

Article **Provably Secure PUF-Based Lightweight Mutual Authentication Scheme for Wireless Body Area Networks**

SangCheol Lee¹, SuHwan Kim¹, SungJin Yu², NamSu Jho² and YoHan Park^{1,*}

- ¹ College of Engineering, Department of Computer Engineering, Keimyung University, Daegu 42601, Republic of Korea
- ² Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea
- Correspondence: yhpark@kmu.ac.kr; Tel.: +82-53-580-5229

Abstract: Wireless body area networks (WBANs) are used in modern medical service environments for the convenience of patients and medical professionals. Owing to the recent COVID-19 pandemic and an aging society, WBANs are attracting attention. In a WBAN environment, the patient has a sensor node attached to him/her that collects patient status information, such as blood pressure, blood glucose, and pulse; this information is simultaneously transmitted to his/her respective medical professional through a gateway. The medical professional receives and checks the patient's status information and provides a diagnosis. However, sensitive information, including the patient's personal and status data, are transmitted via a public channel, causing security concerns. If an adversary intercepts this information, it could threaten the patient's well-being. Therefore, a secure authentication scheme is essential for WBAN environments. Recently, Chen et al. proposed a twofactor authentication scheme for WBANs. However, we found out Chen et al.'s scheme is vulnerable to a privileged insider, physical cloning, verification leakage, impersonation, and session key disclosure attacks. We also propose a secure physical-unclonable-function (PUF)-based lightweight mutual authentication scheme for WBANs. Through informal security analysis, we demonstrate that the proposed scheme using biometrics and the PUF is safe against various security attacks. In addition, we verify the security features of our scheme through formal security analyses using Burrows-Abadi-Needham (BAN) logic, the real-or-random (RoR) model, and the Automated Validation of Internet Security Protocols and Applications (AVISPA). Furthermore, we evaluate the security features, communication costs, and computational costs of our proposed scheme and compare them with those of other related schemes. Consequently, our scheme is more suitable for WBAN environments than the other related schemes.

Keywords: wireless body area networks; authentication; biometric; physical unclonable function; BAN logic; RoR model; AVISPA

1. Introduction

Recently, with the increasing number of elderly people in society, the demand for medical services is increasing, owing to the health problems of the aging society [1]. In addition, the emergence and spread of infectious diseases such as COVID-19 has accelerated this demand [2]. Therefore, solving the problem of meeting the supply and demand for healthcare has emerged as a challenge for governments in various countries. Many attempts have been made to use wireless sensor networks (WSNs) to address this problem. Because of sensor miniaturization and improved wireless communication technology, WSNs are widely used in various environments, such as the Industrial Internet of Things [3], smart homes [4], and healthcare [5]. A method was thus proposed that comprises a wireless body area network (WBAN) that incorporates WSNs into the medical field [6]. The WBAN framework includes medical professionals, gateways, and sensor nodes. Through a gateway, a medical professional receives information concerning a patient's condition from sensors attached

Citation: Lee, S.; Kim, S.; Yu, S.; Jho, N.; Park, Y. Provably Secure PUF-Based Lightweight Mutual Authentication Scheme for Wireless Body Area Networks. *Electronics* 2022, *11*, 3868. https://doi.org/ 10.3390/electronics11233868

Academic Editor: Raed A. Abd-Alhameed

Received: 15 October 2022 Accepted: 18 November 2022 Published: 23 November 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). to the patient or elderly person's body [7]. Medical services that use WBANs are more efficient for both medical professionals and patients. Using them, medical professionals can conveniently treat more patients than before, and patients can receive treatment regardless of location. This approach also limited the spread of infectious diseases by reducing contact between medical professionals and patients during the COVID-19 pandemic. Therefore, research on WBANs has been conducted continuously.

In a WBAN, sensitive information, such as patient status and personal information, is transmitted to medical professionals using insecure channels. Thus, an adversary could steal information from these public channels and attempt security breaches, including replay, impersonation, and man-in-the-middle (MITM) attacks [8]. In addition, a medical professional's mobile device could be stolen, and an adversary could attempt to impersonate the rightful owner using the parameters extracted from the device through power analysis attacks. Furthermore, an adversary could physically capture the sensor node, extract the secret parameters, and impersonate it. If a malicious adversary succeeds in any of the aforementioned attacks and gains sensitive patient information, this may have a significant adverse effect on the patient, such as a misdiagnosis [9]. Therefore, the security of authentication schemes for WBANs is directly related to the well-being of the patient [10].

In 2021, Chen et al. [11] proposed a two-factor authentication scheme for related existing WBAN schemes. They asserted that their scheme, which uses a single hash, is lightweight, heterogeneous, and allows joint operations to prevent various security threats, such as sensor node capture, privileged insider, and stolen verifier attacks. However, we demonstrate that Chen et al.'s scheme cannot resist physical cloning, privileged insiders, verification table leakage, impersonation, and session key disclosure attacks. To overcome the security issues in Chen et al.'s scheme, we designed a secure physical-unclonable-function (PUF)-based three-factor mutual authentication scheme, which we use with a fuzzy extractor [12] to increase security.

1.1. Research Contributions

The contributions of this paper are as follows:

- We review Chen et al.'s scheme to demonstrate that it cannot prevent physical cloning, privileged insider, verification table leakage, impersonation, and session key disclosure attacks.
- We propose a secure PUF-based three-factor mutual authentication scheme to remedy the security vulnerabilities in Chen et al.'s scheme.
- We conducted an informal security analysis to demonstrate that our scheme is secure against various security hazards, including stolen/lost mobile devices, privileged insiders, physical cloning, and stolen verifier attacks.
- We analyzed the security features of the proposed scheme using the well-known Burrows–Abadi–Needham (BAN) logic and real-or-random (RoR) model, which improve the mutual authentication and session key security, respectively. Furthermore, we utilized the Automated Verification of Internet Security Protocols and Applications (AVISPA) simulation tool to prove that the proposed scheme is resistant to replay and man-in-the-middle attacks.
- We evaluated the communication costs, computational costs, and security features of our scheme. Consequently, our scheme provides lower communication and computational costs and higher security levels compared with the existing schemes.

1.2. Organization

In Section 2, we introduce related works for WMSNs. We describe the system model, adversary model, PUF, and fuzzy extractor in Section 3. We provide a review of Chen et al.'s scheme and cryptanalysis of their scheme in Sections 4 and 5. Then, we propose the secure authentication scheme on WBANs in Section 6. The security and performance analyses of our scheme are shown in Sections 7 and 8. Lastly, we present the paper's conclusion in Section 9.

2. Related Works

Various authentication schemes have been proposed for wireless medical sensor networks (WMSNs). Kumar et al. [13] (2012) presented an authentication scheme for healthcare applications using WMSNs. This scheme provides a secure session key establishment between users and medical sensor nodes and allows the users to change their passwords. However, in 2013, He et al. [14] demonstrated that Kumar et al.'s scheme could not withstand attacks such as offline password guessing and privileged insider attacks. In addition, they proved that Kumar et al.'s scheme did not guarantee anonymity. Accordingly, He et al. proposed a more secure scheme and asserted that their scheme is robust against various attacks. Unfortunately, in 2015, Wu et al. [15] demonstrated that He et al.'s scheme was vulnerable to offline password guessing, user impersonation, and sensor node capture attacks. Accordingly, they proposed an authentication scheme using a smart card to store sensitive information from medical professionals, which provides a higher level of security in the WMSN environment. In 2017, Li et al. [16] proposed an anonymous mutual authentication and key agreement scheme for WMSNs using hash operations and XOR operations, which was more efficient than previous related schemes. Unfortunately, in 2020, Gupta et al. [17] demonstrated that Li et al.'s scheme could not prevent intermediate node capture, sensor node impersonation, and hub node impersonation attacks. They also proved that Li et al.'s scheme was vulnerable to linkable sessions and traceability. Therefore, they proposed an authentication scheme in the WBAN environments that overcomes the security vulnerabilities of Li et al.'s scheme. In 2019, Ostad–Sharif et al. [18] proposed an authentication key agreement scheme consisting of three tiers for WBANs. Their scheme ensured anonymity to protect users' sensitive information. However, in 2020, Alzahrani et al. [19] claimed that Ostad et al.'s scheme is vulnerable to brute-force guessing attacks, and it is possible to compute all previous session keys. Subsequently, they presented an anonymous authenticated key exchange scheme with better security and efficiency to demonstrate the known weaknesses of Ostad et al.'s scheme.

Recently, PUF-based authentication schemes have been proposed for various environments to prevent attacks. In 2018, Mahalat et al. [20] proposed a PUF-based scheme that secures WiFi authentication for Internet of Things (IoT) devices and protects them against invasive, semi-invasive, or tampering attacks. In 2019, Zhu et al. [21] proposed a lightweight RFID mutual authentication scheme using a PUF. Their scheme provides secure authentication between the server and a tag. They asserted that their scheme could prevent clone attacks because a PUF cannot be duplicated. In 2021, Mahmood et al. [22] suggested a mutual authentication and key exchange scheme for multiserver-based device-to-device (D2D) communication. The entire process of Mahmood et al.'s scheme uses only XOR operations and hash functions, and PUF is introduced to protect against physical capture attacks. In the same year, Chuang et al. [23] proposed a PUF-based authenticated key exchange scheme for IoT environments. Their scheme did not require verifiers or explicit challenge-response pairs (CRPs). Therefore, IoT nodes can freely authenticate each other and generate a session key without the assistance of any verifier or server. Kwon et al. [24] proposed a three-factor-based mutual authentication and key agreement scheme with a PUF for WMSNs. They proved that their scheme could protect against physical cloning attacks using a PUF.

In 2020, Fotouhi et al. [25] proposed a two-factor authentication scheme for WBANs and asserted that it was safe against sensor node capture attacks. Unfortunately, in 2021, Chen et al. [11] demonstrated that the aforementioned scheme is vulnerable to sensor node attacks and proposed an improved security-enhanced two-factor authentication scheme for WBANs. However, we discovered that their scheme is insecure against privileged insider attacks, physical cloning attacks, verification table leakage attacks, etc. Therefore, we propose a secure PUF-based lightweight mutual authentication scheme for WBANs that resolves these security issues.

3. Preliminaries

This section introduces the general system model, the threat model, and relevant mathematical preliminaries including the PUF and fuzzy extractor, which can improve our scheme's security.

3.1. System Model

Figure 1 shows the general system model of a WBAN, which consists of medical professionals such as doctors and nurses, sensor nodes, and a gateway. The details are as follows:

Figure 1. The general system model of WBANs.

- User (*U_i*): A user who wants to use the WBAN services receives a smart card from the gateway. After registration, the user can receive information from the sensor node attached to the patient's body.
- Gateway (*GW_j*): The gateway acts as a relay that connects patients with medical professionals. The gateway stores the value required for authentication.
- Sensor node (*SN_k*): The sensor node must be authenticated by the gateway. The authenticated sensor node is attached to the patient's body and transmits information to the medical professionals.

3.2. Adversary Model

To analyze the security of the proposed scheme, we applied the widely used Dolev–Yao (DY) adversary model. Under the DY model, a malicious adversary can inject, eavesdrop, modify, or delete messages transmitted using public channels. We also adopted the Canetti and Krawczyk (CK) adversary model to analyze the proposed scheme. The CK model is relatively strong compared with the DY model and is widely used to analyze scheme security. In the CK model, the adversary can intercept a random value and generate the master key of a gateway:

- An adversary can steal a medical professional's smart device and use a power analysis attack to extract sensitive information inside the cell phone.
- An adversary can obtain a patient's sensor node and extract important information within the sensor node through a physical cloning attack.
- An adversary can be a privileged insider, so it can also obtain a registration message from medical professionals
- An adversary can perform various attacks, such as password guessing, stolen verifier, and man-in-the-middle attacks.

3.3. Physical Unclonable Function

PUFs are physical circuits that operate using only a one-way function. The PUF circuit uses an input–output bit-string pair termed the "challenge–response pair". Even if numerous challenges are encountered in a PUF circuit, each has a unique output response.

In this paper. We express this process as R = PUF(C), where *R* and *C* are a response and a challenge. The PUF's properties are as follows:

- The PUF is an unclonable circuit.
- The circuit of the PUF is easy to implement.
- The output of the PUF is unpredictable.
- The output of the PUF depends only on a physical circuit.

If the same challenge is entered into the PUF circuit of the same device, the same output response is printed. However, if a challenge is introduced into the PUF from different devices, different output responses are printed. Thus, the PUF provides a unique one-way function that cannot be replicated. The ability of the PUF to resist replication makes it impossible for adversaries to succeed with various attacks, such as physical cloning attacks.

3.4. Fuzzy Extractor

In this section, the purpose and basic concepts of the fuzzy extractor are discussed. However, biometric information is vulnerable to noise. Therefore, it is difficult to obtain a constant response value. Consequently, before users can utilize their biometrics, the biometric noise must be eliminated, for which we used a fuzzy extractor. The details are given below:

- $Gen(Bio_i) = \langle \sigma_i, \tau_i \rangle$: This algorithm is intended to generate keys using biometric information. It receives biometric information as a parameter and returns the secret key data R_i and a public reproduction P_i as a helper value.
- $Rep(Bio_i^*, \tau_i) = \sigma_i$: This algorithm is for reproducing secret data R_i . The input of this algorithm is biometric information Bio_i^* and P_i . The algorithm returns the secret key R_i as a result.

4. Review of Chen et al.'s Scheme

In 2021, Chen et al. [11] proposed a two-factor authentication scheme for WBANs. Their scheme provides sensor node registration, user registration and mutual authentication, and a key exchange phase. The notations used in the Chen et al.s scheme are also presented in Table 1.

Notation	Definition
U _i	<i>i</i> -th user
ID_i , PW_i	identity of U_i , password of U_i
GW_i	<i>j</i> -th gateway
GID_i, G_i	identity of GW_i , secret key of GW_i
SN_k, SID_k	<i>k</i> -th sensor, its identity
CID_i, QID_k	Temporary pseudoidentity of U_i and SN_k
N_l	Network identifier of sensor set
M_i	<i>i</i> -th message
SG_k	Shared key between sensor and gateway
SK_u	Session key generated by user
SK_g	Session key generated by gateway
SKs	Session key generated by sensor node
$R_s, R_0, R_u, R_g, R_x, R_y, R_z$	Temporary random number
Gen(.)	Fuzzy biometric generator
Rep(.)	Fuzzy biometric reproduction
BIO_i	Biometric template of the user
h(.)	Hash function
	Concatenation operator
\oplus	Exclusive-OR operator

 Table 1. Notations and definitions of Chen et al.'s scheme.

A medical professional such as a doctor or nurse must register in the gateway to use this network system. We describe the sensor node registration phase below:

- **Step 1:** The user enters her/his own ID_i , PW_i and imprints Bio_i into the mobile device. Then, U_i calculates $Gen(Bio_i) = \langle \sigma_i, \tau_i \rangle$, $HPW_i = h(PW_i||\sigma_i)$ and sends ID_i , HPW_i as a registration request to the gateway through a secure channel.
- **Step 2:** Upon receiving ID_i , PW_i determines whether the identity is new. If it is new, GW_j calculates $CID_i = h(ID_i)$ and stores CID_i , HPW_i . Then, GW_j selects a secret random number R_0 . After that, GW_j computes $A_1 = h(CID_i||GID_j||R_0 \oplus G_j) \oplus HPW_i$ and $A_2 = h(GID_j||HPW_i) \oplus (R_0 \oplus G_j)$ and stores A_1 in memory. Finally, GW_j sends $\{A_2, GID_i\}$ to U_i via a secure channel.

Step 3: U_i computes $A_3 = h(ID_i||HPW_i)$. Then, U_i stores $\{A_2, A_3, GID_i, Gen(.), Rep(.), \tau_i\}$.

4.2. Sensor Node Registration Phase

The sensor node must be registered with the gateway to transmit the health information of the patient. We show the sensor node registration phase of Chen et al.'s scheme as follows:

- **Step 1:** SN_k sends SID_k and N_l over a secure channel.
- **Step 2:** GW_j determines whether SID_k is a new identity and generates a new pseudoidentity QID_k . GW_j computes $SG_k = h(SID_k || G_j \oplus N_l)$ and stores $\{QID_k, N_l\}$ in the memory. Then, GW_j sends $\{SG_k, QID_k\}$ to SN_k via a secure channel.
- **Step 3:** SN_k computes $RSG_k = SG_k \oplus SID_k$ and saves { RSG_k , QID_k } in the memory.

4.3. Login Phase

A medical professional must log in to the mobile device to use this network system. The detailed steps are illustrated in Figure 2:

	Mobile Device
input to mobile device	
	$Rep(BIO_i^*, \tau_i) = \sigma_i^*$
	$HPW_i^* = h(PW_i^* \sigma_i^*)$
	$A_3^* = h(ID_i^* HPW_i)$
	Verifies $A_3 \equiv A_3^*$
	If true, user authentication passed
	input to mobile device

Figure 2. Login phase of Chen et al.'s scheme.

- **Step 1:** U_i enters his/her own ID_i^* , PW_i^* and imprints Bio'_i into the mobile device.
- **Step 2:** The mobile device computes $Rep(BIO_i^*, \tau_i) = \sigma_i^*$, $HPW_i^* = h(PW_i^*||\sigma_i^*)$, and $A_3^* = h(ID_i^*||HPW_i)$. Then, the mobile device verifies A_3 by comparison. If $A_3 = A_3^*$, the mobile device allows U_i to log in.

4.4. Authentication and Key Agreement Phase

In this phase, the medical professionals and the sensor node conduct a mutual authentication and key agreement phase to authenticate each other and establish a session key. Figure 3 shows the authentication and key agreement phase of Chen et al.'s scheme, and the details are as follows:

```
User U
                                                                                                 Gateway GW
                                                                                                                                                                           Sensor Node SN<sub>1</sub>
Selects SID<sub>k</sub>, R<sub>u</sub>, T<sub>1</sub>
Computes (R_0 \oplus G_i) = A_2 \oplus h(GID_i || HPW_i)
B_1 = SID_k \oplus h(GID_j || HPW_i)
B_2 = R_u \oplus h(GID_j || HPW_i \oplus SID_k)
B_3 = (R_0 \oplus G_j) \oplus h(GID_j || R_u)
                                    M_1 = \{CID_i, GID_j, B_1, B_2, B_3, T_1\}
                                                                                  Verifies |T_1 - T_c| \le \Delta T
Gets HPW_i, QID_k
                                                                                  Computes SID_k = B_1 \oplus h(GID_j || HPW_i)

R_u = B_2 \oplus h(GID_j || HPW_i \oplus SID_k)

(R_0 \oplus G_j) = B_3 \oplus h(GID_j || R_u)
                                                                                   A_1^* = h(CID_i||GID_j||R_0 \oplus G_j) \oplus HPW_i
                                                                                  Checks A_1 \equiv A_1^*
                                                                                  Selects R_g, T_2
SG_k = h(SID_k || G_j \oplus N_l)
                                                                                  B_4 = R_u \oplus HPW_i \oplus SG_k
B_5 = R_g \oplus h(SG_k ||SID_k)
                                                                                  B_6 = h(QID_k||B_4||B_5||SG_k||R_u \oplus HPW_i||R_g)
                                                                                                                             M_2 = \{QID_k, B_4, B_5, B_6, T_2\}
                                                                                                                                                            Verifies |T_2 - T_c| \leq \Delta T
                                                                                                                                                            Gets RSG_k based on QID_k
                                                                                                                                                            SG_k = RSG_k \oplus SID_k
                                                                                                                                                            (R_u \oplus HPW_i) = B_4 \oplus SG_k
                                                                                                                                                            R_g = B_5 \oplus h(SG_k ||SID_k)
                                                                                                                                                             B_6^{\circ} = h(QID_k ||B_4||B_5||SG_k||R_u \oplus HPW_i||R_g)
                                                                                                                                                            Verifies B_6^* \equiv B_6
                                                                                                                                                            Selects R<sub>s</sub>, T<sub>3</sub>
                                                                                                                                                            Computes SK_s = h(R_u \oplus HPW_i ||R_g||R_s)
                                                                                                                                                             B_7 = h(SG_k || R_g) \oplus R_s
                                                                                                                                                            B_8 = h(R_g ||R_s||SG_k||T_3)
                                                                                                                                    M_3 = \{B_7, B_8, T_3\}
                                                                                  Verifies |T_3 - T_c| \leq \Delta T
                                                                                 Computes R_s = h(SG_k||R_g) \oplus B_7
B_8^* = h(R_g||R_g||SG_k||T_3)
                                                                                  Checks B_8^* \equiv B_8
                                                                                  Selects T<sub>4</sub>
                                                                                  SK_{g} = h(R_{u} \oplus HPW_{i}||R_{g}||R_{s})

B_{9} = h(R_{u} \oplus GID_{j}||HPW_{i}) \oplus (R_{g}||R_{s})
                                                                                  B_{10} = h(R_0 \oplus G_j || SK_g || R_u)
                                                  M_4 = \{B_9, B_{10}, T_4\}
|T_4 - T_c| \leq \Delta T
Computes (R_g||R_s) = B_9 \oplus h(R_u \oplus GID_j||HPW_i)

SK_u = h(R_u \oplus HPW_i||R_g||R_s)
B_{10}^* = h(R_0 \oplus G_j ||SK_u|| \mathring{R_u})
Checks B_{10}^* \equiv B_{10}
If true, communication is possible
```

Figure 3. Authentication and key agreement phase of Chen et al.'s scheme.

- **Step 1:** U_i selects the SID_k of the sensor to be accessed, generates a random number R_u , and creates a timestamp T_1 . Then, U_i calculates $(R_0 \oplus G_j) = A_2 \oplus h(GID_j || HPW_i)$, $B_1 = SID_k \oplus h(GID_j || HPW_i)$, $B_2 = R_u \oplus h(GID_j || HPW_i \oplus SID_k)$, and $B_3 = (R_0 \oplus G_j) \oplus h(GID_j || R_u)$. Finally, U_i sends message $M_1\{CID_i, GID_j, B_1, B_2, B_3, T_1\}$ to GW_i via a public channel.
- **Step 2:** GW_j receives the message M_1 and verifies the legitimacy of T_1 by determining whether it matches $|T_1 T_c| \leq \Delta T$. GW_j retrieves the memory and obtains the HPW_i , QID_k that matches CID_i in M_1 . $(SID_m||\alpha_m) = Dec_{MSK}(MID_m)$. Then, GW_j computes $SID_k = B_1 \oplus h(GID_j||HPW_i)$, $R_u = B_2 \oplus h(GID_j||HPW_i \oplus SID_k)$, $(R_0 \oplus G_j) = B_3 \oplus h(GID_j||R_u)$, and $A_1^* = h(CID_i||GID_j||R_0 \oplus G_j) \oplus HPW_i$. GW_j verifies $A_1 \equiv A_1^*$. If the verification is false, GW_j stops the conversation. Otherwise, GW_j confirms the justification of the identity of U_i , and it generates a random number R_g and a new timestamp T_2 . Then, GW_j computes $SG_k = h(SID_k||G_j \oplus N_l)$, $B_4 = R_u \oplus HPW_i \oplus SG_k$, $B_5 = R_g \oplus h(SG_k||SID_k)$, and $B_6 = h(QID_k||B_4||B_5||SG_k||R_u \oplus HPW_i||R_g)$. Finally, GW_j sends $M_2\{QID_k, B_4, B_5, B_6, T_2\}$ to SN_k via a public channel.

- **Step 3:** SN_k receives the message M_2 and verifies that $|T_2 T_c| \leq \Delta T$. The message is fresh if the verification is true. Then, SN_k obtains the corresponding RSG_k in storage based on QID_k . SN_k computes $SG_k = RSG_k \oplus SID_k$, $(R_u \oplus HPW_i) = B_4 \oplus$ SG_k , and $B_6^* = h(QID_k||B_4||B_5||SG_k||R_u \oplus HPW_i||R_g)$. Afterward, GW_j verifies whether $B_6^* \equiv B_6$. If it is true, SN_k generates a random number R_s and a timestamp T_3 . SN_k calculates the keys $SK_s = h(R_u \oplus HPW_i||R_g||R_s)$, $B_7 = h(SG_k||R_g \oplus R_s)$, and $B_8 = h(R_g||R_s||SG_k||T_3)$. Then, SN_k sends message $M_3\{B_7, B_8, T_3\}$ to GW_j via a public channel.
- **Step 4:** GW_j receives the message M_3 and verifies the freshness of timestamp T_3 using $|T_3 T_c| \leq \Delta T$. If the verification passes, GW_j generates timestamp T_4 and calculates $R_s = h(SG_k||R_g) \oplus B_7$ and $B_8^* = h(R_g||R_s||SG_k||T_3)$, then verifies whether $B_8^* \equiv B_8$. If the verification is correct, GW_j generates T_4 and calculates $SK_s = h(R_u \oplus HPW_i||R_g||R_s)$, $B_9 = h(R_u \oplus GID_j||HPW_i) \oplus (R_g||R_s)$, and $B_{10} = h(R_0 \oplus G_j||SK_g||R_u)$. After that, GW_j sends message $M_4\{B_9, B_{10}, T_4\}$ to U_i via a public channel.
- **Step 5:** U_i receives the message M_4 and verifies that $|T_2 T_c| \leq \Delta T$. If the verification is true, the message is fresh. Then, U_i computes $(R_g||R_s) = B_9 \oplus h(R_u \oplus GID_j||HPW_i)$, $SK_u = h(R_u \oplus HPW_i||R_g||R_s)$, and $B_{10}^* = h(R_0 \oplus G_j||SK_u||R_u)$. Finally, U_i verifies whether $B_{10}^* \equiv B_{10}$, and if this is true, the verification and key exchange are a success.

5. Cryptanalysis of Chen et al.'s Scheme

In this section, we analyze the security defects of Chen et al.'s scheme. Our analysis shows that their scheme is vulnerable to privileged insider attacks, physical cloning attacks, and verification table leakage attacks. In addition, malicious adversary A can impersonate the user, sensor node, and gateway and disclose a session key.

5.1. Privileged Insider Attack

A privileged insider can support A by giving various important information such as registration message and values stored on the mobile device of the user. We describe the procedures are as follows:

- **Step 1:** A can obtain a registration request message { ID_i , HPW_i } and the secret parameter { A_2 , A_3 , GID_j , Gen(.), Rep(.), τ_i } extracted from the smart device of the user.
- **Step 2:** The adversary A intercepts $M_1\{CID_i, GID_j, B_1, B_2, B_3, T_1\}$, and $M_3\{B_7, B_8, T_3\}$ transmitted by the public channel.
- **Step 3:** \mathcal{A} calculates $(R_0 \oplus G_j)^* = A_2 \oplus h(GID_j||HPW_i)$, $SID_k^* = B_1 \oplus h(GID_j||HPW_i)$, $R_u^* = B_2 \oplus h(GID_j||HPW_i \oplus SID_k)$, and $(R_g||R_s)^* = B_9 \oplus h(R_u \oplus GID_j||HPW_i)$. Then, \mathcal{A} can extract the parameters $(R_0 \oplus G_j)^*$, SID_k^* , R_u^* , and $(R_g||R_s)^*$.
- **Step 4:** \mathcal{A} calculates $B_1^* = SID_k \oplus h(GID_j||HPW_i)$, $B_2^* = R_u \oplus h(GID_j||HPW_i \oplus SID_k)$, $B_3^* = (R_0 \oplus G_j) \oplus h(GID_j||R_u)$, and $SK_u = h(R_u \oplus HPW_i||R_g||R_s)$. Thereafter, \mathcal{A} can generate $M_1\{CID_i, GID_j, B_1^*, B_2^*, B_3^*, T_1^*\}$ and send it to GW_j by impersonating legitimate user U_i . In addition, \mathcal{A} can calculate $SK_u^* = h(R_u \oplus HPW_i||(R_g||R_s)^*)$ to generate session key SK_u^* . Thus, \mathcal{A} can disclose or exploit the session key.

Thus, Chen et al.'s scheme is insecure against privileged insider attacks.

5.2. Physical Cloning Attack

In this attack, we assume that \mathcal{A} can clone sensor node SN_k physically and extract the sensitive value { RSG_k , QID_k } stored in the memory of SN_k . In order to be able to forward message { B_7 , B_8 , T_3 } on behalf of the legitimate GW_j and generate session key SK_s , then \mathcal{A} has to calculate the value of $B_7 = h(SG_k||R_g \oplus R_s)$, $B_8 = h(R_g||R_s||SG_k||T_3)$, and $SK_s = h(R_u \oplus HPW_i||R_g||R_s)$ through the following steps:

Step 1: The adversary A can obtain the messages $M_2\{QID_k, B_4, B_5, B_6, T_2\}$ and $M_3\{B_7, B_8, T_3\}$ by the eavesdropping attack.

- **Step 2:** \mathcal{A} computes SG_k^* through $SG_k^* = RSG_k \oplus SID_k$.
- **Step 3:** \mathcal{A} calculates $(R_u \oplus HPW_i)^* = B_4 \oplus SG_k$, $R_g^* = B_5 \oplus h(SG_k ||SID_k)$, and $R_s^* = h(SG_k ||R_g) \oplus B_7$. Afterward, \mathcal{A} obtains the parameters $(R_u \oplus HPW_i)^*$, R_g^* , and R_s^* .
- **Step 4:** \mathcal{A} can successfully compute $B_7^* = h(SG_k^*||R_g^*) \oplus R_s^*$, $B_8^* = h(R_g^*||R_s^*||SG_k^*||T_3^*)$, and $SK_s^* = h((R_u \oplus HPW_i)^*||R_g^*||R_s^*)$. Finally, \mathcal{A} can generate authentication message $M_3^*\{B_7^*, B_8^*, T_3^*\}$ and session key SK_s .

Therefore, the scheme of Chen et al. cannot resist thephysical cloning attack.

5.3. Verification Table Leakage Attack

If A extracts the verification table { QID_k , N_l , CID_i , HPW_i , A_1 } of GW_j , A attempts to impersonate GW_j and generate a session key. The details are described below:

- **Step 1:** The malicious adversary A can obtain the messages $M_1\{CID_i, GID_j, B_1, B_2, B_3, T_1\}$, $M_2\{QID_k, B_4, B_5, B_6, T_2\}$, and $M_3\{B_7, B_8, T_3\}$ transmitted by the public channel.
- **Step 2:** \mathcal{A} computes $SID_k^* = B_1 \oplus h(GID_j||HPW_i)$, $R_u^* = B_2 \oplus h(GID_j||HPW_i \oplus SID_k^*)$, $(R_0 \oplus G_j)^* = B_3 \oplus h(GID_j||R_u^*)$, $SG_k^* = R_u^* \oplus HPW_i \oplus B_4$, $R_g^* = B_5 \oplus h(SG_k^*||SID_k^*)$, and $R_s^* = h(SG_k^*||R_g^*) \oplus B_7$ to generate parameters SID_k^* , R_u^* , $(R_0 \oplus G_j)^*$, SG_k^* , R_g^* , R_s^* .
- **Step 3:** \mathcal{A} calculates $B_4 = R_u \oplus HPW_i \oplus SG_k, B_5 = R_g \oplus h(SG_k||SID_k), B_6 = h(QID_k||B_4|| B_5||SG_k||R_u \oplus HPW_i||R_g), SK_g^* = h(R_u^* \oplus HPW_i||R_g^*||R_s^*), B_9^* = h(R_u^* \oplus GID_j|| HPW_i) \oplus (R_g^*||R_s^*), \text{ and } B_{10}^* = h((R_0 \oplus G_j)^*||SK_g^*||R_u^*).$
- **Step 4:** Eventually, A can generate authentication messages $M_2^* \{QID_k, B_4^*, B_5^*, B_6^*, T_2^*\}$ and $M_4^* \{B_9^*, B_{10}^*, T_4^*\}$ and send them to the user and gateway disguised as a legal GW_j . Furthermore, A can generate session key SK_g^* of GW_j and adversely affect the system by exposing SK_g^* .

Therefore, Chen et al.'s scheme cannot withstand verification table leakage attacks.

5.4. Impersonation Attack

- (1) User impersonation attack: In the previous privileged insider attack in Section 5.1, A can generate authentication message $M_1\{CID_i, GID_j, B_1^*, B_2^*, B_3^*, T_1^*\}$ and send it to the gateway to impersonate a legitimate user. Therefore, the scheme of Chen et al. is vulnerable to the user impersonation attack.
- (2) Gateway impersonation attack: In the previous verification table attack in Section 5.3, A can calculate authentication messages $M_2^* \{QID_k, B_4^*, B_5^*, B_6^*, T_2^*\}$ and $M_4^* \{B_9^*, B_{10}^*, T_4^*\}$ and send them to the sensor node and user. However, the sensor node and gateway cannot recognize that the message transmitted from a gateway was not legal. Therefore, the scheme of Chen et al. cannot resist the gateway impersonation attack.
- (3) Sensor node impersonation attack: In the previous physical cloning attack in Section 5.2, a malicious adversary A can compute message $M_3^*\{B_7^*, B_8^*, T_3^*\}$ to be sent to the gateway. However, the gateway recognizes that the message was transmitted from a legitimate sensor node. Therefore, Chen et al.'s scheme cannot withstand sensor node impersonation attacks.

5.5. Session Key Disclosure Attack

In the previous attacks, privileged insider in Section 5.1, physical cloning in Section 5.2, and verification table leakage in Section 5.3, A can generate session keys SK_u , SK_k , and SK_g . A attempts to exploit the generated session key to adversely affect the system and disclose it to the outside. Thus, the scheme of Chen et al. cannot prevent session key disclosure attacks.

6. Proposed Scheme

In this section, we propose a secure three-factor mutual authentication scheme for WBANs to overcome the security weaknesses of Chen et al.'s scheme. Our scheme also

10 of 29

considers the efficiency of the authentication process. Our scheme consists of user registration, sensor node registration, mutual authentication and key agreement, and password change phases. The notations and definitions used in the proposed scheme are explained in Table 2.

Table 2. Notations and definitions of the proposed scheme.

Notation	Definition
U_i	<i>i</i> -th user
ID_i, PW_i	identity of U_i , password of U_i
GW_i	<i>j</i> -th gateway
GID_i, G_i	identity of GW_i , secret key of GW_i
SN_k , SID_k	<i>k</i> -th sensor, its identity
CID_i	Temporary pseudoidentity of U_i
M_i	<i>i</i> -th message
SG_k	Shared key between sensor and gateway
SK_u	Session key generated by user
SK_g	Session key generated by gateway
SK_s	Session key generated by sensor node
$R_u, R_g, R_s, R_0, R_1, R_2$	Temporary random number
Gen(.)	Fuzzy biometric generator
Rep(.)	Fuzzy biometric reproduction
BIO_i	Biometric template of the user
h(.)	Hash function
	Concatenation operator
\oplus	Exclusive-OR operator

6.1. User Registration Phase

In order for a medical professional to receive patient information from the sensor node, he/she must be registered with the gateway in advance. The details are shown in Figure 4:

User U_i		Gateway GW _j
Enters ID_i , PW_i , BIO_i $< \sigma_i, \tau_i >= Gen(BIO_i)$ Calculates $HID_i = h(ID_i \sigma_i)$ $HPW_i = h(PW_i \sigma_i)$	$\xrightarrow{\{HID_i\}}$	Whether the identity is new Generates random number R_0, R_1 Calculates $CID_i = h(HID_i R_0)$ $ER_j = R_1 \oplus G_j$ Stores CID_i, HID_i, ER_j Computes $A_0 = R_0 \oplus G_j$ $A_1 = h(HID_i A_0) \oplus G_j$
	$\{A_0, R_1, CID_i\}$	Stores A ₁ into memory
Computes $A_2 = A_0 \oplus R_1 \oplus \sigma_i$ $A_3 = h(ID_i HPW_i)$ $ER_i = h(ID_i PW_i) \oplus R_1$ Stores $\{A_2, A_3, Gen(.), Rep(.), \tau_i, ER_i, CID_i\}$		

Figure 4. User Registration of the proposed scheme.

- **Step 1:** U_i inputs an identity ID_i , a password PW_i , and biometric template BIO_i into the mobile device. Then, the mobile device computes $Gen(BIO_i) = \langle \sigma_i, \tau_i \rangle$, $HID_i = h(ID_i||\sigma_i)$, and $HPW_i = h(PW_i||\sigma_i)$. U_i sends HID_i to the gateway through a secure channel.
- **Step 2:** GW_j receives HID_i from U_i and checks whether HID_i is new. If it is new, GW_j generates random numbers R_0 and R_1 . Then, GW_j calculates $CID_i = h(HID_i||R_0)$ and $ER_j = R_1 \oplus G_j$ and stores CID_i , HID_i , ER_j . Afterward, GW_j computes $A_0 = R_0 \oplus G_j$ and $A_1 = h(HID_i||A_0) \oplus G_j$ and stores A_1 into memory. Finally, GW_j sends message $\{A_0, R_1, CID_i\}$ to U_i via a secure channel.
- **Step 3:** U_i receives message A_0, R_1, CID_i from GW_j and computes $A_2 = A_0 \oplus R_1 \oplus \sigma_i$, $A_3 = h(ID_i||HPW_i)$, and $ER_i = h(ID_i||PW_i) \oplus R_1$. Then, GW_j stores $\{A_2, A_3, Gen(.), Rep(.), \tau_i, ER_i, CID_i\}$ in the mobile device.

6.2. Sensor Node Registration Phase

A sensor node must register with the gateway in order to transmit patient information to the medical professional. The sensor node registration phase is shown in Figure 5, and the detailed steps are as follows:

Sensor Node SN _k		Gateway GW _j
Generates a challenge CH_1		
	$\{SID_k, CH_1\}$	X
		Whether SID_k is new
		Computes
		$SG_k = h(SID_k G_j)$
		Stores SID_k , CH_1 into memory
	$\{SG_k\}$	_
Computes		
$RE_1 = PUF(CH_1)$		
$RSG_k = SG_k \oplus SID_k \oplus RE_1$		
Stores { RSG_k, CH_1 }		

Figure 5. Sensor node registration of the proposed scheme.

- **Step 1:** SN_k generates a challenge CH_1 and sends identity SID_k and CH_1 to GW_j over a secure channel.
- **Step 2:** GW_j receives SID_k and CH_1 from SN_k and determines whether SID_k is a new identity. If it is new, GW_j computes $SG_k = h(SID_k||G_j)$ and stores SID_k and CH_1 into memory. Then, GW_j sends SG_k to SN_k through a secure channel.
- **Step 3:** SN_k receives SG_k from GW_j . Then, SN_k computes $RE_1 = PUF(CH_1)$ and $RSG_k = SG_k \oplus SID_k \oplus RE_1$ and saves $\{RSG_k, CH_1\}$ in the memory.

6.3. Login Phase

A medical professional must log in to the mobile device to utilize this WBAN system. The details are shown in Figure 6:

User U _i		Mobile Device
U_i enters ID_i^* and PW_i^*		
imprints BIO_i^*		
	input to mobile device	
-		$\overrightarrow{Rep(BIO_i^*, \tau_i)} = \sigma_i^*$
		$HPW_i^* = h(PW_i^* \sigma_i^*)$
		$A_3^* = h(ID_i^* HPW_i^*)$
		Verify $A_3 \equiv A_3^*$
		If true, user authentication passed

Figure 6. Login phase of the proposed scheme.

- **Step 1:** U_i enters ID_i^* and PW_i^* and imprints BIO_i^* into the mobile device.
- **Step 2:** The mobile device calculates $Rep(BIO_i^*, \tau_i) = \sigma_i^*$, $HPW_i^* = h(PW_i^*||\sigma_i^*)$, and $A_3^* = h(ID_i^*||HPW_i^*)$. Then, the mobile device verifies A_3 by comparison. If $A_3 = A_3^*$, U_i logs in successfully.

6.4. Mutual Authentication and Key Agreement Phase

The medical professional sends an authentication message to the gateway and generates a session key among the medical professional, the sensor node, and the gateway. After that, the medical professionals can receive the patient's information from the sensor node. In Figure 7, we show the mutual authentication and key agreement phase of our scheme, and the details are given below:

- **Step 1:** U_i selects SID_k , R_u , T_1 and computes $R_1 = ER_i \oplus h(ID_i||PW_i)$ and $A_0 = A_2 \oplus R_1 \oplus \sigma_i$. Then, U_i generates random nonce R_u and calculates $B_1 = R_u \oplus R_1$, $B_2 = A_0 \oplus R_u \oplus R_1 \oplus HID_i$. Finally, U_i sends $M_1{SID_k, CID_i, B_1, B_2, T_1}$ to GW_j through a public channel.
- **Step 2:** GW_j receives message M_1 from U_i and verifies that $|T_1 T_c| \leq \Delta T$. If the verification passes, GW_j checks whether $CID_i = CID_i^{old}$ or $CID_i = CID_i^{new}$. If $(CID_i = CID_i^{new})$, it retrieves $\{HID_i^*, ER_j\}$ against CID_i^{old} , and if $(CID_i = CID_i^{new})$, it retrieves $\{HID_i^*, ER_j\}$ against CID_i^{new} . After that, GW_j computes $R_1 = ER_j \oplus G_j$, $R_u = B_1 \oplus R_1$, $A_0 = B_2 \oplus R_u \oplus R_1 \oplus HID_i$, and $A_1^* = h(HID_i||A_0) \oplus G_j$. If $A_1 \stackrel{?}{=} A_1^*$ is true, GW_j computes $CID_i^{new} = h(HID_i||R_u)$ and updates CID_i^{new} . Then, GW_j selects R_g , T_2 and calculates $SG_k = h(SID_k||G_j)$, $C_1 = Ru \oplus HID_i$, $B_3 = C_1 \oplus SG_k \oplus CH_1$, $B_4 = R_g \oplus h(SG_k||SID_k)$, and $B_5 = h(B_4||B_5||SG_k||C_1||R_g)$. Finally, GW_j sends $M_2\{B_3, B_4, B_5, T_2\}$ to SN_k via a public channel.
- **Step 3:** SN_k receives the message $M_2\{B_3, B_4, B_5, T_2\}$ and verifies the freshness of timestamp T_2 using $|T_2 T_c| \le \Delta T$. If the verification is true, the message is fresh. Then, SN_k obtains the corresponding RSG_k , CH_1 and computes $RE_1 = PUF(CH_1)$, $SG_k = RSG_k \oplus SID_k \oplus RE_1$, $C_1 = B_3 \oplus SG_k \oplus CH_1$, $R_g = B_4 \oplus h(SG_k||SID_k)$, and $B_5^* = h(B_3||B_4||SG_k||C_1||R_g)$. SN_k verifies whether $B_5^* \stackrel{?}{=} B_5$. If verification is correct, SN_k selects R_s , T_3 and computes $SK_s = h(C_1||R_g||R_s)$, $B_6 = h(SG_k||R_g) \oplus R_s$, and $B_7 = h(R_g||R_s||SG_k||T_3||C_1)$. SN_k sends $M_3 = \{B_6, B_7, T_3\}$ to GW_i through a public channel.
- **Step 4:** GW_j receives the message M_3 and verifies that $|T_3 T_c| \leq \Delta T$. The message is fresh if the verification is true. Then, GW_j computes $R_s = h(SG_k||R_g) \oplus B_6$ and $B_7^* = h(R_g||R_s||SG_k||T_3||C_1)$. Afterward, GW_j verifies whether $B_7^* \stackrel{?}{=} B_7$. If it is true, GW_j selects T_4 and computes $SK_g = h(C_1||R_g||R_s)$, $B_8 = R_u \oplus (R_g||R_s)$, and $B_9 = h(A_0||SK_g||R_u)$. GW_j sends $M_4 = \{B_8, B_9, T_4\}$ to U_i via a public channel
- **Step 5:** U_i receives the message M_4 and verifies the legitimacy of T_4 by determining whether it matches $|T_4 T_c| \leq \Delta T$. U_i computes $(R_g||R_s) = B_8 \oplus R_u$, $SK_u = h(C_1||R_g||R_s)$, and $B_9^* = h(A_0||SK_u||R_u)$. Then, U_i verifies whether $B_9^* \stackrel{?}{=} B_9$. If the verification is true, U_i updates CID_i^{new} . Finally, the verification and key exchange are successful.

Checks $B_9^* \stackrel{?}{=} B_9$ Updates CID_i^{new}

Figure 7. Authentication and key agreement phase of the proposed scheme.

6.5. Password Update Phase

In our scheme, we provide an efficient password update process of the medical professional. We show the password update phase in Figure 8, and the detailed steps are as follows:

User U _i		Mobile Device
U_i enters ID_i^* and PW_i^*		
Imprints <i>BIO</i> [*]		
	input to mobile device	
		$Rev(BIO_i^*, \tau_i) = \sigma_i^*$
		$HPW_i^* = h(PW_i^* \sigma_i^*)$
		$A_3^* = h(ID_i^* HPW_i^*)$
		Verifies $A_3 \stackrel{?}{=} A_3^*$
		If true, user authentication passed
	Authenticate	-
Inputs a new password <i>PW</i> _i ^{new}	,	
and a new biometrics BIO_i^{new}		
	$\{PW_i^{new}, BIO_i^{new}\}$	
		$<\sigma_i^{new}, \tau_i^{new}>=Gen(BIO_i^{new})$
		$HPW_i^{new} = h(PW_i^{new}) \sigma_i^{new})$
		$R_1 = ER_i \oplus h(ID_i^* PW_i^*)$
		$ER_i^{new} = h(ID_i^* PW_i^{new}) \oplus R_1$
		$A_3^{new} = h(ID_i^* HPW_i^{new})$
		Replaces $\{A_3, \tau_i, ER_i\}$ with $\{A_3^{new}, \tau_i^{new}, ER_i^{new}\}$

Figure 8. Password update phase of the proposed scheme.

- **Step 1:** U_i enters ID_i^* and PW_i^* and imprints BIO_i^* to the mobile device.
- **Step 2:** The mobile device calculates $Rep(BIO_i^*, \tau_i) = \sigma_i^*$, $HPW_i^* = h(PW_i^*||\sigma_i^*)$, and $A_3^* = h(ID_i^*||HPW_i^*)$ and verifies $A_3 \stackrel{?}{=} A_3^*$. If the equation is true, user authentication passes.
- **Step 3:** U_i inputs a new password PW_i^{new} and a new biometric BIO_i^{new} to the mobile device.
- **Step 4:** The mobile device computes $Gen(BIO_i^{new}) = \langle \sigma_i^{new}, \tau_i^{new} \rangle$, $HPW_i^{new} = h(PW_i^{new})|\sigma_i^{new}\rangle$, $R_1 = ER_i \oplus h(ID_i^*||PW_i^*)$, $ER_i^{new} = h(ID_i^*||PW_i^{new}) \oplus R_1$, and $A_3^{new} = h(ID_i^*||HPW_i^{new})$. Finally, the mobile device replaces $\{A_3, \tau_i, ER_i\}$ with $\{A_3^{new}, \tau_i^{new}, ER_i^{new}\}$

7. Security Analysis

To prove the security features of the proposed scheme, we used BAN logic and the RoR model, which can prove the mutual authentication properties and session key security, respectively. Furthermore, we show that our scheme has resistance against man-in-themiddle and replay attacks using AVISPA. Furthermore, we claim that the proposed scheme can prevent various security attacks using informal analysis.

7.1. BAN Logic

In this section, BAN logic [26] is used to prove the mutual authentication of the proposed scheme. BAN logic uses a simple logic to explain the beliefs between the communication participants of authentication schemes. From that, many security schemes are proven by using BAN logic [27–29]. Table 3 shows the basic notation in BAN logic.

Notation	Definition
C_1, C_2	Principals
$\mathcal{T}_1,\mathcal{T}_2$	Statements
SK	Session key
$ \mathcal{C}_1 \equiv\mathcal{T}_1 $	\mathcal{C}_1 believes \mathcal{T}_1
$ \mathcal{C}_1 \sim \mathcal{T}_1$	\mathcal{C}_1 once said \mathcal{T}_1
$\mathcal{C}_1 \Rightarrow \mathcal{T}_1$	\mathcal{C}_1 controls \mathcal{T}_1
$\mathcal{C}_1 \lhd \mathcal{T}_1$	\mathcal{C}_1 receives \mathcal{T}_1
$\#\mathcal{T}_1$	\mathcal{T}_1 is fresh
$(\mathcal{T}_1)_K$	\mathcal{T}_1 is encrypted with <i>K</i>
$\mathcal{C}_1 \xleftarrow{K} \mathcal{C}_2$	\mathcal{C}_1 and \mathcal{C}_2 have shared key K

Table 3.	Basic	notations	in	BAN	logic.
----------	-------	-----------	----	-----	--------

7.1.1. Rules

_

_

- We introduce five rules used in BAN logic:
- 1. Message meaning rule (MMR):

$$\frac{\mathcal{C}_1 \mid \equiv \mathcal{C}_1 \stackrel{K}{\leftrightarrow} \mathcal{C}_2, \quad \mathcal{C}_1 \lhd (\mathcal{T}_1)_K}{\mathcal{C}_1 \mid \equiv \mathcal{C}_2 \mid \sim \mathcal{T}_1};$$

2. Nonce verification rule (NVR):

$$\frac{\mathcal{C}_1|\equiv \#(\mathcal{T}_1), \quad \mathcal{C}_1|\equiv \mathcal{C}_2 \mid \sim \mathcal{T}_1}{\mathcal{C}_1|\equiv \mathcal{C}_2|\equiv \mathcal{T}_1};$$

3. Jurisdiction rule (JR):

$$\frac{\mathcal{C}_1 | \equiv \mathcal{C}_2 \Rightarrow \mathcal{T}_1, \quad \mathcal{C}_1 | \equiv \mathcal{C}_2 | \equiv \mathcal{T}_1}{\mathcal{C}_1 | \equiv \mathcal{T}_1};$$

4. Belief rule (BR):

$$\frac{\mathcal{C}_1 \mid \equiv (\mathcal{T}_1, \mathcal{T}_2)}{\mathcal{C}_1 \mid \equiv \mathcal{T}_1};$$

5. Freshness rule (FR):

$$\frac{\mathcal{C}_1 \mid \equiv \#(\mathcal{T}_1)}{\mathcal{C}_1 \mid \equiv \#(\mathcal{T}_1, \mathcal{T}_2)}.$$

7.1.2. Goals

The final goal of BAN logic in the proposed scheme is to achieve mutual authentication by agreeing on the session key *SK*. We define U_i , GW_j , and SN_k as the user, gateway, and sensor node, respectively:

Goal 1:
$$U_i | \equiv GW_j \stackrel{SK}{\longleftrightarrow} U_i;$$

Goal 2: $U_i | \equiv GW_j | \equiv GW_j \stackrel{SK}{\leftrightarrow} U_i;$
Goal 3: $GW_j | \equiv GW_j \stackrel{SK}{\longleftrightarrow} U_i;$
Goal 4: $GW_j | \equiv U_i | \equiv GW_j \stackrel{SK}{\leftrightarrow} U_i;$

Goal 5: $SN_k | \equiv GW_j \stackrel{SK}{\leftrightarrow} SN_k;$ **Goal 6:** $SN_k | \equiv GW_j | \equiv GW_j \stackrel{SK}{\leftrightarrow} SN_k;$ **Goal 7:** $GW_j | \equiv GW_j \stackrel{SK}{\leftrightarrow} SN_k;$ **Goal 8:** $GW_j | \equiv SN_k | \equiv GW_j \stackrel{SK}{\leftrightarrow} SN_k.$

7.1.3. Idealized Forms

In the proposed scheme, $M_1 = \{SID_k, CID_i, B_1, B_2, T_1\}$, $M_2 = \{B_3, B_4, B_5, T_2\}$, $M_3 = \{B_6, B_7, T_3\}$, and $M_4 = \{B_8, B_9, T_4\}$ are transmitted through public channels. We restructure the messages to fit the BAN logic, named "idealized forms":

$$\mathcal{T}_1: U_i \to GW_j: \{R_u, A_0, HID_i, T_1\}_{R_1}$$

$$\mathcal{T}_2: \ GW_j \to SN_k: \{R_g, C_1, T_2\}_{SG_k};$$

- $\mathcal{T}_3: SN_k \to GW_j: \{R_s, T_3\}_{SG_k};$
- $\mathcal{T}_4: \ GW_j \to U_i: \{R_g, R_s, T_4\}_{R_u}.$

7.1.4. Assumptions

The assumptions in the proposed scheme are shown as below:

- $S_1: \ GW_j | \equiv \#(T_1);$ $S_2: \ SN_k | \equiv \#(T_2);$
- S_3 : $GW_i | \equiv \#(T_3);$
- $\mathcal{S}_4: U_i | \equiv \#(T_4);$
- $\mathcal{S}_5: \ U_i | \equiv GW_i \Rightarrow (GW_i \stackrel{SK}{\longleftrightarrow} U_i);$
- $\mathcal{S}_{6}: \ GW_{i} \equiv U_{i} \Rightarrow (GW_{i} \stackrel{SK}{\longleftrightarrow} U_{i});$
- $\mathcal{S}_{7}: \ GW_{i} \equiv SN_{k} \Rightarrow (GW_{i} \stackrel{SK}{\longleftrightarrow} SN_{k});$
- \mathcal{S}_8 : $SN_k \equiv GW_i \Rightarrow (GW_i \stackrel{SK}{\longleftrightarrow} SN_k);$
- $S_9: GW_i \equiv GW_i \stackrel{R_1}{\longleftrightarrow} U_i;$
- \mathcal{S}_{10} : $GW_j | \equiv GW_j \stackrel{SG_k}{\longleftrightarrow} SN_k;$
- \mathcal{S}_{11} : $SN_k | \equiv GW_j \stackrel{SG_k}{\longleftrightarrow} SN_k;$

S_{12} : $U_i | \equiv GW_i \stackrel{R_u}{\longleftrightarrow} U_i$.

7.1.5. BAN Logic Proof

Step 1: We can obtain PR_1 based on the first message T_1 , and we obtain the following:

$$PR_1: GW_i \triangleleft \{R_u, A_0, HID_i, T_1\}_{R_1};$$

Step 2: Based on the message meaning rule, PR_1 , and S_9 , we can obtain the following: PR_2 : $GW_i = U_i \sim (R_u, A_0, HID_i, T_1);$ **Step 3:** Based on the freshness rule, PR_2 , and S_1 , we can obtain the following:

$$PR_3: GW_i \equiv \#(R_u, A_0, HID_i, T_1);$$

Step 4: Based on the nonce verification rule, PR_2 , and PR_3 , we obtain the following:

$$PR_4: GW_i \equiv U_i \equiv (R_u, A_0, HID_i, T_1);$$

Step 5: Based on the second message *T*₂, we obtain the following:

$$PR_5: SN_k \triangleleft \{R_g, C_1, T_2\}_{SG_k}$$

Step 6: Based on the message meaning rule, PR_5 , and S_{11} , we can obtain the following:

$$PR_6: SN_k \equiv GW_i \sim (R_g, C_1, T_2);$$

Step 7: Based on the freshness rule, PR_6 , and S_2 , we can obtain the following:

$$PR_7: SN_k | \equiv \#(R_g, C_1, T_2);$$

Step 8: Based on the nonce verification rule, *PR*₆, and *PR*₇, we can obtain the following:

$$PR_8: SN_k | \equiv GW_j | \equiv (R_g, C_1, T_2);$$

Step 9: Based on the third message *T*₃, we can obtain the following:

$$PR_9: GW_j \lhd \{R_s, T_3\}_{SG_k};$$

Step 10: Based on the message meaning rule, *PR*₉, and S_{10} , we can obtain the following:

$$PR_{10}: GW_j | \equiv SN_k | \sim (R_s, T_3);$$

Step 11: Based on the freshness rule, PR_{10} , and S_3 , we can obtain the following:

$$PR_{11}: GW_i | \equiv \#(R_s, T_3);$$

Step 12: Based on the nonce verification rule, PR_{10} , and PR_{11} , we can obtain the following:

$$PR_{12}: GW_i | \equiv SN_k | \equiv (R_s, T_3);$$

Step 13: Based on PR_8 and PR_{12} , SN_k and GW_j compute the session key $SK = h(C_1||R_g||R_s)$. Therefore, we can obtain the following goals:

$$PR_{13}: SN_k | \equiv GW_j | \equiv GW_j \stackrel{SN}{\leftrightarrow} SN_k \quad \text{(Goal 6)}$$

$$PR_{14}: GW_j | \equiv SN_k | \equiv GW_j \stackrel{SK}{\leftrightarrow} SN_k \quad \text{(Goal 8)};$$

Step 14: Based on the jurisdiction rule, PR_{13} , PR_{14} , S_7 , and S_8 , we can obtain the following goals:

$$\begin{split} PR_{15} : SN_k | &\equiv GW_j \stackrel{SK}{\longleftrightarrow} SN_k \quad \text{(Goal 5)} \\ PR_{16} : GW_j | &\equiv GW_j \stackrel{SK}{\longleftrightarrow} SN_k \quad \text{(Goal 7);} \end{split}$$

Step 15: Based on the last message T_4 , we can obtain the following:

$$PR_{17}: U_i \lhd \{R_g, R_s, T_4\}_{R_u};$$

Step 16: Based on the message meaning rule, PR_{17} , and S_{12} , we can obtain the following:

$$PR_{18}: U_i \equiv SN_k | \sim (R_g, R_s, T_4);$$

Step 17: Based on the freshness rule, PR_{18} , and S_4 , we can obtain the following:

$$PR_{19}: U_i | \equiv \#(R_g, R_s, T_4);$$

Step 18: Based on the nonce verification rule, *PR*₁₉, and *PR*₁₇, we can obtain the following:

Step 19: Based on PR_4 and PR_{20} , U_i and GW_j compute the session key *SK*. Therefore, we can obtain the following goals:

$$PR_{21}: U_i | \equiv GW_j | \equiv GW_j \stackrel{SK}{\longleftrightarrow} U_i \quad \text{(Goal 2)}$$

$$PR_{22}: GW_j | \equiv U_i | \equiv GW_j \stackrel{SK}{\longleftrightarrow} U_i \quad \text{(Goal 4)};$$

Step 20: Based on the jurisdiction rule, PR_{21} , PR_{22} , S_5 , and S_6 , we can obtain the following goals:

$$PR_{23}: U_i | \equiv GW_j \stackrel{SK}{\longleftrightarrow} U_i \quad \text{(Goal 1)}$$

$$PR_{24}: GW_j | \equiv GW_j \stackrel{SK}{\longleftrightarrow} U_i \quad \text{(Goal 3)}.$$

7.2. RoR Model

To prove the security of the session key, we utilized a formal proof named the "realor-random" (ROR) model [30]. Firstly, we define the participants, adversary, and queries. In the proposed scheme, there are three entities that perform the authentication phase to establish the session key. These entities are instantiated as participants and applied to the ROR model: EP_{US}^{i} , EP_{GW}^{j} , EP_{SN}^{k} . Note that *i*, *j*, and *k* are the instances of the user, gateway, and sensor node, respectively. Next, we define the adversary of the ROR model. The adversary can fully control the whole network, including modifying, deleting, hijacking, and intercepting messages. Moreover, we introduce queries that are utilized to reveal the session key security of the scheme. The details are as follows:

- $Exe(EP_{US}^{i}, EP_{GW}^{j}, EP_{SN}^{k})$: This is a passive attack, where the adversary obtain messages exchanged through public channels.
- *CorrD*(*EP*^{*i*}_{*US*}): The *CorrD* query is an active attack. The adversary obtains secret parameters that are stored in the smart card of *EP*^{*i*}_{*US*} using power analysis attack.
- Snd(EP): When the adversary uses the Snd query, the adversary transfers messages to EPⁱ_{US}, EP^j_{GW}, and EP^k_{SN}. Moreover, the adversary receives return messages from the participants.
- *Test*(*EP*): An unbiased coin *c* is tossed, and the adversary obtains the result of this query. If the result value of *c* is 0, the session key is not fresh. If the result value of *c* is 1, we can demonstrate that the session key is fresh and secure. Otherwise, a null value (⊥) is obtained.

Security Proof

Theorem 1. We define the adversary and possibility of breaking the session key security as \mathcal{M} and $\mathcal{A}_M(BP)$, respectively. In the ROR model, \mathcal{M} tries to guess $SK = h(C_1||R_g||R_s)$ in polynomial time. To do this, we give a definition of hash and puf as the range space of the hash function and PUF, respectively. Moreover, q_{hash} , q_{puf} , and q_{snd} are the number of hash, puf, and Snd queries, respectively. We define C' and s' as Zipf's parameter [31], and the number of bits in the biometrics is BIO.

$$\mathcal{A}_M(BP) \le \frac{q_{hash}^2}{|hash|} + \frac{q_{puf}^2}{|puf|} + 2max\{C'q_{snd}^{s'}, \frac{q_{snd}}{2^{BIO}}\}$$

Proof. In the proposed scheme, the ROR security proof consists of five games G_n $(0 \le n \le 4)$. \mathcal{M} tries to compute the session key SK in each game G_k , and we define this winning possibility as WN_{G_k} . Our ROR security proof is performed according to the method of [32–34]:

 G_0 : \mathcal{M} begins the real attack. Thus, \mathcal{M} picks a random bit *c*. Therefore, we obtain Equation (1) as follows.

$$\mathcal{A}_{M}(BP) = |2\mathcal{M}[WN_{G_{0}}] - 1|.$$
(1)

*G*₁: As we mentioned before, \mathcal{M} can obtain all of the messages in the proposed scheme using the query *Exe*. Thus, M_1 , M_2 , M_3 , and M_4 can be intercepted and \mathcal{M} executes the *Test* query as Equation (2). The session key *SK* is composed of $C_1 = R_u \oplus HID_i$, R_g , and R_s . Thus, \mathcal{M} must know all of the random nonces and the secret parameter of *US*. This means that \mathcal{M} cannot calculate *SK*.

$$|\mathcal{M}[WN_{G_1}]| = |\mathcal{M}[WN_{G_0}]|. \tag{2}$$

 G_2 : In this game, the *hash* and *Snd* queries are utilized. However, we used the "cryptographic hash function", which can overcome the hash collision problem in the proposed scheme. Thus, \mathcal{M} has no advantage using the *hash* and *Snd* queries. We show the following inequation (3) by applying the birthday paradox [35].

$$|\mathcal{M}[WN_{G_2}] - \mathcal{M}[WN_{G_1}]| \le \frac{q_{hash}^2}{|hash|}.$$
(3)

 G_3 : In G_3 , \mathcal{M} attempts to break the session key security using the *puf* query. However, it is impossible to guess or compute the PUF function according to Section 3.3. Therefore, we obtain the following Equation (4).

$$|\mathcal{M}[WN_{G_3}] - \mathcal{M}[WN_{G_2}]| \le \frac{q_{puf}^2}{|puf|}.$$
(4)

*G*₄: In the final game *G*₄, \mathcal{M} utilizes the *CorrD* query and obtains secret parameters {*A*₂, *A*₃, *Gen*(.), *Rep*(.), τ_i , *ER*_i, *CID*_i} from the smart card. In the proposed scheme, all of the parameters are masked in the user's identity, password, and biometrics. To calculate *SK* using the secret parameters, \mathcal{M} must guess U_i , *PW*_i, and *BIO*_i at the same time. Since guessing them in polynomial time is obviously impossible, \mathcal{M} cannot derive *SK*. We apply Zipf's law and obtain the following Equation (5).

$$|\mathcal{M}[WN_{G_4}] - \mathcal{M}[WN_{G_2}]| \le max\{C'q_{snd}^{s'}, \frac{q_{snd}}{2^{BIO}}\}$$
(5)

After that, M obtains the result bits *b*. Moreover, we can set up the following Equation (6).

$$\mathcal{M}[WN_{G_4}] = \frac{1}{2} \tag{6}$$

Using (1) and (2), Equation (7) can be calculated.

$$\frac{1}{2}\mathcal{A}_{M}(BP) = |\mathcal{M}[WN_{G_{0}}] - \frac{1}{2}| = |\mathcal{M}[WN_{G_{1}}] - \frac{1}{2}|$$
(7)

From (6) and (7), Equation (8) can be calculated.

$$\frac{1}{2}\mathcal{A}_{M}(BP) = |\mathcal{M}[WN_{G_{1}}] - \mathcal{M}[WN_{G_{4}}]|$$
(8)

Using the triangular inequality, we can obtain the following Equation (9).

$$\frac{1}{2} \mathcal{A}_{M}(BP) = |\mathcal{M}[WN_{G_{1}}] - \mathcal{M}[WN_{G_{4}}]| \\
\leq |\mathcal{M}[WN_{G_{1}}] - \mathcal{M}[WN_{G_{3}}]| \\
+ |\mathcal{M}[WN_{G_{3}}] - \mathcal{M}[WN_{G_{4}}]| \\
\leq |\mathcal{M}[WN_{G_{1}}] - \mathcal{M}[WN_{G_{2}}]| \\
+ |\mathcal{M}[WN_{G_{2}}] - \mathcal{M}[WN_{G_{3}}]| \\
+ |\mathcal{M}[WN_{G_{3}}] - \mathcal{M}[WN_{G_{4}}]|$$
(9)

$$\leq \frac{q_{hash}^2}{2|hash|} + \frac{q_{puf}^2}{2|puf|} + max\{C'q_{snd}^{s'}, \frac{q_{snd}}{2^{BIO}}\}$$
(10)

We obtain the resulting inequation by multiplying (10) by two.

$$\mathcal{A}_M(BP) \leq \frac{q_{hash}^2}{|hash|} + \frac{q_{puf}^2}{|puf|} + 2max\{C'q_{snd}^{s'}, \frac{q_{snd}}{2^{BIO}}\}.$$

Thus, we prove the Theorem. \Box

7.3. AVISPA Simulation

In this section, we utilize the AVISPA simulation tool [36,37] to verify the resistance against the replay and man-in-the-middle attacks of the proposed scheme. The AVISPA simulation tool verifies the authentication scheme through a code called "High-Level scheme Specification Language (HLPSL)" on the Linux OS. Afterwards, the HLPSL code is converted to "Intermediate Format (IF)" to perform security verification on the four backends ("On-the-Fly Model Checker (OFMC)", "Three Automata based on Automatic Approximations for Analysis of Security Protocol (TA4SP)", "SAT-based Model Checker (SATMC)", and "Constraint Logic-based Attack Searcher (CL-AtSe)"). In this paper, we used the CL-AtSe and OFMC backends because these backends can support the XOR operator. Finally, the result window, i.e., "Output Format (OF)", is shown, and we can demonstrate that the proposed scheme can resist the replay and man-in-the-middle attacks if the OF summarizes the verification as "SAFE". We show the three basic roles of the proposed scheme: user *UI*, gateway *GWJ*, and sensor node *SNK*. The session, environment, and goals are shown in Figure 9. We also show the role of *UI* in Figure 10.

```
role session(UI, GWJ, SNK : agent, SKuigw, SKsngw : symmetric_key, PUF,H : hash_func)
def=
local SN1, SN2, SN3, RV1, RV2, RV3 : channel(dy)
composition
user(UI, GWJ, SNK, SKuigw, SKsngw, PUF, H, SN1, RV1)
 gateway(UI, GWJ, SNK, SKuigw, SKsngw, PUF, H, SN2, RV2)
 sensornode(UI, GWJ, SNK, SKuigw, SKsngw, PUF, H, SN3, RV3)
end role
role environment()
def=
const ui, gwj, snk : agent,
               puf, h : hash_func,
                skuigw, sksngw : symmetric_key,
                ui gw ru, ui sn ru, gw sn rg, gw ui rg, sn gw rs, sn ui rs : protocol id,
                sp1, sp2, sp3, sp4 : protocol_id,
idi, cidi, sidk : text
intruder_knowledge = {h, idi, cidi, sidk}
composition
session(ui, gwj, snk, skuigw, sksngw, puf, h)
Asession(i, gwj, snk, skuigw, sksngw, puf, h)
Asession(ui, i, snk, skuigw, sksngw, puf, h)
/session(ui, gwj, i, skuigw, sksngw, puf, h)
end role
goal
secrecy of sp1, sp2, sp3, sp4
authentication_on ui_gw_ru
authentication on ui sn ru
authentication on gw sn rg
authentication on gw_ui_rg
authentication on sn gw rs
authentication_on sn_ui_rs
end goal
environment()
```

Figure 9. Role specification for the session, environment, and goals.

Figure 10. Role specification for the user.

In State 1, *UI* receives the start message and computes HID_i and HPW_i . Then, *UI* sends $\{HID_i\}$ to *GWJ*. *GWJ* registers *UI* and returns $\{A_0, R_1, CID_i\}$ through a secure channel. State 2 is the login and authentication phase, for which *UI* generates R_u , T_1 and computes the authentication request message $\{SID_k, CID_i, B_1, B_2, T_1\}$ to *GWJ*. At the same time, *UI* generates function $witness(UI, GWJ, ui_gw_ru, Ru')$ and $witness(UI, SNK, ui_sn_ru, Ru')$, which means the proof of random nonce R_u 's freshness. Finally, *UI* receives $\{B_8, B_9, T_4\}$ and computes the session key $SK = h(C_1||R_g||R_s)$. We verified the proposed scheme in the CL-AtSe and OFMC backends, and the result window is shown in Figure 11. Therefore, the proposed scheme can resist the replay and man-in-the-middle attacks.

% OFMC	SUMMARY
% Version of 2006/02/13	SAFE
SUMMARY	
SAFE	DETAILS
DETAILS	BOUNDED_NUMBER_OF_SESSIONS
BOUNDED_NUMBER_OF_SESSIONS	TYPED MODEL
PROTOCOL	
/home/span/span/testsuite/results/SANG.if	PROTOCOL
GOAL	/home/span/span/testsuite/results/SANG.if
as specified	
BACKEND	GOAL
OFMC	As Specified
COMMENTS	-
STATISTICS	BACKEND
parseTime: 0.00s	CL-AtSe
searchTime: 6.31s	
visitedNodes: 1480 nodes	STATISTICS
depth: 12 plies	
	Analysed : 0 states
	Reachable : 0 states
	Translation: 0.10 seconds
	Computation: 0.00 seconds

Figure 11. The AVISPA simulation result of the proposed scheme.

7.4. Informal Analysis

In this section, we demonstrate the security features of our proposed scheme, including those that resist against privileged insider, insider, physical, cloning, verification table leakage, impersonation, session key disclosure, ephemeral secret leakage, replay, man-inthe-middle, stolen mobile device, offline password guessing, and denial-of-service attacks. Moreover, the proposed scheme can provide user anonymity and perfect forward secrecy.

7.4.1. User Anonymity

In our scheme, \mathcal{A} cannot obtain the legitimate U'_i 's identity ID_i , and even \mathcal{A} extracts values { A_2 , A_3 , Gen(.), Rep(.), τ_i , ER_i , CID_i } inside U'_i 's mobile device. ID_i is masked by a hash function with U'_i 's biometric information or PW_i such that $HID_i = h(ID_i||\sigma_i)$, $A_3 = h(ID_i||HPW_i)$, and $ER_i = h(ID_i||PW_i) \oplus R_1$.

7.4.2. Privileged Insider Attack

We can assume privileged insider \mathcal{A} obtains the registration request message $\{HID_i\}$ of the medical professional. Furthermore, \mathcal{A} can extract the parameters $\{A_2, A_3, Gen(.), Rep(.), \tau_i, ER_i, CID_i\}$ from the stolen mobile device of the medical professional using power analysis attack. \mathcal{A} can also intercept transmitted messages such as M_1 and M_4 on a public channel. After that, \mathcal{A} attempts to impersonate a medical professional. To calculate authentication message $M_1\{SID_k, CID_i, B_1, B_2, T_1\}$, \mathcal{A} must compute parameters R_1 and A_0 . However, \mathcal{A} cannot compute $R_1 = ER_i \oplus h(ID_i||PW_i)$ and $A_0 = A_2 \oplus R_1 \oplus \sigma_i$ because \mathcal{A} cannot generate the ID_i, PW_i and biometric information BIO_i of U_i . Therefore, it is difficult for \mathcal{A} to calculate the authentication message M_1 to impersonate a medical professional. \mathcal{A} cannot generate a session key of $U_i SK_u$. \mathcal{A} cannot calculate $(R_g ||R_s) = B_8 \oplus R_u$ and $R_u = B1 \oplus R_1$. In conclusion, the proposed scheme can resist the privileged insider attack.

7.4.3. Insider Attack

Suppose that U_i registers with GW_j as a legal user and intercepts the transmitted messages such as M_2 , M_3 , and M_4 . However, U_i cannot calculate important parameters such as the symmetric key SG_k shared by GW_j and SN_k . Thus, U_i cannot attempt various attacks, including the impersonate and session key disclosure attacks. As as result, our scheme can prevent the insider attack.

7.4.4. Physical Cloning Attack

Assume that an adversary A physically captures a sensor node SN_k and attempts to authenticate with GW_j by disguising it as SN_k . A physically clones SN_k to obtain a values $\{RSG_k, CH_1\}$ in the memory of SN_k and intercepts authentication request messages M_2 on the public channel. Then, A attempts to generate authenticate message M_3 { B_6 , B_7 , T_3 }. However, A cannot generate a message M_3 because he/she cannot calculate the parameter RE_1 necessary to generate message M_3 . A can replicate the same CH_1 from SN_k , but cannot generate the same RE_1 . The PUF circuit cannot be forged. Thus, our scheme can withstand the physical cloning attack.

7.4.5. Verification Table Leakage Attack

Suppose that \mathcal{A} intercepts { CID_i , HID_i , ER_j , A_1 , SID_k , CH_1 } in GW'_j 's verification table of GW_j . Then, \mathcal{A} eavesdrops the transmitted messages such as M_1 , M_2 , M_3 and intercepts message M_4 via an insecure channel. After that, \mathcal{A} attempts to compute authentication request messages M_2 or $SK_g = h(C_1||R_g||R_s)$. However, \mathcal{A} cannot calculate $SG_k = h(SID_k||G_j)$, which is essential for generating M_2 and SK_g , because GW'_j 's secret key G_j is unknown. Therefore, \mathcal{A} cannot generate both M_2 and SK_G . As a result, our scheme can protect against verification table leakage attack. 7.4.6. Impersonation Attack

- (1) User impersonation attack: For this attack, suppose an adversary \mathcal{A} attempts to impersonate U_i . \mathcal{A} must generate a valid authentication request message $M_1\{SID_k, CID_i, B_1, B_2, T_1\}$. \mathcal{A} can extract CID_i from U'_is mobile device and intercept message $M_1\{SID_k, CID_i, B_1, B_2, T_1\}$ through a public channel, but cannot calculate the remaining values $\{B_1, B_2\}$ because $U'_is ID_i$, PW_i , and BIO_i are essential for calculating the remaining values $\{B_1, B_2\}$. Therefore, the proposed scheme is resilient against the user impersonation attack.
- (2) Gateway impersonation attack: Suppose malicious adversary A tries to impersonate GW_j and sends a authentication request message M₂{B₃, B₄, B₅, T₂} to SN_k. To do this, A eavesdrops the transmitted messages M₁ and M₂. However, without having credentials SG_k, C₁, HID_i, CH₁, it is an impossible task for A to compute M₂{B₃, B₄, B₅, T₂}. Hence, the proposed scheme provides protection against the gateway impersonation attack.
- (3) Sensor node impersonation attack: A malicious adversary \mathcal{A} can try to impersonate SN_k . To do this, \mathcal{A} intercepts transmitted messages M_2 and M_3 via an insecure channel and calculates the key agreement message $M_3\{B_6, B_7, T_3\}$. However, since PUF(.) is a physically unclonable circuit, \mathcal{A} cannot calculate $RE_1 = PUF(CH_1)$ and $SG_k = RSG_k \oplus SID_k \oplus RE_1$. Therefore, \mathcal{A} cannot generate message $M_3\{B_6, B_7, T_3\}$. Thus, the proposed scheme prevents the sensor node impersonation attacks.

7.4.7. Session Key Disclosure Attack

If A tries to calculate a legitimate session key $SK = h(C_1||R_g||R_s)$, the adversary must obtain HID_i , R_u , R_g , R_s . However, A cannot obtain these values. R_u , R_g , and R_s are temporary random nonces used in a session, and HID_i is masked as the legitimate U'_i s biometric information BIO_i . Hence, the proposed scheme provides protection against the session key disclosure attacks.

7.4.8. Perfect Forward Secrecy

 \mathcal{A} obtains long-term secret keys $\{SG_k, G_j\}$ and intercepts transmitted message $\{M_1, M_2, M_3, M_4\}$ through a public channel. After that, \mathcal{A} attempts to generate M_4 to impersonate GW_j or calculate $SK_g = h(C_1||R_g||R_s)$ to exploit the session key. However, \mathcal{A} cannot compute the parameters C_1 without U'_i s identity HID_i and random nonce R_u . For these reasons, our scheme provides perfect forward secrecy.

7.4.9. Ephemeral Secret Leakage Attack

 \mathcal{A} obtains random numbers { $R_u, R_g, R_s, R_0, R_1, R_2$ }. After that, \mathcal{A} attempts to compute the session key $SK_G = h(C_1||R_g||R_s)$. Unfortunately, \mathcal{A} cannot generate session key SK because \mathcal{A} cannot calculate $C_1 = R_u \oplus HID_i$, which is essential for generating a session key SK. Thus, the proposed scheme can prevent the ESL attacks.

7.4.10. Replay and Man-in-the-Middle Attack

We assume that A eavesdrop transmitted message { M_1 , M_2 , M_3 , M_4 } through a public channel. However, A cannot impersonate U_i , GW_j , and SN_k by sending a message again. Because timestamps and random numbers such as { T_1 , T_2 , T_3 , R_u , R_g , R_s } are essential to generate a message, and the transmitted message is verified by { T_1 , T_2 , T_3 , R_u , R_g , R_s }. Therefore, our scheme can prevent replay and man-in-the-middle attack.

7.4.11. Stolen Mobile Device Attack

Suppose that A succeeds in extracting stored values { $A_2, A_3, Gen(.), Rep(.), \tau_i, ER_i$, CID_i } from U'_is stolen mobile device. However, A cannot compute any meaningful value from U_i . The values stored in the mobile device are masked with ID_i , PW_i , and BIO_i such as $A_2 = A_0 \oplus R_1 \oplus \sigma_i$, $A_3 = h(ID_i||HPW_i)$, $ER_i = h(ID_i||PW_i) \oplus R_1$. Therefore, A cannot attempt any attack. Thus, our scheme can resist the stolen mobile device attacks.

7.4.12. Offline Password Guessing Attack

 \mathcal{A} obtains $U'_i s$ mobile device and extracts parameters $\{A_2, A_3, Gen(.), Rep(.), \tau_i, ER_i, CID_i\}$ using the power analysis attack. After that, \mathcal{A} tries to guess the password of U_i using the extracted parameters. However, \mathcal{A} cannot guess the $U'_i s$ password PW_i because the password is masked by the $U'_i s ID_i$, BIO_i , or random nonce R_1 such as $HPW_i = h(PW_i||\sigma_i)$, $A_3 = h(ID_i||HPW_i)$, and $ER_i = h(ID_i||PW_i) \oplus R_1$. Therefore, the proposed scheme is secure against the offline password guessing attacks.

7.4.13. Denial-of-Service

Assume that malicious A attempts to send $M_1{SID_k, CID_i, B_1, B_2, T_1}$ to GW_j as a replay message. To do this, A must verify the value of $A_3 = h(ID_i||HPW_i)$ and pass the login phase. However, A cannot calculate a valid A_3 because A cannot obtain ID_i and HPW_i . Therefore, A cannot transmit a replay message M_1 to GW_j . Thus, the proposed scheme is secure against the denial-of-service attacks.

7.4.14. Untraceability

Suppose a malicious A obtains $U'_i s$ pseudoidentity CID_i . However, A cannot attempt any attack with the obtained CID_i . Every session, GW_j updates the CID_i stored with a CID_i^{new} using random nonce R_u after verifying that it is a legitimate user through $A_1 \stackrel{?}{=} A_1^*$ verification. For this reason, the proposed scheme ensures untraceability.

7.4.15. Mutual Authentication

To ensure mutual authentication, our scheme verifies that each entity is justified by $A_1 \stackrel{?}{=} A_1^*$, $B_5 \stackrel{?}{=} B_5^*$, $B_7 \stackrel{?}{=} B_7^*$, and $B_9 \stackrel{?}{=} B_9^*$. Moreover, all entities have verified freshness of messages through random values R_u , R_g , and R_s generated by each entity. When the verification processes are passed, the entities are authenticated with each other. Therefore, our scheme achieves mutual authentication.

8. Performance

In this section, we evaluate the security features, communication costs, and computational costs of our scheme compared with the related schemes [11,38–41].

8.1. Security Features Comparison

We compared the performance of the proposed scheme with the related existing schemes [11,38–41]. As shown in Table 4, we considered various security functionalities and attacks, including "user anonymity", "privileged-insider attack", "offline password guessing attack", "stolen mobile device attack", "denial-of-service attack", "replay attack", "manin-the-middle attack", "mutual authentication", "session key security", "known session specific temporary information attack", "untraceability property", "server-independent password update phase", "physical cloning attack", "perfect forward secrecy", "impersonation attack", "session-specific random number leakage attack", and "stolen verifier attack". Therefore, our scheme offers functional features and security in comparison with the related schemes [11,38–41].

8.2. Communication Cost Comparison

In this section, we demonstrate the comparison analysis for the communication cost of the proposed scheme with related existing schemes [11,38–41]. According to [42], we define that the bit lengths for the SHA-256 hash output, random number, identity, password, PUF challenge–response, timestamp, and ECC point are 256, 256, 128, 128, 128, 32, and 320 bits, respectively. Therefore, the communication costs of the proposed scheme can be described as below:

Security Properties	[38]	[39]	[40]	[41]	[11]	Proposed
SP1	×	\checkmark	\checkmark	×	×	\checkmark
SP2	×	\checkmark	×	×	×	\checkmark
SP3	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark
SP4	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark
SP5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SP6	×	\checkmark	\checkmark	\checkmark	×	\checkmark
SP7	×	\checkmark	\checkmark	\checkmark	×	\checkmark
SP8	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SP9	\checkmark	×	×	\checkmark	\checkmark	\checkmark
SP10	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SP11	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark
SP12	\checkmark	\checkmark	×	×	×	\checkmark
SP13	×	×	\checkmark	×	×	\checkmark
SP14	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SP15	×	\checkmark	\checkmark	×	×	\checkmark
SP16	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SP17	\checkmark	\checkmark	\checkmark	×	×	\checkmark

Table 4. Security and functionality features' comparison with related schemes.

Note: *SP*1: user anonymity; *SP*2: privileged insider attack; *SP*3: offline password guessing attack; *SP*4: stolen mobile device attack; *SP*5: denial-of-service attack; *SP*6: replay attack; *SP*7: man-in-the-middle attack; *SP*8: mutual authentication; *SP*9: session key security; *SP*10: known session specific temporary information attack; *SP*11: untraceability property; *SP*12: server-independent password update phase; *SP*13: physical cloning attack; *SP*14: perfect forward secrecy; *SP*15: impersonation attack; *SP*16: session-specific random number leakage attack; *SP*17: stolen verifier attack; \checkmark : provides or supports the security/functionality feature. \times : does not provide or support the security/functionality feature.

- Message 1: The message $M_1 = \{SID_k, CID_i, B_1, B_2, T_1\}$ needs (128 + 256 + 256 + 256 + 32) = 928 bits;
- Message 2: The message $M_2 = \{B_3, B_4, B_5, T_2\}$ requires (256 + 256 + 256 + 32) = 800 bits:
- Message 3: The message $M_3 = \{B_6, B_7, T_3\}$ requires (256 + 256 + 32) = 544 bits;
- Message 4: The message $M_4 = \{B_8, B_9, T_4\}$ needs (256 + 256 + 32) = 544 bits.

Therefore, the total communication cost of our scheme is 928 + 800 + 544 + 544 = 2816 bits. We show the total communication cost of our scheme and other related scheme [11,38–41] in Table 5. As a result, Figure 12 illustrates that our scheme has more efficient communication costs than other related schemes.

Table 5. Comparison of communication costs required for AKA.

Schemes	Communication Costs	Messages
Li et al. [38]	3584 bits	4 messages
Shin et al. [39]	4480 bits	4 messages
Rangwani et al. [40]	2816 bits	4 messages
Masud et al. [41]	3200 bits	4 messages
Chen et al. [11]	3072 bits	4 messages
Proposed	2816 bits	4 messages

8.3. Computational Cost Comparison

We evaluated the computational costs of our scheme. According to [24], we determined the comparative analysis for the computational cost of the proposed scheme with [11,38–41] in the AKA phase. According to [24], we define T_H , T_{RNG} , T_{EM} , T_{EA} , T_F , and T_{PUF} as the hash function (≈ 0.00023 ms), random number generation (≈ 0.0539 ms), ECC multiplication (≈ 0.2226 ms), ECC addition (≈ 0.00288 ms), fuzzy extractor (≈ 0.268 ms), and PUF

operation time (\approx 0.012 ms), respectively. Additional, we did not consider the execution time of Exclusive-OR (⊕) operations because it is computationally negligible. Table 6 shows the detail.

Figure 12. Communication cost comparison of related schemes [11,38-41].

The total computational costs of our scheme was estimated to be lower than other related schemes, except Masud et al.'s scheme. However, our scheme uses the fuzzy extractor and PUF to outperform Masud et al.'s scheme. Figure 13 shows that the computational cost (delay) increases with increasing numbers of users.

Table 6. Computational costs of each related scheme.

	Lagr	Catazyay	Sansar Nada	Total	Tatal Cast (a)
Scheme	User	Gateway	Sensor Node	Iotai	Iotal Cost (s)
Li et al. [38]	$1T_{RNG} + 9T_H + 3T_{EM}$	$1T_{RNG} + 8T_H + 1T_{EM}$	$1T_{RNG} + 4T_H + 2T_{EM}$	$3T_{RNG} + 21T_H + 6T_{EM}$	$\approx 1.5021 ms$
Shin et al. [39]	$1T_{RNG} + 1T_F + 14T_H + 2T_{EM}$	$12T_H + 1T_{EM}$	$1T_{RNG} + 5T_H + 1T_{EM}$	$2T_{RNG} + 1T_F + 31T_H + 4T_{EM}$	$\approx 1.232 ms$
Rangwani et al. [40]	$5T_H + 2T_{EM} + 3T_{EA}$	$4T_H + 2T_{EM} + 3T_{EA}$	$8T_H + 2T_{EM} + 4T_{EA}$	$17T_H + 6T_{EM} + 10T_{EA}$	$\approx 1.36831 ms$
Masud et al. [41]	$1T_{RNG} + 3T_H$	$4T_{RNG} + 3T_H$	$2T_{RNG} + 2T_H$	$7T_{RNG} + 8T_H$	$\approx 0.379 ms$
Chen et al. [11]	9 <i>T</i> _H	$7T_H + 2T_{ENC}$	$7T_H$	$23T_H + 2T_{ENC}$	$\approx 0.739 \mathrm{ms}$
Proposed	$5T_H + 1T_{RNG} + 1T_F$	$9T_H + 1T_{RNG}$	$5T_H + 1T_{RNG} + 1T_{PUF}$	$19T_H + 3T_{RNG} + 1T_F + 1T_{PUF}$	$\approx 0.44607 \mathrm{ms}$

Figure 13. Total computation cost with increasing the AKA requests [11,38–41].

-Le et al. [38] 🔶 Shin et al. [39] — Rangwani et al. [40] 🔶 Masud et al. [41] 🔶 Chen et al. [11] 🔶 Proposed

9. Conclusions

In this paper, we reviewed Chen et al.'s scheme and demonstrated that it is vulnerable to several attacks, such as privileged insider attacks, physical cloning attacks, verification leakage attacks, impersonation attacks, and session key disclosure attacks. Therefore, it is hard for Chen et al.'s scheme to be applied to WBANs properly, and a secure user authentication scheme should be presented for wireless medical environments. To enhance the security level of Chen et al.'s scheme, we proposed a secure three-factor mutual authentication and key agreement scheme using a secure PUF in the WBAN environment. Our scheme is lightweight because it uses only hash functions and Exclusive-OR operators and a fuzzy extractor to provide a secure login process. Moreover, our scheme resists physical cloning attacks using the PUF. The proposed scheme guarantees mutual authentication through BAN logic and utilizes the RoR model by which the session key is secured. Using the AVISPA simulation tool, we also demonstrated that our proposed scheme could withstand the replay and man-in-the-middle attacks. Moreover, we performed an informal security analysis to show that our proposed scheme provides protection against diverse hazards and attacks, including privileged insiders, physical cloning, verification table leakage, impersonation, session key disclosure, ephemeral secret leakage, replay, man-in-the-middle, stolen mobile device, offline password guessing, and denial-of-service attacks. We also proved that our scheme provides user anonymity, mutual authentication, and perfect forward secrecy. Finally, we compared the communication and computational costs of our scheme with those of related schemes after estimation. Based on the results, our scheme provides a lower communication cost and a higher security level compared to related existing schemes. Accordingly, we expect that our proposed scheme is to provide secure medical environments and to increase the use of the various healthcare applications.

Author Contributions: Conceptualization, S.L.; Formal analysis, S.Y. and Y.P.; Methodology, S.L. and S.K.; Software, S.Y.; Validation, N.J. and Y.P.; Formal Proof, Y.P.; Writing—original draft, S.L. and Y.P.; Writing—review and editing, S.K. and Y.P.; Supervision, N.J. and Y.P. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Korean Government under Electronics and Telecommunications Research Institute (ETRI) Grant (20ZR1300, Core Technology Research on Trust Data Connectome).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Mastnak, T.; Maver, U.; Finšgar, M. Addressing the Needs of the Rapidly Aging Society through the Development of Multifunctional Bioactive Coatings for Orthopedic Applications. *Int. J. Mol. Sci.* **2022**, *23*, 2786. [CrossRef] [PubMed]
- Abdulsalam, Y.; Hossain, M.S. COVID-19 networking demand: An auction-based mechanism for automated selection of edge computing services. *IEEE Trans. Netw. Sci. Eng.* 2020, *9*, 308–318.
- Lara, E.; Aguilar, L.; Sanchez, M.A.; García, J.A. Lightweight authentication protocol for M2M communications of resourceconstrained devices in industrial Internet of Things. *Sensors* 2020, 20, 501. [CrossRef] [PubMed]
- Oh, J.; Yu, S.; Lee, J.; Son, S.; Kim, M.; Park, Y. A secure and lightweight authentication protocol for IoT-based smart homes. Sensors 2021, 21, 1488. [CrossRef] [PubMed]
- Park, K.; Noh, S.; Lee, H.; Das, A.K.; Kim, M.; Park, Y.; Wazid, M. LAKS-NVT: Provably secure and lightweight authentication and key agreement scheme without verification table in medical internet of things. *IEEE Access* 2020, *8*, 119387–119404. [CrossRef]
- Honeine, P.; Mourad, F.; Kallas, M.; Snoussi, H.; Amoud, H.; Francis, C. Wireless sensor networks in biomedical: Body area networks. In Proceedings of the International Workshop on Systems, Signal Processing and Their Applications, WOSSPA, Tipaza, Algeria, 9–11 May 2011; pp. 388–391.
- 7. Aileni, R.M.; Suciu, G. IoMT: A blockchain perspective. In *Decentralised Internet of Things*; Springer: Berlin/Heidelberg, Germany, 2020; pp. 199–215.

- Rahman, M.; Jahankhani, H. Security vulnerabilities in existing security mechanisms for IoMT and potential solutions for mitigating cyber-attacks. In *Information Security Technologies for Controlling Pandemics*; Springer: Berlin/Heidelberg, Germany, 2021; pp. 307–334.
- 9. Hajar, M.S.; Al-Kadri, M.O.; Kalutarage, H.K. A survey on wireless body area networks: Architecture, security challenges and research opportunities. *Comput. Secur.* **2021**, *104*, 102211. [CrossRef]
- Yaghoubi, M.; Ahmed, K.; Miao, Y. Wireless Body Area Network (WBAN): A Survey on Architecture, Technologies, Energy Consumption, and Security Challenges. J. Sens. Actuator Netw. 2022, 11, 67. [CrossRef]
- Chen, C.M.; Li, Z.; Chaudhry, S.A.; Li, L. Attacks and solutions for a two-factor authentication protocol for wireless body area networks. *Secur. Commun. Netw.* 2021, 2021, 3116593. [CrossRef]
- Dodis, Y.; Reyzin, L.; Smith, A. Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. In International Conference on the Theory and Applications of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 2004; pp. 523–540.
- Kumar, P.; Lee, S.G.; Lee, H.J. E-SAP: Efficient-strong authentication protocol for healthcare applications using wireless medical sensor networks. *Sensors* 2012, 12, 1625–1647. [CrossRef] [PubMed]
- He, D.; Kumar, N.; Chen, J.; Lee, C.C.; Chilamkurti, N.; Yeo, S.S. Robust anonymous authentication protocol for health-care applications using wireless medical sensor networks. *Multimed. Syst.* 2015, 21, 49–60. [CrossRef]
- 15. Wu, F.; Xu, L.; Kumari, S.; Li, X. An improved and anonymous two-factor authentication protocol for health-care applications with wireless medical sensor networks. *Multimed. Syst.* **2017**, *23*, 195–205. [CrossRef]
- Li, X.; Ibrahim, M.H.; Kumari, S.; Sangaiah, A.K.; Gupta, V.; Choo, K.K.R. Anonymous mutual authentication and key agreement scheme for wearable sensors in wireless body area networks. *Comput. Netw.* 2017, 129, 429–443. [CrossRef]
- 17. Gupta, A.; Tripathi, M.; Sharma, A. A provably secure and efficient anonymous mutual authentication and key agreement protocol for wearable devices in WBAN. *Comput. Commun.* **2020**, *160*, 311–325. [CrossRef]
- Ostad-Sharif, A.; Nikooghadam, M.; Abbasinezhad-Mood, D. Design of a lightweight and anonymous authenticated key agreement protocol for wireless body area networks. *Int. J. Commun. Syst.* 2019, 32, e3974. [CrossRef]
- Alzahrani, B.A.; Irshad, A.; Albeshri, A.; Alsubhi, K.; Shafiq, M. An improved lightweight authentication protocol for wireless body area networks. *IEEE Access* 2020, *8*, 190855–190872. [CrossRef]
- Mahalat, M.H.; Saha, S.; Mondal, A.; Sen, B. A PUF based light weight protocol for secure WiFi authentication of IoT devices. In Proceedings of the 2018 8th International Symposium on Embedded Computing and System Design (ISED), Cochin, India, 13–15 December 2018; pp. 183–187.
- Zhu, F.; Li, P.; Xu, H.; Wang, R. A lightweight RFID mutual authentication protocol with PUF. Sensors 2019, 19, 2957. [CrossRef] [PubMed]
- 22. Mahmood, K.; Shamshad, S.; Rana, M.; Shafiq, A.; Ahmad, S.; Akram, M.A.; Amin, R. PUF enable lightweight key-exchange and mutual authentication protocol for multi-server based D2D communication. *J. Inf. Secur. Appl.* **2021**, *61*, 102900. [CrossRef]
- Chuang, Y.H.; Lei, C.L. PUF Based Authenticated Key Exchange Protocol for IoT without Verifiers and Explicit CRPs. *IEEE Access* 2021, 9, 112733–112743. [CrossRef]
- 24. Kwon, D.; Park, Y.; Park, Y. Provably secure three-factor-based mutual authentication scheme with PUF for wireless medical sensor networks. *Sensors* **2021**, *21*, 6039. [CrossRef]
- 25. Fotouhi, M.; Bayat, M.; Das, A.K.; Far, H.A.N.; Pournaghi, S.M.; Doostari, M.A. A lightweight and secure two-factor authentication scheme for wireless body area networks in health-care IoT. *Comput. Netw.* **2020**, *177*, 107333. [CrossRef]
- 26. Burrows, M.; Abadi, M.; Needham, R. A logic of authentication. ACM Trans. Comput. Syst. 1990, 8, 18–36. [CrossRef]
- 27. Son, S.; Lee, J.; Kim, M.; Yu, S.; Das, A.K.; Park, Y. Design of secure authentication protocol for cloud-assisted telecare medical information system using blockchain. *IEEE Access* 2020, *8*, 192177–192191. [CrossRef]
- Kwon, D.K.; Yu, S.J.; Lee, J.Y.; Son, S.H.; Park, Y.H. WSN-SLAP: Secure and lightweight mutual authentication protocol for wireless sensor networks. *Sensors* 2021, 21, 936. [CrossRef]
- 29. Kim, M.; Lee, J.; Park, K.; Park, Y.; Park, K.H.; Park, Y. Design of secure decentralized car-sharing system using blockchain. *IEEE Access* 2021, *9*, 54796–54810. [CrossRef]
- 30. Abdalla, M.; Fouque, P.A.; Pointcheval, D. Password-based authenticated key exchange in the three-party setting. In *International Workshop on Public Key Cryptography*; Springer: Berlin/Heidelberg, Germany, 2005; pp. 65–84.
- Wang, D.; Cheng, H.; Wang, P.; Huang, X.; Jian, G. Zipf's law in passwords. *IEEE Trans. Inf. Forensics Secur.* 2017, 12, 2776–2791. [CrossRef]
- Wazid, M.; Bagga, P.; Das, A.K.; Shetty, S.; Rodrigues, J.J.; Park, Y. AKM-IoV: Authenticated key management protocol in fog computing-based Internet of vehicles deployment. *IEEE Internet Things J.* 2019, *6*, 8804–8817. [CrossRef]
- Lee, J.; Yu, S.; Kim, M.; Park, Y.; Das, A.K. On the design of secure and efficient three-factor authentication protocol using honey list for wireless sensor networks. *IEEE Access* 2020, *8*, 107046–107062. [CrossRef]
- Kwon, D.; Son, S.; Park, Y.; Kim, H.; Park, Y.; Lee, S.; Jeon, Y. Design of Secure Handover Authentication Scheme for Urban Air Mobility Environments. *IEEE Access* 2022, 10, 42529–42541. [CrossRef]
- 35. Boyko, V.; MacKenzie, P.; Patel, S. Provably secure password-authenticated key exchange using Diffie-Hellman. In *International Conference on the Theory and Applications of Cryptographic Techniques*; Springer: Berlin/Heidelberg, Germany, 2000; pp. 156–171.

- 36. Armando, A.; Basin, D.; Cuellar, J.; Rusinowitch, M.; Viganò, L. The AVISPA tool for the automated validation of internet security protocols and applications. In *Lecture Notes in Computer Science*; Springer: Berlin/Heidelberg, Germany, 2005; pp. 281–285.
- Glouche, Y.; Genet, T.; Houssay, E. SPAN: A Security Protocol ANimator for AVISPA; IRISA/Université de Rennes 1: Rennes, France, 2008.
- Li, X.; Peng, J.; Obaidat, M.S.; Wu, F.; Khan, M.K.; Chen, C. A secure three-factor user authentication protocol with forward secrecy for wireless medical sensor network systems. *IEEE Syst. J.* 2020, *14*, 39–50. [CrossRef]
- 39. Shin, S.; Kwon, T. A privacy-preserving authentication, authorization, and key agreement scheme for wireless sensor networks in 5G-integrated Internet of Things. *IEEE Access* 2020, *8*, 67555–67571. [CrossRef]
- Rangwani, D.; Om, H. A secure user authentication protocol based on ECC for cloud computing environment. *Arab. J. Sci. Eng.* 2021, 46, 3865–3888. [CrossRef]
- 41. Masud, M.; Gaba, G.S.; Choudhary, K.; Hossain, M.S.; Alhamid, M.F.; Muhammad, G. Lightweight and anonymity-preserving user authentication scheme for IoT-based healthcare. *IEEE Internet Things J.* 2021, *9*, 2649–2656. [CrossRef]
- 42. Son, S.; Park, Y.; Park, Y. A Secure, Lightweight, and Anonymous User Authentication Protocol for IoT Environments. *Sustainability* **2021**, *13*, 9241. [CrossRef]