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Abstract: Predicting the trajectories of surrounding vehicles plays an important role in the driving
safety of autonomous vehicles. It impacts the decision making, path planning, and vehicle motion
control process in autonomous vehicles. However, due to the uncertainty of vehicle dynamics,
driving intention, and the complexity of the surrounding environment, there are interactions between
vehicles and other issues, and their motion prediction faces great challenges. This paper proposes
a trajectory prediction algorithm combining driving intention classification and environmental
interaction correction to overcome the leading vehicle movement prediction problem. In order to
solve the problems of uncertainty in predicting vehicle driving intention and nonlinearity between
future vehicle movements and the environment, a driving intention recognition based on the Fuzzy
C-mean algorithm and a forward vehicle motion prediction algorithm combining multi-model
prediction results are proposed. The artificial potential field method is also used to model vehicle
interaction and correct the trajectory prediction results. Finally, the real vehicle data validation proves
that this algorithm has high prediction accuracy.

Keywords: vehicle motion prediction; driving intention recognition; interaction correction

1. Introduction

In order to improve the driving safety and fuel economy of autonomous vehicles,
autonomous vehicles need to be able to observe and perceive [1]. However, due to the
inertia of the vehicle and the limitation of the detection capability of the on-board sensors,
the vehicle may not be able to respond correctly to the detected objects in time, and the
frequent acceleration and deceleration of the vehicle are detrimental to the effective use
of energy and the efficient passage of the road. Therefore, the traffic participants around
this vehicle need to be predicted. In the prediction process, it is necessary not only to
detect the location of the object in real time but also to predict the intention of the object [2].
Surrounding vehicles, as the most common traffic participants in the driving environment,
play a key role in driving safety [3], vehicle control [4,5], and vehicle decision [6] functions
for this vehicle by predicting the trajectory of vehicles around the self-driving vehicle.

The Society of Automotive Engineers (SAE) classifies assisted/autonomous driving
as L0 (fully human and manual control of all aspects of driving) to L5 (fully automated
driving), which corresponds to L3 and above when the vehicle moves from assisted driving
to autonomous driving [7]. However, due to the uncertainty of vehicle dynamics, driving
intention, and the complexity of the surrounding environment, there are issues such as
interactions between vehicles, and their motion prediction faces great challenges. First,
vehicles interact and are also affected by traffic rules and the driving environment [8].
Second, the future behavior of vehicles is uncertain, and the driving intention of vehicles
needs to be recognized in advance. Therefore, the trajectory prediction module of self-
driving vehicles should consider the influence of surrounding vehicle interactions and
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recognize the vehicle driving intention in advance. The prediction algorithm proposed in
this paper can be used for L3 and above autonomous vehicles.

In order to solve the trajectory prediction problem under the interaction of multiple
vehicles around, this paper proposes a trajectory prediction algorithm based on environ-
mental interaction correction. The proposed method consists of two stages: a trajectory
prediction model based on a weighted fusion of driving intention and a trajectory predic-
tion model based on environmental corrections. Since the future actions of vehicles are
uncertain, the model first classifies driving intention in the first stage and then performs
a weighted fusion of trajectory prediction results based on the classification results. Then, in
the second stage, the trajectory prediction results are corrected by considering the vehicle’s
interaction and establishing the vehicle potential field based on the safety distance. Finally,
the proposed algorithm is validated using real vehicle data.

The rest of this paper is organized as follows: Section 2 presents the related work and
problems of vehicle motion prediction, and Section 3 introduces the proposed trajectory
prediction model, including the principle of the algorithm and the framework of the
trajectory prediction algorithm. Section 4 introduces the research object and evaluation
criteria and analyzes the experimental results, and Section 5 concludes the paper.

2. Overview of Vehicle Trajectory Prediction

The accuracy of front vehicle trajectory prediction is largely influenced by the uncer-
tainty of front vehicle driving intentions, dynamics, and inter-vehicle interactions and is
challenged by limited data sources. Current approaches for vehicle trajectory prediction
are divided into the following two approaches: parametric model-based methods and
nonparametric data-driven methods [9–11]. There has been a large amount of work on
parametric model-based trajectory prediction methods, including the use of physics-based
or rule-based models [12–16]. The method has a strong environmental adaptation capa-
bility. However, with uncertainty in vehicle dynamics, it is impossible to build complex
vehicle behavior models to derive sophisticated trajectory prediction algorithms, and in
addition, the interaction effects between vehicles cannot be accurately described for each
other. Therefore, model-based parametric approaches are not very reliable.

Data-driven nonparametric approaches based on historical data are trained with mod-
els to learn the nonlinear relationship between prediction and actual output. Yoon et al. [17]
proposed a road-aware trajectory prediction method using HD maps and deep learning net-
works, using road structure constraints as the prior knowledge of the prediction network.
The Uber research team [18] fused the predicted vehicle trajectories with lane-based paths
Zou et al. [19] based on multiple sensors in an urban scenario and fused V2V data, and
two transformer-based methods were built to predict the vehicle’s trajectory. Li et al. [20]
proposed an end-edge-cloud architecture that deploys at the edge of the network machine
learning-driven methods to predict the trajectory of the vehicle. The above trajectory
prediction frameworks are highly dependent on data, such as road information and vehicle–
vehicle communication, and may not work well in scenarios with limited data sources.
Qu et al. [21] developed a data-driven predictive trajectory model based on long- and short-
term memory, convolutional neural networks, and attention mechanisms. Wang et al. [22]
used recurrent and convolutional neural networks to predict the vehicle trajectory in high-
way and urban scenarios and improved the prediction based on attention mechanisms.
Choi et al. [23] proposed a vehicle trajectory prediction architecture based on a random
forest (RF) algorithm and long short-term memory (LSTM). Shen et al. [24] predicted the co-
ordinates of the target vehicle by visually identifying lane lines and vehicles and inputting
the vehicle coordinate sequence into the LSTM algorithm. However, the above methods do
not consider the driver’s driving intention and the interaction of the predicted object with
the scene.

Interactions between vehicles significantly impact the accuracy of vehicle trajectory
prediction. The problem becomes more complex when it involves interactions between
objects and driving scene dynamics. The reason for this lies in how to model the interaction
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and scene dynamics. Lv et al. [25] model the trajectory correction mechanism based on
an interactive network model. Zhao et al. [26] model the interactions and constraints
between vehicles based on the novel Multi-Agent Tensor Fusion to predict the trajectory
of vehicles. Yu et al. [27] proposed an LSTM model. The model predicts the trajectory of
a vehicle by using an attention mechanism to manage the driving process of the target and
adjacent vehicles and the importance of the target vehicle. Eunsan Jo et al. [28] proposed
a hierarchical graph neural network for approximating the multiple maneuvers of a vehicle
and considering the interactions between maneuvers by representing their relationships in
a graph structure. Li et al. [29] predicted the probability of trajectories of multiple interact-
ing entities based on dynamic Bayesian networks. Robicquet et al. [30] improved prediction
models and multi-objective tracking tasks based on social sensitivity. Park et al. [31] pro-
posed models that integrate multiple input signals, including environmental influences
and interactions between multiple surrounding vehicles.

Multi-modal prediction based on driving intention classification is necessary because
driving intention is uncertain and difficult to observe directly by sensors. The purpose of
driving intention classification is to determine the future operating behavior of a vehicle [3],
such as lane keeping or steering, acceleration, or deceleration. Cosimi et al. [32] estimated
that the trajectory should remain within the defined level range to achieve similar results
to the driving intention classification by the MPC control algorithm. Zyner et al. [33]
classified the driving intention of a vehicle at a T-intersection as “east,” “west,” and “south”
based on the destination of the vehicle. In [34], the driving intentions of vehicles were
predicted in an unsignalized roundabout intersection scenario. Lee et al. [35] applied
intention prediction to a highway driving scenario based on convolutional neural networks
to infer the lane change intention of traffic participants. The drawback of the existing
studies is that they can only provide high-level predictions of vehicle behavior but do not
refine them to accurately describe operational intention [36]. For example, the lane change
operation is subdivided into sharp and normal lane change, and the acceleration operation
is subdivided into sharp and slow acceleration [37]. For example, Wang et al. [38] used
acceleration and deceleration behavior, accelerated behavior, and operational stability as
feature parameters to classify driver driving behavior using the Fuzzy C-Means (FCM)
clustering method. Liu et al. [39] used speed, acceleration, and gas pedal opening as feature
quantities of the FCM algorithm to classify driving style.

3. System Overview

The motion prediction of the front vehicle is affected by the problem of unclear driving
intention and dynamics of the front vehicle. In addition, the future trajectory of the
vehicle is influenced by other surrounding vehicles. In order to improve the estimation
and prediction accuracy, the following ideas are proposed in this paper. Firstly, the FCM
algorithm is used to extract the corresponding feature parameters by using the information
related to the vehicle’s historical trajectory and realize the automatic recognition of driving
intention through offline training; secondly, the LSTM algorithm is used to calculate the
future trajectory results based on different driving intentions, and the predicted trajectories
are fused according to the classification results of driving intentions, and the 1s rolling
prediction is performed by the iterative method. Finally, the artificial potential field method
is used to correct the predicted trajectory results based on the longitudinal and lateral safety
distances, and the final trajectory prediction results are output. The structure diagram of
the front vehicle trajectory prediction algorithm is shown in Figure 1.

3.1. Driving Intention Classification

Generally, drivers must turn on the turn signal in the corresponding direction before
performing a lane change operation. However, statistics show [40] that turn signals are
used while turning in only 64% of cases, but some drivers signal only after starting a lane
change and fail to use their turn signals in 70% of cases when other vehicles are nearby.
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Therefore, it is not enough to use turn signals alone as an identification feature for driving
intention, and other feature parameters need to be used to distinguish driving intention.
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Figure 1. The architecture of the vehicle motion prediction algorithm.

In order to solve the problem of the unclear driving intention of the preceding vehicle,
the FCM algorithm is used to classify driving intentions. The FCM algorithm is used to
solve the problem of the unclear driving intention of the front vehicle. The final output of
the FCM algorithm is the magnitude of the degree to which each object belongs to each
class, rather than providing only high-level predictions of vehicle behavior that do not
accurately describe the problem of operating intentions.

Using the relative offset of the current prediction window lateral and longitudinal
coordinates and the current vehicle speed as feature parameters, respectively, the vehicle
driving intentions are classified, and the driving intentions are categorized as drastic lateral
change, lateral slow change, lateral uniform change, drastic longitudinal change, slow
longitudinal change, and longitudinal uniform change driving. The vehicle’s tendency to
change in longitudinal and lateral directions is described in the form of probabilities to
classify the vehicle’s driving intentions and improve the classification’s accuracy. Driving
intentions are classified in terms of how drastically they change in the lateral and longitudi-
nal directions so that if moving at a constant acceleration, driving intentions will classify
this situation as a uniform change.

In order to classify driving intentions, Table 1 shows the selected characteristic parameters.

Table 1. Characteristic parameter table.

No. Characteristic Parameters

1 Vehicle speed (m/s)
2 Lateral coordinate relative maximum offset (m)
3 Lateral coordinate relative minimum offset (m)
4 Longitudinal coordinate relative maximum offset (m)
5 Longitudinal coordinate relative minimum offset (m)

A portion of the real vehicle data Ct ,l = [Vt,l , Xt,l , Yt,l ] is selected as the training set,
Where Ct,l is the data of the lth vehicle at time t, Vt,l is the speed information of the lth
vehicle at time t, and Xt,l , Yt,l is the relative position offset of the lth vehicle in the lateral
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and longitudinal directions at time t. As an example of classifying the driving intention
of vehicle 1 for the next 1 step, the historical 4-step and the current moment data are
composed as a set of data [C−4,1, C−3,1, C−2,1, C−1,1, C0,1]. When classifying lateral driving
intentions, At,l is calculated by Equation (1) with the value of At,l_x in Equation (3). When
classifying longitudinal driving intentions, At,l is calculated by Equation (2) with the value
of At,l_y in Equation (3). When classifying lateral driving intentions, Equation (5) outputs
utj_x, which is the probability of belonging to class j of lateral driving intentions at time
t. When classifying the longitudinal driving intentions, Equation (5) outputs the result
as utj_y, which is the probability of belonging to class j longitudinal driving intentions
at moment t. Ultimately, the FCM model outputs the result of the vehicle’s affiliation
function [ut1_x, ut2_x, ut3_x] in the lateral direction and the result of the affiliation function
[ut1_y, ut2_y, ut3_y] in the longitudinal direction.

The FCM algorithm is applied to determine the clustering center and affiliation matrix.

At,l_x = [Vt,l , max(Xt−4,l , Xt−3,l , Xt−2,l , Xt−1,l , Xt,l), min(Xt−4,l , Xt−3,l , Xt−2,l , Xt−1,l , Xt,l)] (1)

At,l_y = [Vt,l , max(Yt−4,l , Yt−3,l , Yt−2,l , Yt−1,l , Yt,l), min(Yt−4,l , Yt−3,l , Yt−2,l , Yt−1,l , Yt,l)] (2)

J =
N

∑
t=1

3

∑
j=1

um
tj‖At,l − cj‖ (3)

where J is the objective function, cj denotes the clustering center of class j, utj denotes the
affiliation degree of sample At,l belonging to class j, N is the dataset size, and m is fuzzy
partition matrix exponent for controlling the degree of fuzzy overlap, with m > 1.

After initializing the affiliation function, according to Equations (4) and (5), utj and cj
are continuously iterated and updated so that minimize Equation (3) under the condition

that
3
∑

t=1
utj = 1 and finally reaches a stable state, and the values of utj, cj in this state are the

final affiliation matrix and clustering centers.

cj =

N
∑

t=1
um

tj At,l

N
∑

t=1
um

tj

(j = 1, 2, 3) (4)

utj =
1

3
∑

k=1
(
‖At,l−cj‖
‖At,l−ck‖

)
− 2

m−1
(5)

For a single sample At,l , the sum of the affiliation degree for each class is 1. The
closer the affiliation degree utj is to 1, the higher the degree of At,l belonging to cj, and the
affiliation function utj, which takes the value in the interval (0,1), is used to characterize the
degree of xi belonging to cj.

For the driving intention classification problem, the current and historical four-step
sampling moment data are used as a group during the vehicle’s actual driving, and the
group’s feature values are extracted. Moreover, the distance from the current moment
data to each cluster center and the corresponding affiliation function are calculated using
Equation (3) to characterize the probability that it belongs to that cluster center, and this
probability is used as the weight coefficient of the trajectory prediction results based on
different driving intentions. The accuracy of driving intention classification is improved by
forming a combination of probabilities of different driving intentions.
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3.2. Trajectory Prediction

The vehicle trajectory prediction problem is impacted by uncertainty in dynamical
properties. Deep neural network architectures have been applied to many machine learning
tasks and can generalize the nonlinear problems between real data and the environment.
Among the existing deep neural network architectures, recurrent neural networks (RNNs)
are widely used to analyze the structure of time series data, and RNNs have better results
in targeting time series data. This paper uses a long short-memory (LSTM) model to predict
the front car trajectory. LSTM is a variant in RNN, which has the same ability to learn
long-term dependencies from the dataset and handle time series data as RNN. The LSTM
algorithm can avoid the gradient disappearance/explosion problem of traditional RNN
algorithms. In terms of structure, LSTM and RNN are dynamic structures containing
repetitive blocks forming a chain. Within the repetition block, the difference between LSTM
and traditional recurrent neural network is mainly its added gate structure, which is the
forgetting gate, input gate, and output gate [41].

The relevant formula for LSTM is.

xt,l_x = [Xt−4,l , Xt−3,l , Xt−2,l , Xt−1,l , Xt,l ] (6)

xt,l_y = [Yt−4,l , Yt−3,l , Yt−2,l , Yt−1,l , Yt,l ] (7)

ft,l = σ
(

W f ht−1,l + U f xt,l + b f

)
(8)

it,l = σ(Wiht−1 + Uixt,l + bi) (9)

C′t,l = tanh(Wcht−1,l + Ucxt,l + bc) (10)

Ct,l = ft,l ∗ Ct−1,l + it,l ∗ C′t,l (11)

Ot,l = σ(WOht−1,l + UOxt,l + bO) (12)

ht,l = Ot,l ∗ tanh(Ct,l) (13)

where ft,l denotes the forgetting gate, which controls the proportion of selectively forgotten
information and it,l denotes the input gate; when predicting the lateral trajectory, xt,l is
calculated by Equation (6) and predicts the lateral trajectory with the value of xt,l_x. When
classifying longitudinal driving intentions, xt,l is calculated by Equation (7) and predicts
the lateral trajectory with the value of xt,l_y. C′t,l denotes the state update, and the role of the

input gate is to control the proportion of the state update C
′
t,l added to the t-th step memory

cell. Ot,l denotes the output gate, which determines the proportion of output information.
ht,l denotes the final output value and when classifying the lateral driving intention, the
output of Equation (13) is ht,l_x, which indicates the predicted result of the trajectory of
car l in the lateral direction at the moment t. When classifying the longitudinal driving
intention, Equation (13) outputs the result as ht,l_y, which indicates the predicted result
of the trajectory of car l in the longitudinal direction at the moment t and the final output
of the LSTM is determined by both the output gate and the cell state. W f , U f , Wi, Ui, Wc,
Uc, WO denotes the weight coefficient, b f , bi, bc, bO denotes the bias, and σ = 1

1+e−x is the
activation function.

Based on the FCM, the driving intention of the front vehicle is classified, and the LSTM
algorithm predicts the trajectory of the front car. First, the LSTM model is trained using
data with different driving intentions, the three LSTM prediction models based on the
drastic lateral change, the slow lateral change, and the lateral uniform change, and the three
LSTM prediction models based on the drastic longitudinal change, the slow longitudinal
change, and the longitudinal uniform change, were formed, respectively. Additionally, the
LSTM algorithm takes the historical four-step length and current trajectory data as input
and the future one-step trajectory as output to derive the LSTM prediction results under
different driving intentions. When predicting the lateral trajectory, the three LSTM lateral
prediction models with different lateral driving intentions yielded [ht,l_x1, ht,l_x2, ht,l_x3].
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The three LSTM longitudinal prediction models with different longitudinal driving in-
tentions yielded [ht,l_y1, ht,l_y2, ht,l_y3] when predicting the longitudinal trajectory. Then
the vehicle data are input to the FCM algorithm, combined with the FCM algorithm to
determine the probability of different driving intent, and the probability is used as the
weight coefficient of the trajectory prediction results. Furthermore, finally, the multi-model
prediction results are fused to derive the trajectory prediction results based on driving
intention classification. Take the future trajectory prediction of vehicle 1 with 1 step length
as an example, and input the historical four-step length and current data into FCM driving
intention classification model and LSTM trajectory prediction model. The FCM model out-
puts the result of vehicle affiliation function [ut1_y, ut2_y, ut3_y] in the longitudinal direction
and [ut1_x, ut2_x, ut3_x] in the lateral direction. The LSTM model outputs the future longi-
tudinal coordinate [ht,l_y1, ht,l_y2, ht,l_y3] and lateral coordinate [ht,l_x1, ht,l_x2, ht,l_x3] under
different driving intentions. The future one-step trajectory prediction result [xtp1, ytp1] for
the final vehicle 1 is shown in Equations (14) and (15).

xtp1 = ut1_x × ht,l_x1 + ut2_x × ht,l_x2 + ut3_x × ht,l_x3 (14)

ytp1 = ut1_y × ht,l_y1 + ut2_y × ht,l_y2 + ut3_y × ht,l_y3 (15)

The structure of the algorithm for trajectory prediction for 1-step is shown in Figure 2.
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3.3. Vehicle Interaction Correction

The predicted object is influenced by other traffic participants around it during its
movement. However, the data-driven method does not consider the influence of other
surrounding traffic participants in the prediction results. The purely data-driven method
lead to prediction results that are inevitably detached from the essential characteristics
of the predicted object and therefore needs to be corrected by environmental influences
and the vehicle kinematic model of the predicted object itself to improve the algorithm’s
environmental adaptability and accuracy. In this study, the artificial potential field (APF)
method is used to calculate the repulsive field of the vehicle around the prediction object,
and based on the vehicle dynamics model, the longitudinal and lateral safety distances are
calculated to determine the influence range of the repulsive field, and finally, the trajectory
prediction results are corrected.

The basic principle of the APF method is to assume the vehicle as a point that moves
in a virtual force field, which is composed of the gravitational field of the target point to the
vehicle and the repulsive field of the obstacle to the vehicle. Different from the traditional
trajectory planning scenario, in this paper, APF is applied to trajectory prediction without
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using the gravitational field-related content, and the vehicle safety distance is used as one
of the parameters in the repulsive field to achieve the correction of the prediction results, as
shown in Equation (16).

R(c) = Rrep(c) (16)

c is the vehicle’s coordinate, Rrep(c) is the repulsive field, and R(c) is the sum of the
repulsive fields.

The forces on the vehicle in the potential field are shown in Equation (17).

F(c) = −∇Rrep(c) = Frep(c) (17)

F(c) is the combined force on the vehicle, and Frep(c) is the repulsive force that keeps
the vehicle away from the obstacle point. The repulsive field is as in Equation (18).

Rrep =

{
0, i f ρobs(c) ≥ ρ0

1
2 Krep(

1
ρobs(c)

− 1
ρ0
)

2
, i f ρobs(c) < ρ0

(18)

where Krep is the repulsive force gain constant, ρobs(c) = ‖c− cobs‖ is the obstacle coordi-
nates. ρ0 is the maximum influence distance. The repulsive force is calculated as (19).

Frep = −∇Rrep(c) =

{
0, i f ρobs(c) ≥ ρ0

Krep(
1

ρobs(c)
− 1

ρ0
)( 1

ρ2
obs(c)

) c−cobs
‖c−cobs‖

, i f ρobs(c) < ρ0
(19)

In the scenario of multiple traffic participants, the repulsive field and repulsive force
should be the sum of the repulsive field and the repulsive force of multiple traffic partici-
pants on the vehicle.

R(c) = Rrep(c) +
n

∑
i=1

Rrep(c) (20)

F(c) = Frep(c) +
n

∑
i=1

Frep(c) (21)

In this paper, the artificial potential field method is used to establish the surrounding
vehicle potential field based on the vehicle safety distance, which is used to correct the
predicted trajectory results and the erroneous results that lead to accidents of vehicles.

According to [42], Equations (18) and (19) are used for the calculation of longitudinal
safety distance and lateral safety distance as follows:

dy = v1Tr +
1
2

aacc
maxTr

2 +
(v1 + Traacc

max)
2

2abrk
min

−
v2

2
2abrk

max
(22)

dx =
v1 + v1 + Traacc

max
2

Tr +
(v1 + Traacc

max)
2

2abrk
min

− v2 + |v2|+ Traacc
max

2
Tr +

(|v2|+ Traacc
max)

2

2abrk
min

(23)

Tr is the reaction time, aacc
max is the maximum longitudinal acceleration, abrk

min is the
minimum longitudinal braking required to avoid a collision, and abrk

max is the maximum
longitudinal braking acceleration.

The potential field combines longitudinal and lateral safety distances to limit the
minimum distance of the predicted vehicle from surrounding vehicles under the current
driving intention and establishes a repulsive field of surrounding vehicles to predict the
vehicle trajectory. The final prediction position is shifted to the edge of the repulsive
field both horizontally and vertically to reduce the problem of ignoring the actual scenario
constraints caused by the purely data-driven approach to predict trajectories and to improve
the interaction with the surrounding environment in the trajectory prediction process.
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3.4. Multi-Step Prediction

Multi-step prediction methods are mainly divided into direct and iterative methods.
The iterative method uses the result of the previous prediction step as the input for the next
prediction step until rolling the prediction up to the expected step. The direct method is to
predict directly up to the kth step, but the trained model has to match the predicted step
size, and models with different prediction steps cannot be substituted for each other [43].
Moreover, the direct method prediction model requires much more training data than the
iterative method [44,45].

However, the iterative method is affected by the problem that the prediction error
accumulates with the prediction step. To solve this problem, in this paper, driving intention
is identified at each prediction step, and the APF algorithm is used to determine and
correct the results for collision risk. The k-step prediction indicates that the data at the
current moment is used to predict the next k sampling moments. For example, the five-step
prediction indicates that the current moment data is used to predict the trajectory for
the next five sampling moments. Taking the prediction of the future two-step trajectory
as an example, firstly, the FCM algorithm is used to classify the driving intention. The
input data are the historical three-step long and current moment trajectory information,
the predicted future one-step trajectory information, and the driving intention affiliation
function of this data set is output. Then, the LSTM algorithm is used to predict the future
two-step trajectory and combined with the affiliation function calculated by FCM, and
the trajectory prediction result based on driving intention is obtained. Finally, the APF
algorithm is used to determine whether there is a collision risk at the predicted points
and to correct the predicted points with a safety risk, resulting in the final trajectory
prediction results.

4. Experimental Results and Analysis
4.1. Research Subjects

The research subject of this paper is a purely electric bus with the specific configuration
parameters shown in Table 2. The bus and the millimeter wave radar are shown in Figure 3.

Table 2. Electric bus parameter configuration table.

Parameter

Length (mm) 6605
Width (mm) 2320
Height (mm) 2870

Maximum Speed (km/h) 69
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Figure 3. The bus and the millimeter-wave radar.

The data for this study were obtained from the millimeter wave radar mounted on
the vehicle and mounted at the vehicle’s front windshield. The collected vehicle data
Ct ,l = [Vt,l , Xt,l , Yt,l ], where Ct ,l is the data of the ith vehicle, Vt,l is the speed information
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of the previous vehicle, and Xt,l , Yt,l is the relative position information of the vehicle in
the horizontal and vertical directions. The data cover a wide range of operating conditions
and are collected at a frequency of 10 Hz. The collected data are divided into a training
set, a validation set, and a test set for the driving intention classification algorithm and the
prediction algorithm.

4.2. Evaluation Indicators

In this paper, root mean square error (RMSE) and mean absolute error (MAE) are
indicators to evaluate the accuracy of trajectory prediction. Among them, the root mean
square error measures the deviation between the predicted value and the true value and
is more sensitive to the outliers in the data, and the mean absolute error represents the
average of the absolute error between the predicted value and the observed value. The
calculation formula is shown in Equations (24) and (25).

RMSE(X, h) =

√
1
m

m

∑
i=1

(h(xi)− yi)
2 (24)

MAE(X, h) =
1
m

m

∑
i=1
|h(xi)− yi| (25)

where m is the sample size, h(xi) is the predicted value, and yi is the true value.

4.3. Analysis of Experimental Results

Figure 4 shows the driving intention classification results for one set of vehicle data,
with different colors representing different driving intentions in the lateral and longitudinal
directions. In addition, the driving intention classification aims to distinguish the trend
and degree of change in the lateral and longitudinal coordinates rather than the magnitude
of the slope of change. In the case of the longitudinal driving intention classification, for
example, the longitudinal uniform change includes both uniform motion and uniform
acceleration in the longitudinal direction.

The iterative method predicts the future lateral and longitudinal coordinate offsets of
multiple vehicles ahead in multiple steps. Only the lateral coordinate prediction results
of vehicle 1 are shown in Figures 5 and 6. Figure 5 is the comparison curves of the lateral
coordinate prediction results for the 5-step and 10-step prediction, respectively. As can
be seen from the figures, firstly, the prediction error of each algorithm increases with the
increase of the prediction step length, and there is a certain lag in the prediction results.
However, APF can correct the prediction results that lead to collision risk. Second, in the
case of changes in the lateral coordinate, the algorithms that do not use driving intention
classification have more aggressive prediction results, and smaller changes can have a larger
impact on the prediction impact. The prediction curve of the algorithm proposed in this
paper is closer to the true lateral coordinates of the vehicle in front, and the prediction error
is significantly reduced.

Figure 6 shows the plot of the prediction curves of the 5-step and the 10-step of the
longitudinal coordinate of vehicle 1. As can be seen from the figure, firstly, as the prediction
step increases, the prediction results of each algorithm show an increase in error and a lag
in the prediction results, as in the case of the prediction in the longitudinal coordinates.
Second, in the case of longitudinal coordinate changes, the other two methods have more
aggressive prediction results than the algorithm used in this paper. Smaller changes can
have a larger impact on the prediction impact, which leads to an increase in the prediction
error. The prediction curve of the algorithm proposed in this paper is closer to the real
longitudinal coordinates of the vehicle, and the prediction error is significantly reduced.



Electronics 2022, 11, 3857 11 of 18

Figure 7 shows the trajectory prediction curves for the 5-step and 10-step of vehicle 1
and vehicle 2. From the Figure, it can be seen that in the trajectory prediction during the
turn, the two algorithms predict the results with different degrees of deviation. There is
a lag in the prediction results. However, the APF algorithm can correct the results with the
risk of collision, thus reducing the prediction error and showing the applicability of this
algorithm in the interaction between vehicles.

Tables 3 and 4 show the error distribution in the 5-step prediction and 10-step predic-
tion with different prediction methods as an example of the prediction results of vehicle 1.
As shown in Tables 3 and 4 for the comparison of prediction errors in the lateral coordinates,
it can be seen from the table that the prediction errors of all three methods increase with
increasing step length in the prediction results of the 5-step prediction and the 10-step
prediction. In addition, the FCM-based LSTM algorithm has smaller error means and error
variances than the prediction results of the LSTM with deviations in the lateral coordinates.
After adding APF correction to the FCM-based LSTM algorithm, the mean and variance of
the errors were further reduced, and the prediction results proved to be more accurate.
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Figure 4. Driving Intention Classification Results: (a) Lateral Driving Intention Classification Results;
(b) Longitudinal Driving Intention Classification Results.
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Tables 5 and 6 also show the error distribution in the 5-step prediction and 10-step
prediction with different prediction methods, as shown in Tables 5 and 6 for the comparison
of the prediction error in the longitudinal coordinate, which shows that the prediction error
of all three methods increases with the increase in the step length. The FCM-based LSTM
algorithm has a smaller mean error and error variance than the LSTM prediction results
with a deviation of longitudinal coordinates. Adding APF correction to the FCM-based
LSTM algorithm further reduces the mean and variance of the errors and proves that the
prediction results are more accurate.

Comparing the results of the trajectory prediction algorithm for multiple vehicles
ahead, Figure 8 shows the metric results of RMSE and MAE at different steps using
different prediction methods using vehicle 1 as an example. Before the third step length, the
RMSE and MAE metrics results are similar because the prediction error is small, resulting
in fewer cases of prediction results falling into the range of other vehicle potential fields.
As the prediction step length increases, the prediction error increases, and the APF corrects
the prediction results when it appears that the prediction results fall into the range of
other vehicle potential fields, and the corrected results continue to affect the subsequent
prediction results. The RMSE and MAE values of the algorithm in this paper, both lower
than the other two algorithms, prove the effectiveness of this algorithm.
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Figure 5. Lateral coordinate prediction results: (a) lateral coordinate 5−step prediction results and
(b) lateral coordinate 10−step prediction results.
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Figure 6. Longitudinal coordinate prediction results: (a) longitudinal coordinate future 5−step
prediction results and (b) longitudinal coordinate future 10−step prediction results.
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Figure 7. Multi-vehicle trajectory prediction results: (a) future 5−step prediction results and (b) future
10−step prediction results.
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Table 3. The 5−step of the lateral coordinate prediction results.

Prediction Algorithms Mean Value Variance

LSTM + FCM + APF 0.022367 0.000753
LSTM + FCM 0.03478 0.001322

LSTM 0.054549 0.002092

Table 4. The 10−step of the lateral coordinate prediction results.

Prediction Algorithms Mean Value Variance

LSTM + FCM + APF 0.035086 0.001718
LSTM + FCM 0.054699 0.00277

LSTM 0.084863 0.008036

Table 5. The 5−step of the longitudinal coordinate prediction results.

Prediction Algorithms Mean Value Variance

LSTM + FCM + APF 0.006113 5.02 × 10−5

LSTM + FCM 0.008988 6.8 × 10−5

LSTM 0.012833 0.000141

Table 6. The 10−step of the longitudinal coordinate prediction results.

Prediction Algorithms Mean Value Variance

LSTM + FCM + APF 0.029771 0.001118
LSTM + FCM 0.043256 0.00147

LSTM 0.067788 0.003272
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Figure 8. Vehicle multi-step coordinate prediction results: (a) multi-step prediction results for the
lateral coordinate of vehicle 1 and (b) multi-step prediction results for the longitudinal coordinate
of vehicle 1.

The prediction results of this algorithm for multi-vehicle trajectory prediction com-
pared with the actual trajectory are shown in Figure 9. The trajectory prediction for the
next 1s was carried out for three vehicles, in which the prediction error of vehicle 1 in the
tenth step of the longitudinal distance was less than 0.17 m in 95% of the prediction results,
and the maximum distance prediction error was 0.29 m among all the prediction results.
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The prediction error of vehicle 2 at the tenth step of longitudinal distance is less than 0.13 m
in 95% of the prediction results, and the maximum distance prediction error is 0.30 m in
all the prediction results; 95% of the prediction error of vehicle 2 at the lateral distance is
less than 0.11 m, and the maximum distance prediction error is 0.14 m in all the prediction
results. The prediction error of the longitudinal distance of vehicle 3 at the tenth step is
less than 0.16 m in 95% of the prediction results, and the maximum distance prediction
error is 0.33 m in all the prediction results; 95% of the prediction error of the lateral distance
of vehicle 3 is less than 0.03 m in all the prediction results, and the maximum distance
prediction error is 0.10 m in all the prediction results.
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5. Conclusions

This paper aims to improve the prediction accuracy of forwarding vehicle behavior,
reduce the influence of uncertainties such as driving intention, dynamics characteristics, and
vehicle interaction effects on the prediction results, and construct a forward vehicle behavior
prediction algorithm based on driving intention classification and vehicle interaction
modeling correction. In order to accurately predict the trajectory of the front vehicle, this
paper classifies the driving intention based on the FCM algorithm, then uses the LSTM
algorithm to predict the trajectory of the front vehicle and corrects the trajectory prediction
results by the APF algorithm and finally combines to calculate the future trajectory.

First, considering the influence on the future trajectory of the vehicle ahead under
different driving intentions, the FCM algorithm outputs the probability of the current data
belonging to each category by taking the previous vehicle speed and trajectory information
as input to improve the resolution and accuracy of the classification.

Second, the historical and current trajectory data under different driving intention
are used to train the LSTM model to predict trajectories under different driving intentions,
and the affiliation function of FCM output, as the weight of each model, is used for the
weighted fusion of prediction results with different driving intents with variable gain.
The rolling prediction of the trajectory of multiple targets ahead for 1s is performed by
an iterative method.

The APF method is used to establish repulsive vehicle fields based on longitudinal
and lateral safety distances to correct the trajectory results that have the risk of collision or
do not match the actual situation driving operation. In this way, the interaction with the
surrounding environment is improved in the trajectory prediction process.
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The algorithm is validated using real vehicle data. In the test results of different
vehicles and scenes, 95% of the longitudinal distance prediction results have an error less
than 0.17 m, and the maximum distance prediction error is 0.33 m; 95% of the lateral
distance prediction results have an error less than 0.11 m, and the maximum distance
prediction error is 0.15 m, which proves the accuracy of the algorithm and the good scene
adaptation ability.
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