mn8 0.4/1.6 - -
Mn9,Mn10 1.6/1.6 - -

In the literature, multivariate Gaussian function curves are produced by expanding
the simple bump circuit [37,40]. In particular, by connecting N bump circuits sequentially,
the output current of the last bump circuit represents an N-D Gaussian function, as shown in
Figure 3. In this configuration, the parameters of each bump cell are tuned independently of
each other and from other calls. Specifically, each parameter voltage Vr equals the Gaussian
function’s mean value of its respective cell. Similarly, the bias current Ibias sets its peak
value. Lastly, the parameter voltage Vc controls the variance without affecting the peak
value of the Gaussian function.

Ibias VDD

Vin1 Vin

Vr

Vc

Iout

VSS

Bump 1

Vc1

Vr1

VSS

VDD

VDD

Ibias
Ibias VDD

Vin10 Vin

Vr

Vc

Iout

VSS

Bump 10

Vc10

Vr10

VSS

VDD

Iout1

Iout9

Iout10

Figure 3. By connecting 10 simple bump circuits sequentially, the output of the last one is equivalent
to a 10-D Gaussian function. Each bump circuit’s parameters (Vr, Vc, Ibias) are tuned independently.

A simple N input WTA circuit is composed of N neuron cells that share a single
bias current [21], both shown in Figure 4. For an NMOS-based neuron, all transistor
dimensions are set to W

L = 0.4µm
1.6µm . In the literature, the WTA is used to implement the

argmax operator [21]. However, a common problem with a WTA circuit is its wide linear
region, due to which, multiple winners may occur and, hence, undermine the predictions
of the classifier [37]. To counter this effect, two solutions are utilized. The first one is
related to a previous work [37], in which more than 1 WTA was connected in a cascaded
format. In this work, a new area-efficient idea is proposed, to be used independently or
complementary to the aforementioned one. By adding a diode-connected transistor (Mn1)
beneath the input transistor of each neuron, as shown in Figure 4, the linear region of the
WTA circuit is decreased. This is demonstrated in Figure 5.
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Ibias

Ion1VDD
Iin1

VSS

IonNVDD
IinN

VSS

...

VSS

NMOS
Neuron

Cell 1


NMOS
Neuron

Cell N


VDD

Iin1

VSS

Mn1

Mn3

Mn2

Ion1

Ibias

VSS

Figure 4. Left: A N neuron NMOS-based Lazzaro WTA circuit. Right: a modified NMOS-based
Lazzaro WTA neuron. The PMOS-based variants for both circuits are built accordingly.
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0

1

2

3

4

5

Io
u
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)
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Proposed

Figure 5. Comparison between the baseline cascaded WTA and the proposed cascaded WTA circuits
with the added diode-connected transistor.

In this work, the utilized WTA block is composed of 2 simple WTA circuits, shown
in Figure 6. The first one receives 19 inputs (6 + 6 + 4 + 3, one for each sub-class) and its
outputs are added to account for 4 output currents (one for each class), given by:

Iin1,P =
6

∑
i=1

Ion{i},N (3)

Iin2,P =
12

∑
i=7

Ion{i},N (4)

Iin3,P =
16

∑
i=13

Ion{i},N (5)

Iin4,P =
19

∑
i=17

Ion{i},N (6)

This summation increases the aforementioned defect of the WTA circuit; therefore, a
second 4-input WTA circuit is required. The output currents of this circuit correspond to
the predictions of the classifier, shown in Figure 7; the one indicating the winning class has
a high value whereas the rest have values close to zero.



Electronics 2022, 11, 3915 7 of 15

NMOS WTA


VDD

Ibias,n

VSS

Iin1

Iin19

...

I1

I2

Ibias,n

Iin1,N1

Iin19,N1

VSS

Ion1,N1

Ion6,N1
Ion7,N1

Ion12,N1

...
...

Ion13,N1

Ion16,N1
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...
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I3

I4
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...
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...
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Figure 6. The utilized WTA circuit is composed of a 19-neuron WTA and a 4-neuron WTA circuit
connected sequentially. The output currents of the first WTA circuit that correspond to the sub-classes
of each class are summed and then inserted into the second WTA.
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Figure 7. The implementation of the analog centroid-based classifier. The output currents of each
multivariate bump circuit representing each sub-class are inserted into the WTA circuit to indicate
the winning class.

3.2. Voting Circuit

In the tackled application, the data from 3 electrodes are inserted on 3 separate centroid-
based classifiers. In practice, these classifiers can operate independently and accurately
predict the winning class. However, by combining the predictions, the overall accuracy
can be significantly increased. The voting circuit, shown in Figure 8, manages the output
currents of these classifiers. In particular, each current mirror adder (CMA), receives all
output currents that are related to a specific class, and calculates the summation. Since
the input currents of the CMAs are in a binary format, they essentially operate as a vote
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counter. Then, a final 4-input WTA circuit compares the added currents (that represent the
counted votes) to indicate the winning class.

FE1
 Classifier 1


I(1)out1

I(1)out2

I(1)out3

I(1)out4

FE3
 Classifier 3


I(3)out1

I(3)out2

I(3)out3

I(3)out4

......

CMA 1


I(1)out1

I(3)out1

...
... Iout1

CMA 4


I(1)out4

I(3)out4

... Iout4

WTA


...
...

Iout1

Iout2

Iout3

Iout4

Iin1

Iin4

I1

I2

I3

I4

......

Figure 8. The system-level implementation of the proposed voting classifier is composed of 3
processing parts: (left) analog feature extraction (FE) (middle), analog classifiers (right), and analog
voting circuit.

4. Application Example and Simulation Results

The proposed classifier was validated on a real-world gesture identification dataset
constructed from one of Kaggle’s EMG datasets [22], which consists of EMG signals for
7 different hand gestures. In particular, in this work, the classifier was trained to identify
4 different gestures: a resting position, victory gesture, and movements from the middle
or ring finger. The EMG stimulations, of the constructed dataset, were captured from
3 surface electrodes situated on the subject’s arm. These 3 particular electrode positions
had the biggest precisions regarding the four chosen gestures. As a result, the model
performed better at classifying this combination. To maximize the system’s performance,
the voting classifier is composed of 3 centroid-based classifiers, each one attached to a
single electrode. Each classifier operates with 10 time domain features provided from
the dataset: the standard deviation, the root mean square, the minimum, the maximum,
the zero crossings, the average amplitude change, the amplitude first burst, the mean
absolute value, the waveform length, and the Willison amplitude [22]. Most of these
features can be extracted from preprocessed EMG signals using analog feature extraction
techniques [41–44]. In that case, a fully analog classification system, such as the one shown
in Figure 9, utilized in smart sensor applications can be designed. In particular, the entire
processing stream from the acquisition of the biosignal to the decision of the classifier is
performed with analog circuits.

Analog

Processing


Circuits


Biosensor


Analog

Classifier


Analog
Feature

Extraction


EMG Signal
 Decision


Figure 9. Top-level concept architecture for a fully analog hand gesture recognition system. It receives
an EMG signal using a biosensor, which is then processed to enable the extraction of the classification
features. Lastly, the final decision (in a digital format) is achieved via an analog classifier without the
need for typical analog-to-digital converters.

In order to design and simulate the proposed architecture, the Cadence IC suite
tool was used in a TSMC 90 nm CMOS process. The layout, shown in Figure 10, is
designed based on the common-centroid technique to achieve better matching between the
transistors [45] and, therefore, extra dummy transistors were added. In the complete layout,
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the appropriate guard rings and input–output pads were added The following simulation
results were extracted using the designed layout (post-layout simulations).

0.
94

 m
m

1.781 mm
Figure 10. Layout of the proposed voting classifier, including the 3 centroid-based classifiers and the
voting circuit.

To account for random behaviors and confirm the robustness of both the centroid-
based and voting classifiers, 2 tests were conducted. In both tests, the analog classifiers
were also compared with identical software-based ones in terms of classification accuracy.
The first one measures the variation of the classification’s accuracy over 20 different training
iterations. The results are depicted in the classification’s histogram, shown in Figure 11,
and summarized in Table 2. For reference, the classification’s histograms for the centroid-
based classifiers attached to each electrode (classifiers 1, 2, 3) are depicted in Figures 12–14.
It is evident that the voting classifier that is composed of 3 single classifiers outperforms
them. The second test is a Monte Carlo sensitivity analysis for N = 100 points. This analysis
depicts the effects of process, voltage, temperature, and mismatch variations, at the circuit
level, in the classifier’s accuracy. The Monte Carlo histograms for the voting classifier and
classifier 1 are presented in Figures 15 and 16, respectively, and their characteristics are
summarized in Table 3. Here, the voting classifier has more robust sensitivity results than
its counterparts.

0.
89

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

Classification Accuracy

0
1
2
3
4
5
6
7
8

N
o
 o

f 
It

e
ra

ti
o
n
s

Software

Proposed

Figure 11. Classification accuracy histogram of the analog voting classifier over 20 iterations.
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Table 2. Classification accuracies (over 20 iterations).

Method Best Worst Mean Std.

Software Voting
classifier 0.954 0.915 0.938 0.012

Analog Voting
classifier 0.932 0.893 0.912 0.011

Software
Classifier 1 0.904 0.871 0.887 0.010

Analog
Classifier 1 0.904 0.85 0.875 0.014

Software
Classifier 2 0.916 0.858 0.889 0.016

Analog
Classifier 2 0.906 0.853 0.886 0.014

Software
Classifier 3 0.845 0.797 0.825 0.014

Analog
Classifier 3 0.844 0.777 0.805 0.017
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Figure 12. Classification accuracy histogram of the analog centroid-based classifier attached to the
first electrode (classifier 1) over 20 iterations.
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Figure 13. Classification accuracy histogram of the analog centroid-based classifier attached to the
second electrode (classifier 2), over 20 iterations.
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Figure 14. Classification accuracy histogram of the analog centroid-based classifier attached to the
third electrode (classifier 3) over 20 iterations.
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Figure 15. Monte Carlo histogram on the voting classifier’s accuracy for N = 100 points.
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Figure 16. Monte Carlo histogram of the analog centroid-based classifier attached to the first electrode
for N = 100 points.
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Table 3. Monte Carlo Analysis, classification accuracy.

Method Best Worst Mean Std.

Analog Voting classifier 0.915 0.901 0.912 0.004
Analog Classifier 1 0.910 0.565 0.884 0.038

5. Performance Summary and Discussion

In this section, a discussion related to the pure analog classifiers is summarized in
Table 4. Since most analog classifiers are application-specific, an unbiased comparison is
unavoidable and, therefore, the aim of Table 4 is not to compare but to provide a reference
point for the performance of the proposed work. However, voting classifiers present
strong advantages over typical architectures, because they extract data from multiple
different sources (in our case, from 3 electrodes) and, hence, increase the robustness of
the architecture. Additionally, while in this work, a simple centroid-based classifier is
used as the basic building block of the voting classifier, all architectures provided in
Table 4 can replace it to design a different voting classifier. These include a support vector
machine (SVM) [46–48], radial basis function (RBF), neural network (NN) [49], Gaussian
RBF network (GRBFN) [50], Gaussian mixture model (GMM) [37], or Bayesian [51] and
K-means-based [52] classifiers.

Table 4. Analog ML algorithm summary.

Technology Classifier No. of
Dimensions

Power
Consumption

Energy per
Classification Area

This Work 90 nm Voting 10 31.5 µW 225 pJ
classification 1.67 mm2

[37] 90 nm GMM 16 12.0 µW 96 pJ
classification 0.451 mm2

[46] 0.18 µm SVM 2 220.0 µW 252 pJ
vector 0.060 mm2

[47] 0.5 µm SVM 14 840.0 nW 21 nJ
classification 9.000 mm2

[48] 0.5 µm SVM N/A 5.9 mW 460 pJ
sample 9.000 mm2

[49] 0.5 µm RBF NN 2 N/A N/A 2.250 mm2

[50] 90 nm GRBFN 7 330 nW 2 pJ
vector 0.050 mm2

[51] 90 nm Bayesian 5 365 nW 2.15 pJ
classification 0.030 mm2

[52] 0.18 µm K-means 164 N/A N/A N/A

In this application, the dataset contains information from multiple sources. Instead of
combining them into a single classifier, the data are separated into 3 individual architectures,
which in turn comprise the voting classifier. By doing so, the complexity of the overall
design is significantly decreased; for instance, a 30-D bump circuit provides a low quality
Gaussian function that cannot be used in a classifier. However, three parallel 10-D bump
circuits operate adequately. The main trade-off is the increase in the chip area and power
consumption from the utilization of the voting circuit and the auxiliary circuits of each
classifier. As a result, reductions in power and area efficiency provide more reliable and
accurate architectures.

6. Conclusions

In this work, an analog-integrated voting classifier built around 3 analog centroid-
based classifiers was introduced. The latter were designed using bump and WTA circuits
as their main building blocks, whereas the voting classifier also required multiple current
adders and a simple WTA circuit. A real-world hand gesture recognition dataset was used
to validate the proper operation of the implemented classification system. Specifically,
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2 tests were conducted on the layout. One test involved classification accuracy and a Monte
Carlo analysis to validate the circuit’s sensitivity to variations and mismatches. The error in
the achieved accuracy (91.2%) compared to a software implementation of an identical ML
model (93.8%) was minimal. A TSMC 90 nm technology was used to design and simulate
all implemented architectures.
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