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Abstract: Due to the presence of actuator disturbances and sensor noise, increased false alarm rate
and decreased fault detection rate in fault diagnosis systems have become major concerns. Various
performance indexes are proposed to deal with such problems with certain limitations. This paper
proposes a robust performance-index based fault diagnosis methodology using input–output data.
That data is used to construct robust parity space using the subspace identification method and
proposed performance index. Generated residual shows enhanced sensitivity towards faults and
robustness against unknown disturbances simultaneously. The threshold for residual is designed
using the Gaussian likelihood ratio, and the wavelet transformation is used for post-processing. The
proposed performance index is further used to develop a fault isolation procedure. To specify the
location of the fault, a modified fault isolation scheme based on perfect unknown input decoupling
is proposed that makes actuator and sensor residuals robust against disturbances and noise. The
proposed detection and isolation scheme is implemented on the induction motor in the experimental
setup. The results have shown the percentage fault detection of 98.88%, which is superior among
recent research.

Keywords: fault detection; fault Isolation; data-driven; industrial drives; subspace identification

1. Introduction

The early and accurate detection of abnormal events is crucial for today’s safety-critical
systems with their continuously increasing complexity. Model based fault diagnosis has
enjoyed considerable attention during the last three decades and provides a rich literature of
techniques considering practical solutions for fault diagnosis [1–7]. High-fidelity modeling
requirements for model based fault diagnosis make it difficult and sometimes infeasible to
implement for the complex system. Noteworthy examples from these complicated systems
are networked control systems, internet of things [8], and different chemical industry pro-
cesses [9]. A sufficient amount of data is available for the majority of such systems. This data
contain information about the system, disturbances and noise, fault, and so on. To deal with
such systems, various data-driven methods are being used with effective implementation.

These methods are broadly classified into two classes [10]: (1) data-driven methodolo-
gies [11,12]; (2) model-data based hybrid approaches [13–15]. Among various pure data
based methods, machine learning [16], deep learning [17,18], and multivariate techniques
including principal component analysis [19–21] and partial least square methods [22–24]
are widely used with promising results. A model-data based hybrid approach usually
considers the development of FDI schemes that consists of an intersection between model
based and data-driven techniques [13]. Subspace identification method (SIM) emerged
as one of the major techniques in this domain for the last two decades [25–28]. The key
concept behind the Subspace identification method (SIM) approach is to identify the parity
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space for the construction of observer based fault detection and isolation (FDI) scheme [26]
or parity based FDI residual generators [27] using input–output data. The effect of external
factors such as noise and disturbances from recorded data are eliminated by introducing
instrument variables. Finding orthogonal projection of an extended observability matrix
enables constructing residuals based on a parity vector, which is made possible by using
the singular value decomposition (SVD) on covariance matrices of recorded data [29]. Since
the Subspace identification method (SIM) is developed to estimate the dynamic model of
the underlying system, it is worth mentioning that it also solves the problem of dealing
with stationary as well as dynamical systems, compared to multivariate analysis (MVA)
techniques which are operated on stationary processes. Although several MVA techniques
have been developed to deal with dynamic issues, these are not suitable for stationary
processes [30].

Subspace identification has been applied to many practical systems including the
Tennessee Eastman process [26,31], vehicle lateral dynamic system [27], coupled liquid tank
system [32], wind turbine benchmark [33–35], and three phase induction motor [36,37].
Since induction motors play a vital role in the process industry for converting electrome-
chanical energy and are the most widely used devices [38], our study would be directed
toward implementing data-driven techniques on an induction motor. Due to the critical
operation of induction motors in industries such as power generation, petroleum [39],
aerospace [40], and the medical industry, it is required to monitor the reliability and run-
ning conditions to avoid any disastrous failures. Now, operators have started using rapid
fault detection along with the usually planned maintenance, which could reduce the failure
rate, increase the plant uptime, and reduce operational and maintenance costs.

The induction motor and its drive system could be subjected to different types of
faults. Some of them could be [41,42]:

1. Stator fault that includes short and open circuiting of the stator winding;
2. Rotor faults dealing with end-ring cracking in the case of squirrel cage motor and

short or open circuiting of the rotor winding;
3. Power supply failure due to power electronics damage of the driving system;
4. Mechanical fault including bearing damage, eccentricity misalignment, and a bent shaft.

Since induction motors are considered symmetrical machines, any fault could modify
their operational behavior by changing symmetrical properties.

Machine learning and model-based methodologies have also been applied to induction
motor for fault detection and isolation purposes. Convolutional neural network (CNN)
based fault diagnosis and classification was carried out by Maciej Skowron in [43]. Dur-
ing the fault detection process, a neural network also acts as a classification system which
also identifies degree of damage to the induction motor. Choosing a right structure of CNN
for fault detection and isolation (FDI) system plays a vital role in methodology, as a minor
change could lead to a huge increase in false alarm rate (FAR). Data based and model
based techniques have their own advantages and disadvantages in different system states.
Unknown faults can be detected and identified efficiently by model based methods while
data based methodologies mostly analyse the input–output signal of the induction motor
giving low weight to system dynamics [44]. Hybrid approaches, which are a combination
of system model based FDI schemes and pure data based methodologies, have shown great
ability to detect fault and analyse fault with unbalanced conditions [45].

Parity equation based methods provide less online computational complexity which
leads to early detection of faults [46]. In our FDI scheme, parity space is identified using
a subspace identification method which is further used for residual generation. For the
subspace method, it is challenging to find an optimal parity vector that makes generated
residuals more sensitive towards fault and less sensitive towards external factors (e.g., noise
and disturbances) simultaneously. To face such challenges, various performance indexes
are proposed [26,27,32,37] for the computation of optimal parity vector. In [27], a proposed
index considers the sensitivity for actuator and sensor faults but does not consider the effect
of unknown inputs. Similarly, Ref. [32] proposed a performance index that considers the
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effect of actuator disturbance and actuator fault sensitivity in generated residual. Till then,
enhancement of sensitivity towards sensor faults and sensor noise was discussed. However,
Ref. [37] proposed a methodology to optimize the parity vector for sensor fault and noise
at the expense of actuator fault and disturbance.

In this paper, we have developed the subspace-based data-driven fault diagnosis
scheme for dynamical systems based on the proposed performance index, which makes
the residual sensitive towards actuator and sensor faults simultaneously while suppressing
the effect of unknown inputs such as actuator disturbances and sensor noise. Furthermore,
to determine the location of the faulty component, an isolation algorithm based on perfect
unknown input decoupling is proposed with an improved performance index for an
optimized parity vector.

The rest of the paper is organized as follows: Section 2 includes dynamic consideration
of induction motor used for online implementation. Section 3 states the fundamentals of
the subspace identification method and mathematical derivations. Proposed fault detection
and isolation algorithms are also stated in Sections 3 and 4, respectively. Section 5 is
related to the post-processing of residuals, which include wavelet transformation and
Gaussian Likelihood Ration test. Practical implementation of developed schemes is then
implemented on an induction motor as described in Section 6. Section 7 concludes with a
summary of the work.

2. Induction Motor Dynamics

The induction motor is operated by applying AC voltage to the stator, which produces
the AC current in the rotor circuit. Since there is no electrical connection between the rotor
and stator of the induction motor, it makes the motor almost maintenance-free and more
efficient due to no power loss in the commutators. Squirrel cage induction motors are the
most commonly used motor varying from a few to hundreds of horsepower. The rotor
rotates when it is subjected to varying magnetic fields, and the speed of the rotor depends
upon the frequency ( fe) of applied voltage and stator poles (p) of the motor as described
in Equation (1):

nsync =
120 fe

p
(1)

A mathematical model of the motor could be constructed by considering the equivalent
model of a signal phase induction motor. The nominal parameters of induction motor
under consideration are given in Table 1. A 5th order state-space model of the induction
motor is constructed based on the stator-fixed frame reference:

η̇1 = c4η1 − Pnη5η2 + c5η3

η̇2 = Pnη5η1 + c4η2 + c5η4

η̇3 = c6η1 + c7η5η2 − γη3 + c8u1

η̇4 = −c7η5η1 + c6η2 − γη4 + c8u2

η̇5 = c1η1η4 + c2η5 + c3τL − c1η2η3

y = [η3, η4]

(2)

Here, the state vector is representing the d-q axis fluxes and current along with the
speed of rotor, such that η = [η1 η2 η3 η4 η5]

T = [φd φq id iq ω]T . Since motor is being acti-
vated by the three phase voltage, the acting actuator input would be these supply voltages.

Constants used in the model (2) are defined as

c1 =
PnLs,r

DmLrot
, c2 = − Rm

Dm
, c3 = − 1

Dm

c4 = − 1
Tr

, c5 =
Ls,r

Tr
, c6 =

Ls,r

TrσLsatLrot

c7 =
PnLs,r

σLsatLrot
, c8 =

1
σLsat
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further,

γ =
Rsat

Lsatσ
+

L2
s,r

σLsatLrotTrot
, σ = 1−

L2
s,r

LsatLrot

Tr =
Lrot

Rrot

Thus, the dynamic model for an induction motor (SE2672-3G) as shown in Figure 1
could be found using values given in Table 1. Besides nominal parameters, the nominal
operating conditions of motor are stated in Table 2.

Figure 1. Experimental setup of Industrial drive (SE2672-3G).

Table 1. Induction Motor Nominal Parameters (SE2672-3G).

Name Symbol Value

Number of poles Pn 2
Inductance of Rotor Lrot 0.1164
Resistance of Rotor Rrot 3.5735
Inductance of Stator Lsat 0.1164
Resistance of Stator Rsat 0.7941

Leakage factor σ 0.092896
Mutual inductance Ls,r 0.1109

Table 2. Nominal operating conditions (SE2672-3G).

Parameter Value

Nominal Voltage ∆/Y 400/690 V
Nominal Current ∆/Y 1.0/0.6 A

Nominal Power 370 W
Power Factor 0.83

Frequency 50 Hz
Nominal Speed 2800 rpm

3. Fault Diagnosis Scheme

Parity vector-based residual generation is one of the famous fault diagnosis schemes
used in both model-based and data-driven FDI systems [47]. The parity vector scheme al-
lows us to use techniques developed in model-based FDI literature for data-driven systems.
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In order to obtain the advantage of the availability of input–output data samples of the
process and avoid complexity issues to obtain a system model, the subspace identification
mechanism is focused on this work as expressed in Figure 2.

Figure 2. Subspace identification based diagnostic scheme.

Consider a discrete LTI model that is described as follows:

x(k + 1) = Ax(n) + B(u(k) + fa(k)) + w(k)

y(k) = Cx(k) + D(u(k) + fa(k)) + fs(k) + v(k)
(3)

where the input, state and output vectors are u(k) ∈ <l , x(k) ∈ <n and y(k) ∈ <m,
respectively. Furthermore, fa(k) ∈ <l , fs(k) ∈ <m, w(k) ∈ <n and v(k) ∈ <m represent the
actuator faults, sensor faults, actuator noise and sensor noise, respectively. The matrices A,
B, C and D are constant matrices of appropriate dimensions.

Consider the system described in Equation (3) that is written in recursive form with s
number of samples such that s > n as follows:

ys(k) =
[
y(k− s) y(k− s + 1) · · · y(k)

]T

us(k) =
[
u(k− s) u(k− s + 1) · · · u(k)

]T
(4)

In a similar fashion, fs(k), fa(k), ws(k) and vs(k) could be constructed. The output of
the system could be written as

ys(k) = Ψx(k− s) + Musus(k) + Mus fa,s(k)

+ Ndsws(k) + fs(k) + vs(k)
(5)

where

Mus =


0 0 . . . 0
C 0 . . . 0
...

...
. . .

...
CAs−1 CAs−2 · · · 0

, Nds =


D 0 . . . 0

CB D . . . 0
...

...
. . .

...
CAs−1B CAs−2B · · · D

 (6)

Ψ =
[
C CA · · · CAs] (7)

Let the residual be defined as

Υ(k) =
[
M̂ −N̂

][ys(k)
us(k)

]
=
[
Ψ⊥ −Ψ⊥Mus

][ys(k)
us(k)

]
(8)

Υ(k) = Ψ⊥ys(k)−Ψ⊥Musus(k) (9)
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Ψ⊥ is defined as the parity space of the system, such that Ψ⊥Ψ = 0. Substituting
Equation (5) into Equation (9),

Υ(k) = Ψ⊥(Mus fa,s(k) + Ndsws(k) + fs(k) + vs(k)) (10)

Equation (10) states that, if there is no fault in the system, the generated residual
would only be having the effect of disturbance and noise acting on the actuators and
sensors. According to Equations (8) and (9), due to the unavailability of the state-space
model, our main objective for data-driven diagnostic system is to identify the left coprime
factorization (Ψ⊥, Ψ⊥Mus) of the underlying system from healthy input–output data. N
number of input–output data samples are collected during the healthy operation of the
process. Assume that the order of the system is n, and indices p and f refer to the past and
future, whereas s = sp = s f . From healthy input–output data, past and future input–output
block Hankel matrices are constructed by subdividing data samples into past and future
data samples, as

Up =
[
usp(k) usp(k + 1) · · · usp(k + N − 1)

]
∈ <sp l×N

Yp =
[
ysp(k) ysp(k + 1) · · · ysp(k + N − 1)

]
∈ <spm×N

U f =
[
us f (k + sp + 1) · · · us f (k + s f + N)

]
∈ <s f l×N

Yf =
[
ys f (k + sp + 1) · · · ys f (k + s f + N)

]
∈ <s f m×N

Here, usp , us f , ysp and ysd are represented as in Equation (4). For a fault free case, a
future values data matrix could be written as

Zp =

[
Ysp

Usp

]
, Z f =

[
Ys f

Us f

]
(11)

Z f =

[
Ψ Mus
0 I

][
Xi
U f

]
+ Θ, Θ =

[
Nds I
0 0

][
Wp
Vp

]
(12)

for N � s, where s ≈ sp ≈ s f > n, and the covariance matrix of the collected data could be
constructed as follows:

1
N

Z f Zp =
1
N

[
Ψ Mus
0 I

][
Xi
U f

]
Zp +

1
N

ΘZp (13)

and the matrix Zp is also known as an instrumentation variable used to remove the effect
of noise. It is assumed that the noise in the system is uncorrelated with the collected I/O
data. Furthermore, to normalize data, Equation (13) is divided by N. A singular value
decomposition of covariance matrix would lead to the identification of left coprime factors
or data-driven residual as follows:

SVD(
1
N

Z f Zp) = Uz

[
Sz,1 0

0 Sz,2

]
VT

z , Uz =

[
Uz11 Uz12

Uz21 Uz22

]
Here,

Sz1 ∈ <
ms f×(ms f +n) Szs ∈ <

(ms f−n)×(ms f +lsp−ls f−n)

Uz,11 ∈ <ms f×(ls f +n) Uz,12 ∈ <ms f×(ms f−n)

Uz,22 ∈ <ls f×(ms f−n)

(14)

and the parameter Ψ⊥ and Ψ⊥Mus would be identified as [27]

Ψ⊥ = UT
z12

Ψ⊥Mus = −UT
z22

(15)
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By substituting the identified parameters in Equation (9), the residual can be con-
structed as given below:

Υ(k) = Ψ⊥(Mus fa,s(k) + Ndsws(k) + fs(k) + vs(k))

The above equation indicates that, despite the fault-free case, the residual will be
affected by noise and disturbances. It is of vital importance to obtain optimal parity space
that also mitigates the effect of noise and disturbances in the residual. The procedure for
identifying a subspace-based residual using I/O data is summarized in Algorithm 1.

Algorithm 1 SIM based fault detection algorithm
1: Collect the I/O data from plant during healthy operation
2: Estimate the order n of the system and set s f = sp ≈ s > n
3: Construct block hankel matrices Up, U f , Yp and Yf
4: Construct the covariance matrix using Equation (13)
5: Obtain the Ψ⊥ and Ψ⊥Mus using Equation (15)
6: Construct the residual as defined in Equation (9)

Proposed Robustness Method

The robustness problem could be modeled as selecting the parity vector from parity
space to enhance the sensitivity towards faults and be less sensitive against noise and
disturbances. The residual, defined in Equation (9), contains the matrices Mus and Nds
also known as fault and disturbance coupling matrix, respectively. Choosing parity vector
Ψ⊥, which solves the objective function defined in Equation (16), maximizes the Mus and
minimizes the Nds, which could lead to the insensitivity towards sensor fault and noise:

J1 = max
Ψ⊥s

Ψ⊥s Mus MT
usΨ⊥T

s

Ψ⊥s NdsNT
dsΨ⊥T

s
(16)

To increase sensitivity towards a sensor fault, index J2 was proposed in [37] defined in
Equation (17)

J2 = max
Ψ⊥s

Ψ⊥s NdsNT
dsΨ⊥T

s

Ψ⊥s Mus MT
usΨ⊥T

s
(17)

Index (17) solves the problem for sensitivity towards sensor faults but performs worst
in case of an actuator fault because the actuator fault coupling matrix is maximized. To solve
this issue, a performance index is proposed as follows:

Υ(k) = Ψ⊥s (Ys(k)−MusUs(k))

Υ(k) = Ψ⊥s (Mus fa(k) + Ndsws(k) + fs(k) + vs(k))

Υ(k) = Ψ⊥s
(
[Mus I][Fa(k) Fs(k)]

T + [Nds I][Ws(k) Vs(k)]
T
)

Υ(k) = Ψ⊥s (Musi F(k) + Ndsi D(k))

Now, the combined effect of fault and disturbance could be defined in the following
way:

Rwv =‖ Ndsi(S) ‖∞ Sas =‖ Musi(S) ‖∞ (18)

where S is design parameter, in this case, parity vector. Now, the performance index could
be defined as

J3 = max
Ψ⊥s

Sas

Rwv
⇒ max

Ψ⊥s

Ψ⊥s Musi MT
usiΨ

⊥T
s

Ψ⊥s Ndsi NT
dsiΨ

⊥T
s

(19)
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To solve index J3, a generalized eigenvalue problem could be used as follows:

ls(Ψ⊥s Ndsi NT
dsiΨ

⊥T

s − λsΨ⊥s Musi MT
usiΨ

⊥T

s ) = 0 (20)

ls is the eigenvector that maximizes the Musi and minimizes the Ndsi, where λs is
the corresponding eigenvalue. The procedure for robust residual construction could be
summarized as follows in Algorithm 2.

Algorithm 2 SIM based robust fault detection algorithm

1: Using Algorithm 1 obtain the parameter Ψ⊥s and Ψ⊥s Mus
2: Solve (20) to obtain eigenvector ls
3: Obtain the robust residual generator as follows

Ψ⊥s,rob = lsΨ⊥s

4: Construct the residual as

Υrob(k) = Ψ⊥s,robys(k)−Ψ⊥s,rob Musus(k) (21)

4. Robust Fault Isolation Method

Fault isolation deals with identifying faulty components and hence plays an important
role in FDI. Our modified robust isolation algorithm is based on decoupling the effect of all
faults from the desired residual. For example, the jth residual Υj(k) would be decoupled
from all other faults f1(k), . . . , f j−1, f j+1, . . . , fk f

(k) and sensitive towards f j, where k f
represents the total number of faults. Hence, a bank of residuals would be needed to isolate
a single fault from others. Further information about isolated faults would be extracted
from the combination of multiple residuals, assuming that only a single fault would occur
at any instant. If the process under consideration has m sensors and k f number of faults
where m < k f and one fault is required to be isolated from the remaining faults, the perfect
isolation could be used by constructing k f Cm−1, and each residual would be a function of
different faults. As shown, the final result about the fault in a specific component for the
induction motor could be constructed using Table 3. The procedure for residual generation
for Sensor fault isolation could be summarized in Algorithm 3 and procedure for residual
generation for Actuator fault isolation could be summarized in Algorithm 4.

Table 3. Fault isolation logic.

Υ1 Υ2 Υ3 Υ4

f1 1 0 1 1
f2 0 1 1 1
f3 1 1 1 0
f4 1 1 0 1
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Algorithm 3 Sensor Fault Isolation

1: Obtain the matrices Ψ⊥s and Ψ⊥s Mus using Algorithm 1
2: Divide Ψ⊥s in the following way: Ψ⊥s = [Ψ⊥s,1 Ψ⊥s,2 . . . Ψ⊥s,sg ], where Ψ⊥s,j ∈ <µ×m and

j = 1, 2, . . . , sg

3: Further sub-divide the Ψ⊥s,j = [Ψ⊥s,j,1 Ψ⊥s,j,2 . . . Ψ⊥s,j,m] such that Ψ⊥s,j,k ∈ <µ,
k = 1, 2, . . . , m. m represents the number of outputs

4: Now parity space for all other faults, except ith fault, could be written
as: Ψ⊥s,i = [Ψ⊥s,1,1 . . . Ψ⊥s,1,i−1 Ψ⊥s,1,i+1 . . . Ψ⊥s,1,mΨ⊥s,2,1 . . . Ψ⊥s,2,i−1Ψ⊥s,2,i+1 . . . Ψ⊥s,2,m . . .
Ψ⊥s,sg ,i−1 Ψ⊥s,sg ,i+1 . . . Ψ⊥s,sg ,m]

5: Find the null space for all sensors except ith sensor as Lsen,iΨ⊥s,i = 0 and now the parity
space for ith sensor would be Ψ⊥s,sen,i = Lsen,iΨ⊥s

6: Find the robust parity vector from identified parity space for ith sensor as

J3,sen = max
Ψ⊥s,sen,i

Ψ⊥s,sen,i Musi MT
usiΨ

⊥T

s,sen,i

Ψ⊥s,sen,i Ndsi HT
dsiΨ

⊥T
s,sen,i

(22)

7: To solve index (19), a generalized eigenvalue problem can be used as

ls,sen,i(Ψ⊥s,sen,i Husi HT
usiΨ

⊥T

s,sen,i − λs,sen,i Hdsi HT
dsiΨ

⊥T

s,sen,i) = 0

8: Construct the residual generator as for ith sensor as

Υsen,i = ls,sen,i(Ψ⊥s,sen,iys(k)−Ψ⊥s,sen,i Musus(k)) (23)

Algorithm 4 Actuator fault Isolation

1: Set ξs = Ψ⊥s Mus
2: Divide ξs in the following way: ξs = [ξs,1 ξs,2 . . . ξs,sg ], where ξs,j ∈ <µ×l and

j = 1, 2, . . . , sg
3: Further sub-divide the ξs,j = [ξs,j,1 ξs,j,2 . . . ξs,j,m] such that ξs,j,k ∈ <µ, k = 1, 2, . . . , m,

where m represents the number of outputs
4: Now, parity space for all other faults, except ith fault, could be written as

ξs,i = [ξs,1,1 . . . ξs,1,i−1 ξs,1,i+1 . . . ξs,1,mξs,2,1 . . . ξs,2,i−1

ξs,2,i+1 . . . ξs,2,m . . . ξs,sg ,i−1 ξs,sg ,i+1 . . . ξs,sg ,m]

5: Find the null space for all actuators except ith actuator as Pact,iξs,i = 0 and now the
parity space for ith actuator would be Ψs,act,i = Psen,iΨs

6: Find the robust parity vector from identified parity space for ith actuator as

J3,act = max
Ψs,act,i

Ψs,act,i Musi MT
usiΨ

T
s,act,i

Ψs,act,i Ndsi NT
dsiΨ

T
s,act,i

(24)

7: To solve index (19), generalized eigenvalue problem can be used as
ls,act,i(Ψs,act,i Musi MT

usiΨ
T
s,act,i − λs,act,i Ndsi NT

dsiΨ
T
s,act,i) = 0

8: Construct the residual generator as for ith sensor as

Υact,i = ls,act,i(Ψs,act,iys(k)−Ψs,act,i Musus(k)) (25)
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5. Residual Post-Processing
5.1. Residual Evaluation Method

For the evaluation of residual, a threshold needs to be computed empirically (fixed) or
statistically. In order to quantify the error rate, a stochastic threshold must be computed to
make an accurate decision about whether a fault has occurred. Reduction of false negative
alarms depends upon the noise level present in the sensor measurements and sensitivity to
faults. Assuming the noise present in the system is distributed normally, we are using the
Gaussian Likelihood Ratio (GLR) test for designing a threshold and evaluating residual.
The procedure for applying GLR-based threshold is described in Algorithm 5.

Algorithm 5 GLR Test
1: Choose a confidence interval and select value of χa using Chi-square table such the

prob(χa < χ) = α
2: Obtain the threshold from Jth = χa

2

3: Using residual signal, construct the statistical signal as J = 1
2σ2 Nw

(
∑Nw

i=1 Υ(i)2
)

4: If J < Jth results are negative and there is not a fault; otherwise, a fault is detected for
J > Jth.

5.2. Wavelet Transformation of Residual

Fourier analysis of residual is based on dividing the signal into its sine and cosine
components by transforming from a time to frequency domain. However, wavelet trans-
form is different from Fourier in the sense that it uses functions that are localized in Fourier
and real space as well. It decomposes the signal into approximate and detailed coefficients.
As the residual signal is affected by noise, the detailed coefficients are discarded due to the
large impact of disturbances on them. Wavelet transform is generally represented by the
following function:

G(a, b) =
∫ ∞

−∞
Υ(t)ψ∗(

t− b
a

)dt (26)

which continues in the range of a and b and adds more computational complexity. Since
we are dealing with discrete time signals, discrete wavelet transform could be used. This
discrete transform would decompose the signal into wavelets that are mutually orthogonal
to each other:

Υ(t) = w0 +
∞

∑
j=0

2j−1

∑
k=0

w2j+kψ(2jt− kT) (27)

where

w0 =
∫ T

0
Υ(t)dt

w2j+k =
∫ T

0
Υ(t)ψ(2jt− kT)dt

6. Online Implementation and Results

The induction motor (SE2672-3G) as shown in Figure 1 is started in Y−configuration
and loaded with its nominal torque, and the motor runs at its nominal speed.

Now, 1200 samples are collected with sampling time of Ts = 0.1 s. With s f = 8,
n = 4, the identified parity space Ψ⊥ ∈ <12×16 and Ψ⊥Mus ∈ <12×16. Now, based on
Equation (21), three different residuals are constructed using index (16), (17) and (19).
The generated residuals are shown in Figure 3.

Various types of faults could occur during the operational state of the induction motor,
including insulation breaking of the stator field winding, excessive current increase due
to overloading, measurement devices such as ampere/volt meter could become defective,
and supply voltage (modeled as an actuator) could become defective in the case of an
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unreliable power source. The profile of fault could be step, ramp, sinusoidal, etc., based on
the conditions and nature of faulty components in the motor.

Figure 3. Residual with no faults.

The computed variance for generated residuals is var(ΥJ1) = 0.0133, var(ΥJ2) = 0.0103
and var(ΥJ3) = 0.0075, which shows the reduction of noise power in residual computed
through the proposed index in the absence of a fault.

Consider the representation of faults as

f1 −→ f ault in stator voltages q− axis (vq)

f2 −→ f ault in stator voltages d− axis (vd)

f3 −→ f ault in stator current q− axis (iq)

f4 −→ f ault in stator current d− axis (id)

A pulse fault is introduced in the actuator 1 (17–25 s) and sensor 2 (83–92 s), and the
resultant residual using J1, J2 and J3 is shown in Figure 4.

Figure 4. Residual with stator current (iq) and stator voltage (vd) faults.
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Performance of the residual generator is also estimated by measuring the standard
deviation and variance of generated residuals. Statistical data for residuals obtained using
performance index J1, J2 and J3 are shown in Table 4.

Table 4. Statistics for indices J1, J2 and J3.

ΥJ1 ΥJ2 ΥJ3

variance 0.0242 0.0327 0.0992
standard deviation 0.1556 0.1809 0.3151

From Table 4 it is clear the J2 performs better than J1 due to more variance and
detectability. Similarly, statistical data for J3 are shown in Table 4 and also show that the
standard deviation and variance of generated residual are greater than J1 and J2, which
is also the reason for better detectability of faults. The false alarm rate (FAR) and false
detection rate (FDR) for performance index J1, J2 and J3 are shown in Table 5.

Table 5. FAR and FDR for indices J1, J2 and J3.

J1 J2 J3

FAR 4.27 1.63 0.85
FDR 82.53 97.61 98.88

Fault Isolation

In three phase induction motor (SG-2672), there are two sensors and two actuator
faults. The current in the d− q axis is modeled as sensors 1 and 2, respectively, while the
applied AC power supply for the d− q axis is modeled as actuators 1 and 2, respectively.
Applying Algorithms 1 and 2 would indicate the presence of the fault in the motor, but it
would not specify the location of the faulty component. For that purpose, we would
use a modified isolation procedure in Algorithms 3 and 4 based on perfect unknown
input decoupling.

Parity spaces, Ψ⊥ and Ψ⊥Mus, obtained using Algorithms 1 and 2, are being used
for actuator and sensor fault isolation using proposed robust parity vectors ls,act,i and
ls,sen,i, respectively.

Since m = 2 and k f = 4, a total of four residuals Υ1, Υ2, Υ3, Υ4 are generated based
on 4C2.

Furthermore, representing the residual as a function of faults as in Equation (28),

Υ1(k) = F( f1, f3, f4)

Υ2(k) = F( f2, f3, f4)

Υ3(k) = F( f1, f2, f3)

Υ4(k) = F( f1, f2, f4)

(28)

A fault is introduced in the d-q axis of stator voltages (actuator 1, 2) and d-axis stator
current for different time intervals, The faults are then detected online using Algorithm 2,
and residual is evaluated based on the GLR threshold as shown in Figure 5. Furthermore,
using Algorithm 3 and 4, residuals are constructed for indication of faulty components
as shown in Figure 6. Now, at any instant, a decision about faults in specific components
could be made using Table 3. It is evident from the figure that faults have occurred in stator
voltages (vq, vd) and current (iq) during specified time intervals.

Generally, the nature of the faults is of low frequency so applying wavelet transform
and keeping only approximate coefficients (containing lower frequencies of the residual)
could reduce the false alarm rate as shown in Figure 7.
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Figure 5. Residual with stator voltages (vq, vd) and current (id) faults.

Figure 6. Fault isolation for stator voltages (vq, vd) and current (id) faults.
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Figure 7. Fault isolation for stator voltages (vq, vd) and current (iq) faults with wavelet transformation.

7. Conclusions

In this paper, we have presented a robust data-driven fault detection and isolation
scheme for the systems with unknown dynamics. The proposed scheme showed robustness
against sensor noise and actuator disturbances. The existing parity vector identification
methodology is modified with the proposed performance index for a simultaneous increase
in sensitivity towards faults and robustness against disturbances. Generated robust parity
space is further used for the residual generation, which is further post-processed by wavelet
transformation. Compared with previously defined performance indexes, our scheme with
the proposed performance index has shown better statistics of reduced false alarm rate
and increased false detection rate. An unknown input decoupling-based fault isolation
procedure is adopted to designate the fault location. This procedure is also modified with
our performance index to enhance sensitivity towards faults and considerably reduce the
effect of noise on residuals compared to previously proposed indexes. Wavelet transform
is used to discard the high-frequency content of the residual to further enhance FDR. The
robust data-driven fault detection and isolation scheme is applied to the experimental setup
of an induction motor in the lab. Obtained results showed the efficacy of the proposed fault
diagnosis system.

8. Limitations

The proposed methodology is proved to be more effective, especially for linear dy-
namic systems. The less online computation and reduced false alarm rate are the added
benefits of the designed scheme. Meanwhile, it is observed that the proposed strategy has
limited efficacy for the highly nonlinear dynamic system as it uses a linear dynamic ap-
proach for subspace identification. In addition, for modern large-scale industrial processes,
having many sensors makes the task of health monitoring very complex and expensive
simultaneously. It demands key performance indicators based on fault diagnosis for alarm
management to eradicate redundant alarms.

9. Future Work

Our work on a robust data-driven method can be further used for fault identification
and fault tolerant control systems as these are also vital to guarantee the process’s sub-
optimal function in the fault’s existence.
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