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Abstract: The recent advancement of the Internet of Things (IoT) in the fields of smart vehicles and
integration empowers all cars to join to the internet and transfer sensitive traffic information. To
enhance the security for the Internet of Vehicles (IoV) and maintain privacy, this paper proposes an
ultralight authentication scheme. Physical unclonable function (PUF), supervised machine learning
(SML), and XOR functions are used to authenticate both server and device in a two message flow.
The proposed framework can authenticate devices with a low computation time (3 ms) compared
to other proposed frameworks while protecting against existing potential threats. Furthermore, the
proposed framework needs low overhead (21 bytes) that avoids adding to the IoV network’s workload.
Moreover, SML makes weak PUF responses as random numbers to provide the functionality of a
strong PUF for the framework. In addition, both formal (Burrows, Abadi, Needham (BAN) logic)
and informal analysis are presented to show the resistance against known attacks.

Keywords: Internet of Things; physical unclonable function; supervised machine learning; security;
authentication protocol

1. Introduction

Industry 4.0 is the era in which the development trend of automation and data
exchange will flourish in manufacturing technologies, including cyber-physical systems.
It will provide a promising transformation in the IoT systems by integrating existing and
new technologies [1]. The fourth industrial revolution will involve many fields, such as
healthcare, city planning, energy, smart transportation, and others by integrating and
controlling complex machinery and software [2]. As the populations of cities increase
rapidly due to globalization, excellent mobility and transportation systems will become
prime deciding factors of success for smart cities. To cope with the increasing demands,
it is required to build up the infrastructure of modern facilities. Considering this vision,
smart transportation will be a crucial element for cities [3]. The growing movement
indicates that the presence of vehicles on roads will climb rapidly, and, within the next 10
to 20 years, it will hit approximately two billion. To manage the vast number of vehicles,
intelligent transportation with autonomous vehicles (AV) will need to be incorporated.
The World Health Organization (WHO) reports that approximately 1.25 million people
die every year due to road accidents. To mitigate the road safety issue, parking problems,
pollution, etc., IoV will become an inseparable part of the solution [4]. The roads will be
self-organized with the help of the IoV network. The AVs and passengers will get updated
traffic information and will be able to follow low traffic routes. Moreover, the IoV network
will warn AVs and drivers of accidents. Furthermore, sophisticated information can be
exchanged among AVs [5]. Figure 1 shows the connectivity of the IoV network.
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Figure 1. Internet of Vehicle (IoV) connectivity.

The connectivity of the IoV is categorized as vehicle-to-vehicle (V2V), vehicle-to-
sensors (V2S), vehicle-to-infrastructure (V2I), vehicle-to-roadside unit (V2R), and vehicle-
to-pedestrian (V2P) communication [6]. IoV is also referred as V2X, where ‘X’ represents
everything. The AVs will handle rich and various types of powerful computations. Through
complex calculations, AVs will deal with sensitive information and important data that
attract adversaries to raise serious threats of security and privacy of IoV networks. At the
same time, reported security incidents are rising [7]. An unprotected network could lead to
significant damage, and an increment of 20.3% cyberattacks are expected in the next ten
years [4]. Table 1 shows the acronyms used in this paper.

Table 1. Acronyms used in the paper.

Acronym Full Form Acronym Full Form

IoT Internet of Things IoV Internet of Vehicles
PUF Physical Unclonable Function SML Supervised Machine Learning
AV Autonomous Vehicle V2V Vehicle-to-Vehicle
V2S Vehicle-to-Sensors V2I Vehicle-to-Infrastructure
V2R Vehicle-to-Roadside Unit V2P Vehicle-to-Pedestrian
CRP Challenge-Response Pair HD Hamming Distance
RSU Roadside Unit CS Cloud Server
RG RSU Gateway SDB Secure Database
DoS Denial of Service MITM Man in the Middle
PID Pseudo-identity C Challenge
AVPID PID of AV FSMLModel{X} SML model with X as input
FCRP{C} Response for Challenge C ⊕ XOR Operation
N1 Nonce 1 N2 Nonce 2
K Nonce Rk 16-bit Response from K-bit
−→ CRP Generation → Data transfer

1.1. Different Attacks on IoV System

There are many attacks that can disrupt the IoV system. In this section, a few major
attacks will be discussed.

• Impersonation Attacks: In impersonation attacks, an attacker tries to present his/her
devices as legitimate devices by transmitting fabricated signatures. The attacker has
a chance to alter the data transmitted from trustworthy devices and/or introduce
fraudulent data into the system by using impersonation attacks. Additionally, through
jamming, the intruder may impair the effectiveness of genuine devices’ ability to
identify activity [8].
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• Side Channel Attacks: Sensitive data can be revealed by IoT device physical features,
such as power consumption, execution time, electromagnetic leaks, system faults,
etc. The hacker runs various tests while IoT devices are running in order to retrieve
sensitive data. Sometimes it is necessary to possess a technical understanding of
the system’s underpinnings, which will be used against anyone. By studying the
calculation time and utilizing knowledge of the implementation mechanisms, attackers
can get sensitive information such as private keys [9]. Client devices that store keys
are susceptible to side-channel attacks due to key storage in the memory location. Key
bits can be decoded using power analysis, timing information, etc.

• Modeling Attacks: In machine learning attacks, attempts are made to intercept the
sequence of delivering key/response/token/password to identify the key or function
to generate the key. Using the modeling attacks, an attacker tries to grab the pattern of
the next messages to validate the devices. By using the pattern, attackers can predict
future replies to place their own device as a legitimate device. The framework can
resist modeling attacks by hiding the challenge–response pair (CRP) interfaces of
PUFs, placing additional blocks, etc. [10].

• Physical Attacks: An adversary harms a sensor node during a node tampering attack.
Either the hardware as a whole or a specific component can fail in a sensor node. A
node can be altered or replaced to produce a compromised node, which the attacker
can then take control of. An attacker who gains access can change sensitive data, such
as shared cryptographic keys or passwords, or other data, as well as interfere with
higher communication levels [11].

• Denial of Service Attacks: One of the targets of the denial of service (DoS) attack is
to drain the energy of the battery. The attacker attempts to force an AV to conduct
energy-intensive processes continuously, which accelerates battery drain and finally
renders the AV useless. For instance, in this attack, the attacker can continuously try
to make a link with the implant using incorrect messages [12].

• Replay Attacks: A replay attack (also known as playback attack) can be done by
maliciously or fraudulently repeating or delaying valid data transmission. Attackers
gather information by listening in on two parties’ communications, and the fraudulent
station sends out old messages to the entire system as a broadcast or to a specific group
of devices. Regardless of whether the sender is sending any new packets, the other
nodes change their routing tables in accordance with the outdated information when
they get these messages and respond. Generally, clock synchronization and random
number mechanism are two mechanisms to cope with replay attacks. However, the
clock synchronization between the client node and server nodes itself is still a research
problem in WSN [13].

• Eavesdropping Attacks: As data are transmitted utilizing wireless connectivity, an
eavesdropping attack, sometimes referred to as a sniffing or snooping attack, is infor-
mation theft. An adversary can use different methods to eavesdrop on communica-
tions in a system [14].

• Man in the Middle Attacks: The man-in-the-middle (MITM) attack is an attack in which
the attacker sits in the middle of a conversation between two users and exchanges keys
with both of them. The attacker can encrypt or decrypt data by intercepting the signal
that they are sending to one another. Two parties that believe they are transferring
data to each other can also have their communications changed by an attacker without
them being aware of it [15].

Due to adversaries, incorporation of an authentication system is essential to allow AVs
to join the IoV network [16]. Legitimacy of the received messages are decided based on
trust management through an authentication framework.

1.2. Security Mechanisms

Password based authentication has low entropy, which makes it vulnerable to dictio-
nary attack [7]. Robust frameworks can be built using encryption (such as attribute-based,
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elliptic curve based, etc.), machine learning, blockchain, and other mechanisms. Blockchain
is a distributed, immutable, decentralized, and shared digital ledger [17]. It is a peer-to-peer
connection; there is no central authority to regulate the data. Following the conclusion of
the mining process by the miner node, all nodes in the network agree to validate transac-
tions and store the data in a block with a timestamp. The blocks combine to form a chain
known as the blockchain, which combines SHA-256 and ECC for data verification and
integrity. Communication can be encrypted and decrypted using attribute based encryption
(ABE), which is based on access hierarchies and attribute sets [18]. Access control and
a data encryption method can both be supported by ABE based systems for numerous
concurrent users. For the IoV system, ABE based methods can use acceleration, speed,
etc., of a car as attributes. Lightweight devices are not suitable for ABE based systems
due to substantial cost during decryption [19]. Elliptic curve cryptography (ECC) is a
form of public-key cryptography that utilizes an extensive finite field and an elliptic curve.
An elliptic curve EK defined over a field K of characteristic # 2 or 3 is the set of solutions
(x, y) ∈ K2 to the equation y2 = x3 + a ∗ x + b, where a, b ∈ K [20]. Here, the cubic on the
right has no multiple roots. Compared to contemporary public-key cryptography, ECC can
offer greater security and higher performance with fewer key sizes [21]. Moreover, user
biometrics can be used as a security measure. Biometrics could be fingerprint, palm image,
voice, etc. Due to several security concerns, it is required to use multi-biometric privacy
preservation [22]. Machine learning (ML) is usually used for anomaly detection, identifying
unauthorized users, and misbehavior detection. There is a chance to perform MITM attacks
when utilizing this hardware-based security system. Once taken, the device is replicated by
attackers. Furthermore, security keys could be stolen by physical and side-channel attacks.
PUF is a defense against the attack [23].

PUF shows better resistance against different attacks such as physical attacks, side-
channel attacks, etc. [24]. To enhance the security mechanisms, strength, and robustness,
an authentication framework consisting of PUF and SML is proposed in this paper. The
proposed method needs limited CRPs of a weak PUF to produce a large machine learning
dataset. The proposed framework can avoid the requirements of a strong PUF. Moreover,
modeling threats of strong PUF can be resisted using the proposed mechanism.

1.3. Physical Unclonable Function

PUF is a combination of logic gates that use the process variation of chips to traverse
the signal. It can generate output faster and more accurately. PUF can produce a digital
fingerprint; when an input (challenge) is fed to the PUF it will generate an output (response) [11].
Figure 2 shows the relation of input to output of PUF. The pair of input and output is called
challenge–response pair (CRP). PUF removes the dependency of storing passwords, secret
keys, or encryption keys. It will generate a response instantly, and it resists the adversaries
to calculate or assume the key. The major characteristics of PUF are as below [25,26].

• Uniqueness: The dissimilarity of responses for different challenges of a particular
chip/PUF;

• Reliability: The probability of producing the same response when a particular chal-
lenge is provided as input to the PUF;

• Randomness: The distribution of ‘1’ s and ‘0’ s in the responses of PUF;
• Inter-HD: The CRP sets distribution among different PUFs calculates the inter-HD. It

defines how one chip is different than another chip.
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Challenges
C11, C12, C13…..C1n
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Figure 2. Challenge–response pair in PUF.

The performance of PUF is calculated using hamming distance (HD). HD is the
dissimilarity of ‘1’ s and ‘0’ s of all positions of responses. If, in a particular position, the
bits are the same, then HD is 0; if the bits are different, then HD is 1. Table 2 shows the
ideal characteristics of PUF.

Table 2. Ideal characteristics of the PUF.

Item Ideal Value

Uniqueness 50%

Randomness 100%

Reliability 100%

Inter-HD 50%

1.4. Supervised Machine Learning

SML is a type of machine learning that can be further dichotomized as classification
or regression. With classification, the aim is to map an input space to a discrete set of
targets (i.e., labels). The purpose of regression is to build a mapping of an input space
onto a continuous value. SML is driven by a mathematical framework, and learning the
map requires many actual input and desired output pairs. Collectively, the input–output
pairings are called a dataset and are used for learning the relationship to define a function
or model [27]. The best model is decided based on training and validation results (losses,
overfitting, underfitting, accuracy, mean absolute error, etc.). The model is applied to novel
data (i.e., a test data) to further evaluate the functionality of the model.

1.5. Contributions

Alhough many authentication schemes exist, many suffer from various threats, com-
plex mechanisms, computational cost, tamper proof devices, or communication overhead.
To overcome these limitations, this paper proposes a scheme combining PUF and SML. The
major contributions of this paper are as follows.

• Removal of the storage requirement with respect to existing frameworks. It will be
able to generate random responses, and entropy will be high;

• Introduction of SML in the framework for authentication purposes in the IoV;
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• SML removes the dependency of strong PUF. SML randomizes the responses each
time to mimic a strong PUF. The framework eliminates the requirement of many CRPs
in secure database;

• Introduction of SML to make a weak PUF as strong;
• Communication will be done through random ports that cannot be identified by

attackers;
• Avoidance of complex calculations and introduction of a simple framework with

single XOR and concatenation operation;
• Very low computational time and communication overhead. The very low cost makes

it perfectly applicable for IoV network;
• User identity is protected by using pseudo-identity;
• The proposed framework is secure against known security threats and shows superior

performance;
• Formal security proof using BAN logic shows the robustness against security issues;
• It requires much less storage in the server and can provide 100% accuracy irrespective

of SML performance.

1.6. Paper Organization

This paper presents recent work on securing the IoV network in Section 2. In Section 3,
the proposed method is shown. This section shows how the uses of PUF and SML can
protect the IoV network by secure authentication. Experimental setup along with the results
is presented in Section 4. The comparison of the proposed method to existing methods
is also shown in the section. Both formal and informal security analysis are discussed in
Section 5. Finally, the paper presents the conclusion and future work in Section 6.

2. Related Work

Researchers are continuously developing secure mechanisms to establish robust sys-
tems to preserve security and privacy. In this section, a few existing authentication frame-
works will be illustrated.

IoT systems can be centralized and decentralized. Wang et al. [28] proposed an authen-
tication framework based on blockchain that is a decentralized platform. In the framework,
public-key infrastructure was used, but this approach also required certificate management.
In [29], Chattaraj et al. proposed a certificateless Elliptic-curve cryptography (ECC)-based
blockchain mechanism. It proposed vehicle login and V2V secure communication but did
not provide secure communication of V2R, and it suffers from complex computation and
high communication overhead. Wazid et al. [30] proposed a lightweight protocol for vehi-
cle authentication and vehicle-to-vehicle communication using blockchain. A lightweight
protocol was proposed by Kamal et al. in [31]. This paper focused on attack detection using
the received vehicle’s power variation. According to Kamal et al., further cryptographic
optimization is necessary. Another blockchain based framework was proposed by Yang et
al. [32], which used a combination of proof-of-work and proof-of-stake mechanisms. Here,
RSUs work as miners that collect ratings from vehicles about neighboring vehicles. It could
suffer replay attacks or man-in-the-middle attacks.

In addition to the previous mechanisms that are based on decentralized networks,
centralized systems also provide an authentication framework for IoT. Vasudev et al. [3]
proposed a password-based authentication framework where few parameters are stored
in OBU for cryptographic operations. Use of XOR, concatenation, and hash operations
make it lightweight, but this method could be susceptible to various attacks, such as a
side-channel attack. Furthermore, it suffers from high communication cost due to 17 times
SHA-256 operations. In [5], Chen et al. exploited the vulnerabilities of Ying et al.’s [33]
method, but it required much storage space. Another certificateless scheme was proposed
by Hathal et al. in [34]. Here, an authentication token was used to replace the requirement
of a digital certificate. It used the TESLA authentication framework, and Schnorr signature
was used to sign the TESLA keys. In another implementation, the Chinese Remainder
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Theorem was used to compute a single value from possible movements. Wei et al.’s [7]
proposed method combined a password and driver’s behavior to detect anomalies and
process authentication. It uses Pallier public key encryption and matrix multiplication,
but this method is not 100% efficient as there is the presence of false acceptance and
false rejection. Wang et al. [35] proposed an authentication scheme using password and
smart card to hide the secret keys. Patel et al. proposed a three-factor authentication
method for multi-server environments [36]. The computation time of the framework is
high. A SML based anomaly detection model was proposed by Sharma et al. in [37]. The
model is able to defend against position based attacks using six algorithms. By analyzing
location and movement, the SML model detects adversarial communications. A fog-based
authentication scheme was proposed by Song et al. [38]. It consists of two layers: an
authentication layer and a monitoring layer. Deep learning was used in the monitoring
layer, and accuracy declines with respect to speed increment. It performs better when
the driving speed is 15 m/s. Javed et al. developed convolution neural network (CNN)
based intrusion detection [39]. The model worked under both single and mixed data attack
sequence. Javed et al. also proposed another anomaly detection method for IoV using
multi-stage attention mechanism with long short-term memory based CNN [40]. To detect
anomalies, they used the average prediction probability of a multiple classifier. Abdalzaher
et al. also used deep learning for detection and warning generation [41]. Abdalzaher
et al. proposed another ML based method to detect discrimination [42]. The proposed
method achieved more than 98% accuracy. Patil et al. proposed an authentication method
using multi-biometrics [22]. In the enrollment stage, iris, fingerprint, and palm print are
captured and converted to an 8 * 8 feature vector by applying discrete cosine transform and
Lagrange interpolation, making it to an 8 * 8 fusion vector. The framework validates the
fusion vector to perform authentication. It is required to protect the biometric features and
improve accuracy. Abdalzaher et al. proposed a game model to ensure trustworthiness in a
cluster [43]. Moreover, the model can identify cluster members’ hardware failure. A three-
factor scheme based on ECC was developed by Srinivas et al. [44]. The method contains
complex computation with many hash functions, which incur high computational cost and
communication overhead. Another ECC-based protocol was proposed by Thumbur et al.
in [2]. It improves the storage requirement in RSUs by verifying signatures from multiple
messages. It also reduces verification time. Previous proposed methods required storage
for identification parameters, which can raise options for attacks, such as physical attacks,
cloning attack, side-channel attacks, and more. To overcome this, PUF-based methods
were proposed in [4,45]. Single time authentication is required in the scheme of Aman et
al. [4]. The authentication message is generated using a hash of identity, PUF response
key, random nonce etc. It is required to store a challenge in the AV and it needs to update
periodically, which could lead to the exposure of the AV. Similar to Aman et al., Alldi et
al.’s scheme [45] needs the storage of a challenge. In the registration phase, it uses ECC
for key generation. It uses PUF response along with other parameters to complete the
authentication scheme.

3. Proposed Solution

This section presents the proposed authentication framework for the IoV network.
There are six major system elements in the proposed authentication framework, as pre-
sented in Figure 3. A brief description of each component is provided.

• Users/Drivers/Passengers: Drivers and passengers are the primary entity of the IoV
network. These users are dependent on the IoV network for getting traffic information
of roads and real-time services that are required to safely reach the desired destination.
As they use sensitive information, they are required to preserve strong privacy and
security.

• Autonomous Vehicles (AV): AVs will be equipped with both PUF and machine learning
models, which will participate in the authentication process. Sensor data such as signal,
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traffic information, and computation, etc., are captured by electric control units (ECUs)
in the AV.

• Roadside Unit (RSU): The next entity is the RSU, which is fixed to a particular location
such as a road side, parking space, building, etc., where it has license to operate. It is
the communication unit for transmitting and receiving signals from AVs, pedestrians,
cloud servers etc. It has the capability of storing, processing to compute as per
requirement of applications, communicating using a network connection such as
4G/LTE or 5G, etc. Through a secure connection, it combines data from vehicles, other
field equipment, and centers of the serving area and sends them to the RSU gateway
after combining.

• RSU Gateway (RG): Each RSU covers a small area of a particular city or large area.
RSUs of the city will be connected to a gateway, which is RG. RG’s coverage is the
combination of the areas of the connected RSUs’ area. It is also equipped with PUF
as RSU. It collects messages from cloud servers and distributes to RSUs. Moreover, it
shares messages to cloud servers after assembling data from RSUs.

• Cloud Server (CS): CS is a combination of high-performance devices that computes
and verifies entities such as AVs, pedestrians, RSUs, etc., before accepting and sending
data related to traffic information, and it also stores traffic related information.

• Secure Database (SDB) : SDB is not connected to the Internet and is a secure memory
device for storing CRP’s of AVs, RSUs, RGs, etc., and it shares those with the CS
whenever it is required to authenticate the entities of the network.

When an AV wakes up and wants to be registered in the IoV network, it first must be
authenticated to verify its credibility. It is required to follow an authentication protocol.
Each AV must go through two phases for being part of IoV network. Initially, it is required
to be registered, and then it performs a mutual authentication.

Cloud 

Server

RSU Gateway

RSUs RSUs

Figure 3. IoV system elements.

3.1. Overview of the Proposed Framework

Figure 4 shows the overall process of the proposed framework. The proposed au-
thentication framework combines the functionality of the PUF and SML model. In the
proposed framework, a PUF will be present in the client or AV. The SML model will be
generated based on the training dataset using challenge, response, pesudo-identity (PID),
and timestamp. The model will produce two random nonces and a port number. The
generated model will be stored in both AV and CS. By verifying random nonces through
the port, both client and server will be authenticated.
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• Challenge

PUF

• Response

ML Model
• Nonce 1

• Nonce 2

• Port

Authentication 
Process

Time

PID

Figure 4. Overview of PUF and supervised SML based authentication framework.

3.2. Application of Supervised Machine Learning to Mimic a PUF

In the standard paradigm for supervised machine learning, the goal is to determine a
generalized mapping from descriptors (i.e., features) to labels. An input is characterized
by specific values of the descriptors, and, through training, a function is learned, which
correctly maps values of the descriptors onto the correct labels. Training typically occurs on
a selected subset of a larger population with the aim of using patterns found in the subset
to correctly label additional, novel data. As data used for training are already labeled, there
is no value in attempting to label them; the value of a supervised machine learned function
is in its applicability and generalizability to new data. The performance of the function on
novel data (e.g., accuracy, mean absolute error) measures how well the function generalizes.
Techniques such as regularization and dropout are employed to combat overfitting (i.e.,
relying on distinguishing noise in the training data to correctly label data rather than more
generalizable patterns in the features) and produce more generalizable functions.

The application of SML in this work does not follow the standard paradigm but rather
leverages machine learning libraries to mimic a PUF. Data from a specific PUF are used as
the training data, and the aim is to learn a function that produces output similar to the PUF.
The rationale for fitting a function to the output of a particular PUF is to learn a function
that produces output that concretizes the ideal characteristics of a PUF. Attempts to learn a
function that produces output identical to that generated by the PUF is unlikely, but, in this
situation, very high fidelity is not required. The learned function can be taken as the ground
truth and used as the component in the authentication framework. The suitability of the
learned function is not measured by the loss between the function output and the PUF but
rather the learned functions capacity to produce output that follows PUF characteristics.

3.2.1. Data

The data used in this authentication scheme were generated with an arbiter PUF.
BASYS 3 FPGA was used in this work to generate CRP.

There are a total of 19 input features and three output features. Figure 5 shows the input
features of the SML model. Among the 19 input features, the first eight numerical features
are from challenges (64-bit), and the next eight numerical features are from responses (64-bit).
After that, hour, minute, and PID are used as the rest of the input features. These input
features are used to generate three output features (Nonce 1 and 2 and a port to send
data). At first, the CRPs were divided into 16 bytes to use as input features. Different
combinations were used among input features to calculate different output features using
mathematical operations. For example, Nonce 1 in the dataset was calculated using four
bytes from the challenges, four bytes from the responses, hour of timestamp, and PID.
Nonce 2 and port used different combinations to make them random and independent
of a particular input feature. The input features were not normalized, as the first eight
features were used as input of PUF as well. Generated nonces were too large. These were
normalized by dividing 1014 and 1015 to range from 0 to ∼65,000 (16-bits). The port was
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not normalized, as it is required to send data using a variety of ports. The output features
were not normalized in a small range (0∼1) so that the model can produce very random
numbers.

Challenge Time

Response PID

Nonce 1

Nonce 2

Port

ML Model

Figure 5. Input and output features of the SML model.

The entire dataset consisted of 92,160 combinations. There were combinations of
32 CRPs, 288 hour-minutes, and 10 PIDs. The dataset was split into 80–20 for making
training and validation. Validation data were for output prediction.

3.2.2. Training and Evaluation Protocol

Google Colab, which is a Jupiter notebook environment that runs entirely in the cloud,
was used to develop the SML environment. In the environment setup, a NVIDIA Tesla K80
GPU that is accessible in Colab was used. A number of feed forward, deep architectures
were used for model training and evaluation using data that were cleaned and normalized.
In the project, regression models were used to predict three response variables. The first
architecture consisted of a total of four layers with 128, 64, 32, and 3 nodes. In the last
layer, three nodes are used as the model, which will predict three outputs. In each layer,
rectified linear units (relu) were used as the activation function. The metrics to measure
performance were mean square error (used for loss during training) and mean absolute
error (mae).

The number of epochs used was 50 to determine the performance of the models on
the validation data and to identify the stop position in which the performance of validation
data was leveled off. The initial architecture was evaluated using optimizers “RMSProp”,
“Adagrad”, “AdaDelta”, “Adam”, and “Nadam”. It was found that the models using
both the RMSProp and Adam optimizers performed better (mae was 30 at 40 epochs)
compared to the Adagrad and AdaDelta optimizers. Furthermore, the model using the
Nadam optimizer performed better than others. Then, in the initial architecture, dropouts
with different rates from 10% to 50% were applied in each layer, but the resulting models
showed deteriorated performance.

To optimize the performance, several aspects were used to adjust the overall architec-
ture. The depth and breadth of the model was increased until optimal mae was achieved
and overfitting was a significant factor. At that point, dropout and regularization were also
applied. Furthermore, learning rates (lr) of 0.01, 0.05, 0.1 were applied with momentum
from 0.1 to 0.5. Input features were not normalized to take in a common range, as these
features will be applied as input to the PUF of the proposed authentication framework. To
normalize these features, the Z-score was calculated. It was found that the performance of
Adam and Nadam optimizers were better according to mae. As this work focuses to mimic
PUF rather than SML model performance, the linear correlation coefficient was calculated
to discover the relationship between the input features and output features. Table 3 sum-
marizes the linear correlation coefficient achieved by configuration when training for the
model was halted.

As shown in Table 3, AdaDelta with three layers and Adam with five layers shows
that output features are more linearly related with the input features. On the other hand,
the Nadam optimizer with three layers showed less linear relation. All the models were
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applied to the test data and found a similar linear relationship. The best model was selected
based on the PUF characteristics of the output features and correlation coefficient.

Table 3. Performance on validation data by architecture.

Units Dropout
(30%)

Regularizer
(L2)

Learning Rate (0.05) &
Momentum (0.4)

Z-Score Optimizer Linear Correlation
Coefficient

128-64-32 7 7 7 7 Adagrad 0.16

128-64-32 7 7 7 7 AdaDelta 0.31

128-64-32 7 7 7 7 RMSProp 0.11

128-64-32 7 7 7 7 Adam 0.12

128-64-32 7 7 7 7 Nadam 0.09

128-64-32 3 7 7 7 RMSProp 0.11

128-64-32 3 7 7 7 Adam 0.09

128-64-32 3 7 7 7 Nadam 0.03

128-128-64-64-32 7 7 7 7 RMSProp 0.08

128-128-64-64-32 7 7 7 7 Adam 0.11

128-128-64-64-32 7 7 7 7 Nadam 0.13

128-128-64-64-32 7 3 7 7 Adam 0.1

128-128-64-64-32 7 3 7 7 Nadam 0.11

128-128-64-64-32 3 7 7 7 Adam 0.29

128-128-64-64-32 7 7 3 7 Adam 0.14

128-128-64-64-32 7 3 7 3 Adam 0.11

128-128-64-64-32 7 7 7 3 Adam 0.13

128-128-64-64-32 7 7 7 3 Nadam 0.12

128-128-64-64-32 7 7 7 3 AdaDelta 0.12

3.3. Assumptions

In the proposed secure and successful mutual authentication framework, the following
assumptions were considered.

• PUF chips are placed in the RSUs, RGs, and AVs. During registration time, CRP sets
of all entities are collected and stored in SDB through secure communication channels.

• SDB is not physically accessible by illegitimate users and cannot be compromised, and
it is not connected to the Internet. CS collects CRP from SDB through a secure channel,
and CS is the only designated, trusted and secure storage medium.

• In the registration phase, the mapping of IDs and PIDs of all entities is stored in
the SDB.

• There is no predefined shared key or encryption key between entities.
• Through CRP exchange, CS already validates RSUs and RGs for communication.
• For saving energy, AVs maintains wake–sleep cycles, and it is not in the state of 24/7

connectivity. When the AV is started, it wakes from inactivity mode and exchanges
messages to establish a secure session for connectivity.

• It has been found that the PUFs are 100% reliable for CRP generation in idle condition.
It is considered that the PUFs in the entities of the proposed scheme are noise resistant
and will generate the same CRP set in every environment and life span. Recently,
researchers, for example, [46,47], developed PUFs that can maintain consistency irre-
spective of environmental issues, power fluctuations, temperature changes, pressure
and humidity variabilities, etc.
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3.4. Proposed PUF and SML Tools Based Framework

When the AV has gone through the registration phase, it is eligible to enter the IoV
network after completing the authentication step. The schematic view of the proposed
framework is presented in Figure 6. Different elements will be under the area of RSU.
Several RSUs will be connected to an RG. In the figure, AV initiated the authentication
process by sending a message to the RSU. The information will be sent to the CS with the
help of RG. CS will select a challenge and process response to ask the AV to validate. AV
will validate the message to identify the CS. After that, the AV will share another message
that will be verified by the CS to complete the authentication of the AV. By exchanging
messages through RSU and RG, AV and CS verify each other. Figure 7 shows the proposed
authentication scheme for IoV applications. For simplicity, the IoV network is omitted in
the figure. The authentication process is divided into two phases. In the first phase, AV
will authenticate the cloud server and share its credential. In the second phase, the cloud
server will authenticate the AV. These phases ensure the resistance of AV and cloud server
impersonation attacks, respectively.

Cloud 

Server

𝐴
𝑉 𝑃

𝐼𝐷

R
K
⨁
𝑁
1
𝐾
𝐶

𝑁
2

𝐴𝑉𝑃𝐼𝐷

𝑁2

RK⨁𝑁1 𝐾 𝐶
𝐴𝑉𝑃𝐼𝐷
RK⨁𝑁1 𝐾 𝐶

𝑁2

attribute: freepik.com

Figure 6. Schematic view of the proposed authentication framework.
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Port
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Compare

𝑁2 = 𝑁2
′

Supervised ML

Input: C, R, 

Timestamp

Output: 𝑁1, 𝑁2, 

Port

Compare

𝑁1 = 𝑁1
′ 𝑁2

Figure 7. PUF and SML based authentication framework.
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As stated in the assumption section, RSUs and RGs are authenticated earlier and com-
munication through RSUs and RGs is avoided in order to make the proposed framework
simple. The following steps illustrate the process of authentication, and the process is
presented in Figure 7.

• Authentication session initiation from AV: When the AV is ready to be connected
to the IoV network, it is required to establish a session, which will be initiated by
sending AVPID to the cloud server. Figure 7 shows that the AV sends the message first
to latch to the IoV network by sharing its PID.

• Verification of CRP and nonce from CS: The server will select random challenge (C),
response (R), and current timestamp(Ts). Using C, R, Ts, and AVPID, CS will produce
N1, N2, and port numbers through a SML model, which is shown in Equation (1). Then,
CS will generate a random number from 0 to 48, which is denoted as K, and select a
16-bit response from the Kth bit. Then, the server will use Equation (2) to perform the
XOR operation of N1 and 16-bit R to get F1CS. CS will send C, K, and F1CS to the AV
to validate the CS and continue the authentication process. The CRP selection, SML
model outputs generation, and XOR operation at the CS end that initiates the data
flow from AV to RSU to RG to CS is presented in Phase-1 of Authentication process
as shown in Algorithm 1.

N1, N2, Port = FSMLModel{C, R, Ts, AVPID} (1)

F1CS = N1 ⊕ RK (2)

• Authentication Confirmation of CS: From the received message, AV will get C, and
using Equation (3), it will generate R. Similar to CS, the AV will apply the SML model
to generate N1, N2, and port. Using Equation (4), the AV will generate the nonces
where C, R, Ts, and AVPID are the inputs of the function. Then, the AV will execute
XOR operation between generated 16-bit R and the received an XOR result from CS to
find out the generated N1 in CS, as shown in Equation (5). After that, AV will compare
N1 of CS and the SML model generated N1, as shown in Figure 7. If it matches, then
AV will identify CS as authentic and it completes the Phase-1 of the Authentication
process.

R = FPUF{C} (3)

N1, N2, Port = FSMLModel{C, R, Ts, AVPID} (4)

N1 = F1CS ⊕ RK (5)

• AV Authentication Confirmation: In this phase, AV will send N2 to the SML model
generated port. CS will receive N2 in the port number and will match with its SML
model generated N2. If it matches, the CS will mark the AV as an authenticated entity
and will share a session key for connection establishment. The data flow from AV
to RSU to RG to CS and verification is illustrated as Phase-2 of the Authentication
process.
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Algorithm 1: Secure Authentication Process
Authentication session initiation from AV
AV→ RSU {AVPID}
RSU→ RG {AVPID}
RG→ CS {AVPID}
if AVPID == AVPID′ then

Continue
else

Invalid Autonomus Vehicle
Phase-1: Verification of CRP and nonce from CS
CS:

SMLModel = ( N1, N2, Port )
F1CS = ( N1 ⊕ RK )

CS→ RG {C || K, F1CS}
RG→ RSU {C || K, F1CS}
RSU→ AV {C || K, F1CS}
Phase-1: Authentication Confirmation of CS
AV:

C −→ RK

SMLModel = ( N1, N2, Port )
{N
′
1 = ( RK ⊕ F1CS ) }

if N1 == N
′
1 then

Valid Cloud Server
else

Invalid Cloud Server
Phase-2: AV Authentication Confirmation
AV→ RSU {N2, Port}
RSU→ RG {N2, Port}
RG→ CS {N2, Port}
if Port == Port

′
then

Might be Legitimate Autonomous Vehicle
if N2 == N

′
2 then

Authenticated & Establish Session Key
else

Authentication Failed
else

Authentication Failed

4. Experimental Results

This section presents the setup for the proposed framework and the performance of
SML. It is desired that SML will produce non-linearity to produce unpredictable nonces. By
doing this, the proposed method can avoid modeling impact of CRPs of a PUF. Moreover,
computation time and communication overhead are the major concerns of real time ap-
plications such as IoV. This section presents the proposed framework’s performance with
respect to computation cost and communication overhead. Furthermore, the comparison
with existing mechanisms is presented in this section.

4.1. Experimental Setup

In this work, a 64-bit arbiter PUF was used among various PUFs, and it is able to
generate CRPs, which satisfies the required characteristics of PUF. Xilinx BASYS3 FPGA
was used to implement the PUF. Its architecture is presented in Figure 8. Arbiter PUF is
a delay based PUF where it compares the time required to traverse a signal to decide the
output bit. There are 64 boxes such as A0 and A63. Each box has two delay lines consisting
of multiplexers (2 * 1) and a D flip-flop. In each delay line, there are 64 multiplexers where
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challenge bits from C0 to C63 will be the selection bits. In each line, a signal will pass and
the path will be selected using the selection bit of the multiplexers means challenge bits.
If the D of the flip-flop gets the signal fast, then the output bit will be 1. If the Q gets the
signal fast, the output bit will be 0. Using 64 boxes from A0 to A63, the PUF will generate a
64-bit response when a 64-bit challenge is provided.

D 

Flip-Flop

D 

Flip-Flop

C [63:0] C0 C63

A0

A63

R0

R63

In1 In1 In1 In1

In2 In2 In2 In2

In1 In1 In1 In1

In2 In2 In2 In2

In1 In1 In1 In1

In2 In2 In2 In2

In1 In1 In1 In1

In2 In2 In2 In2

D

D

Q

Q

Figure 8. Architecture of 64-bit Arbiter PUF.

Raspberry Pi 4 B+, BASYS3 FPGA, and Google Colab were used for implementing
the work. The SML model was trained in Google Colab and then it was converted to
TensorFlow lite. The converted model was saved in Raspberry Pi. The prediction of the
model was checked in both Google Colab and Raspberry Pi. The experimental setup of the
proposed authentication framework is shown in Figure 9. As shown in the figure, FPGA
is connected to the Raspberry Pi. Here, the Raspberry Pi acts as an AV, and FPGA acts
as a PUF of AV. On the flip side, CS, which has a secure and trusted database, is being
presented by another Raspberry Pi. In an RSU area, several AVs with the incorporated PUF
are present, and each RSU area is connected to a RSU gateway. In the test, communication
between the AV and CS was done using WiFi. When an authentication request is being sent
to CS by AV, CS runs the SML model and generates two random nonces and a port number.
Then, it performs XOR operation and transmits (N1 ⊕ RK) to the AV via the IoV network,
and, in response, AV shares nonce N2 to CS in the SML model generated port. By following
the complete authentication process, both CS and AV will be able to verify each other so
that each can discriminate between legitimate or illegitimate entities.
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Figure 9. Experimental setup of the proposed protocol.

4.2. Performance of Proposed Authentication Framework

This section presents a performance analysis of the proposed framework. As illustrated
in the authentication section, the proposed framework is a combination of two phases. The
data were collected 10 times to measure the performance.

4.2.1. Performance of PUF

The characteristics of the developed 64-bit arbiter PUF is shown in Table 4. Eight
hundred CRPs were used to measure the performance. The results show that the PUF used
in this work is 100% reliable. The histogram of the PUF characteristics is shown in Figure 10.
The reliability was also checked for the temperature range from 30 ◦F to 150 ◦F for each 15 ◦F
interval.

Table 4. Characteristics of the PUF.

Item Performance (%)

Uniqueness 49.51

Randomness 68.5

Reliability 100

Inter-HD 45.72
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Figure 10. Characteristics of 64-bit PUF: (a) uniqueness; (b) randomness; (c) inter-HD.

4.2.2. Performance of the SML Model to Mimic PUF

From Table 3, it is found that the Nadam optimizer with three layers and dropout had
the lowest linear relationship. Figure 11 shows the characteristics of the model as PUF. The
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result was measured based on validation data. From the figure, it is found that uniqueness
and randomness of N1 and N2 varies from 23% to 30%. On the other hand, for the model
of the AdaDelta optimizer of five layers with Z-score has 30% to 57% uniqueness and
randomness, which is better than the model of the Nadam optimizer with 30% dropout. In
addition, the uniqueness and randomness of the port is similar, and the linear correlation
coefficient is 0.12, which is good. The performance of the model trained with the AdaDelta
optimizer (five layers) with Z-score is presented in Figure 12. Moreover, the distribution
of output features for the AdaDelta optimizer of five layers with Z-Score is presented in
Figure 13a. In addition, Figure 13b shows the heatmap of correlation among input and
output features of the AdaDelta model.
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Figure 11. Validation data characteristics of the Nadam model (three layers) with 30% dropout:
(a) uniqueness of nonce 1; (b) uniqueness of nonce 2; (c) uniqueness of port; (d) randomness of
nonce 1; (e) randomness of nonce 2; (f) randomness of port.
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Figure 12. Validation data characteristics of the AdaDelta model (five layers) with Z-score: (a) unique-
ness of nonce 1; (b) uniqueness of nonce 2; (c) uniqueness of port; (d) randomness of nonce 1;
(e) randomness of nonce 2; (f) randomness of port.
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Figure 13. Input and output features of validation data of AdaDelta model (five layers) with Z-score:
(a) output features distribution; (b) correlation map.

4.2.3. Computation Cost

CRP generation was required for a single time in the authentication protocol. In this
experiment, FPGA was used for response generation after feeding challenges from the
Raspberry PI. Table 5 presents communication time between Raspberry PI and FPGA and
response generation time. As responses will be generated in the same SoC, only response
generation time is considered in computational time.

Table 5. CRP generation and communication time.

Item Time (ms)

Response Generation 0.4

Raspberry PI and FPGA Communication 35.0

Total 35.4

Total computational time was 3 ms to complete the two phases. Between the two
phases, phase-1 required more time as it applies the SML model in both CS and AV sides,
response generation in AV, and due to other computations. Table 6 shows computational
time of both the AV and CS sides for all phases. Figure 14 represents computational time
requirements for each phase on the proposed framework. The time required for XOR and
PUF response generation is negligible [10]. The framework is used to run for 10 times using
Raspberry Pi to get the computation time. AV needs to take part in phase-1 computation,
which is 2 ms, and CS takes 0.6 ms in phase-1 and 0.4 ms in phase-2. Therefore, the total
computation cost of phase-1 is 2.6 ms and phase-2 is 0.4 ms. On the AV side, it took much
time compared to CS due to response generation, port binding, etc.

0

0.5

1

1.5

2

2.5

3

Phase-1 Phase-2 Total

Time (ms)

AV CS

Figure 14. Computational time of different phases of framework.
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Table 6. Computational time for both AV and CS.

Item AV Time (ms) CS Time (ms) Total Time (ms)

Phase-1 2.0 0.6 2.6

Phase-2 0.0 0.4 0.4

Total 2.0 1.0 3.0

4.2.4. Communication Overhead

For calculating communication overhead in the current work, 64-bits were used as
PID, and random nonce was considered as 16-bits. Figure 15 shows the distribution of
message flow for each step. Table 7 shows the communication overhead of the proposed
framework. Communication overhead depends on PID length, random nonce size, length
of K-bit, etc. Hence, final communication overhead will be based on the selection of the
above parameters.

N2
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16-bits

⊕

64-bits

64-bits

  

16-bits

PID

64-bits

C

64-bits

R XOR N1
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Time (ms)

𝐴𝑉𝑃𝐼𝐷

𝑅 ⊕ 𝑁1 𝐾 𝐶

𝑁2

Figure 15. Total message flow of the proposed framework.

Table 7. Communication overhead.

Item Communication Overhead (bytes)

Phase-1 19

Phase-2 2

Total 21

4.2.5. Performance Comparison

In this section, the proposed framework is compared with the existing authentication
mechanisms. Table 8 shows the comparative performance analysis among different proposed
authentication schemes. The paper shows the performance comparison with respect to com-
munication cost and communication overhead. From the table, it is evident that the proposed
scheme is better than other existing authentication frameworks with respect to performance.
Additionally, the proposed scheme is secured against known security threats.

Table 8. Performance comparison.

Item Communication Overhead (bytes) Computational Cost (ms) Remarks

Thumbur et al. [2] 184 27 Many cryptographic operations

Vasudev et al. [3] 312 16 Mainly uses hash operations

Aman et al. [4] 24 * **
Communication overhead is 102 bytes
according to the key lengths of this paper

Srinivas et al. [44] 332 225.2 ECC-based and complex method

Alladi et al. [45] ** 22
Expected to have high communication
overhead due to multiple parameters
communications for several times
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Table 8. Cont.

Item Communication Overhead (bytes) Computational Cost (ms) Remarks

Wang et al. [35] 172 42.4 Multi-server based authentication

This Paper 21 3
Simple scheme with low computational
cost and low communication overhead

*—Full authentication process is not considered. **—Information is not provided.

5. Security Analysis

This section shows the security analysis of the proposed framework using both formal
and informal analyses.

5.1. Formal Security Proof

The security proof of the framework is presented using BAN logic in this section [25].

5.1.1. Notations

Each interference proposed in the BAN logic is identified by its importance using
fundamental notation and related descriptions. The following expressions are used.

• P believes X (P |≡ X ): The formula X is true and P believes X or P would be entitled to
believe X.

• P sees X (P / X): The expression X is true, and either P already believes it or would
have a valid reason to.

• P once sent X (P |∼ X): It is impossible to tell whether the information was sent during
the current operation or a long time earlier since the entity P once sent a message
containing the expression X. For such a thing, it is known that P believes X, however.

• Fresh X (#(X)): Communication X is regarded as fresh because it was not handled prior
to the current transaction period.

• P has complete control over X (P /
⇒X)): This happens when P is in total control of

procedure X and it is used when the authority is advised to use it.
• Secret key between P and Q (P X


 Q): This indicates that only P and Q are aware of the
secret code or formulae X.

5.1.2. Inference Rules

There are various sets of inference rules with the following remarks in BAN logic:

◦ IR1: <Nonce-Verification Rule>

P| ≡ #(X), P| ≡ S| ≡ | ∼ X
P| ≡ S| ≡ X

◦ IR2: <Jurisdiction Rule>

P| ≡ P⇒ X, P| ≡ S| ≡ X
P| ≡ X

◦ IR3: <Key Freshness Rule>

P| ≡ #(X)

P| ≡ #(X, Y)

◦ IR5: <Secret Key Sharing Rule>

P| ≡ Q| ≡ R
K

 R

′

P| ≡ Q| ≡ R′
K

 R



Electronics 2022, 11, 3845 21 of 26

◦ IR6: <Shared Key Rule>

P| ≡ Q K↔ P, P/{X}K
P| ≡ Q|∼X

5.1.3. Initial Assumptions

To assess the security property of mutual authentication, the following assumptions
are taken into account:

◦ A1: CS |≡ CS R

 AV

◦ A2: AV |≡ CS R

 AV

◦ A3: CS |≡ CS SMLModel

 AV

◦ A4: AV |≡ CS SMLModel

 AV

5.1.4. Idealized Form

The messages of the suggested framework are expressed in their idealized form as:

◦ I1: The first idealized form in Equation (6) shows that CS will share fresh C, K, partial
response, and nonce to the AV.

CS→ AV : {C, K, RK, N1, #(C, K, RK, N1)} (6)

◦ I2: In this idealized form, AV will send N2 and port, which are fresh, and these were
not used previously, as shown in Equation (7).

AV → CS : {N2, Port, #(N2, Port)} (7)

5.1.5. Goals of Proposed Framework

The following two conditions must be met in order for mutual authentication to be
successful:

◦ G1: The first goal is to ensure that the partial response and the nonce are only identified
by the AV and CS.

CS |≡ AV |≡ <CS RK⊕N1←→ AV>
◦ G2: The second goal of the framework is to ensure that the communication of nonce

from a random port can only be discovered by the CS.
CS |≡ AV |≡ <CS N2,Port

←→ AV>

5.1.6. Formal Verification Proof

The aforementioned inference rules, working hypotheses, idealized forms, and objec-
tives will now be used to verify the mutual authentication of the framework. The following
are the specific procedures:

◦ FV1: From I1 and by practicing IR1, IR3, and IR5, it is desired to obtain Equation (8)
and achieve goal G1:

AV| ≡ #(C, K), AV| ≡ CS RK
↔ AV, AV/N1, AV| ≡ CS| ≡∼ (C)

AV| ≡ #(C, K, N1), AV| ≡ (RK, N1)
(8)
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◦ FV2: From I2 and by practicing IR2 and IR4, it is desired to obtain Equation (9), which
achieves goal G2:

CS| ≡ AV|/⇒#(N2, Port), CS
#(N2,Port)


 AV
CS| ≡ (N2, Port)

(9)

5.2. Informal Analysis of Security Properties

This section discusses the resistance against different attacks.

5.2.1. Impersonation Attacks

Impersonation attack can happen in both the client device and server. In this work,
PUF is being used, and the client device does not store any passwords. The client device
will generate R when it receives a C from server. It will resist an attacker’s impersonation
attack, as R is neither stored nor computed in the client device. Furthermore, it will XOR 16-
bits R with N1 for authentication, and K will be different for each authentication. Moreover,
random N2 will be shared using a random port number. As all the variables are random
and there is no correlation, the proposed framework is able to resist impersonation attacks.

5.2.2. Side Channel Attacks

In this work, PUF is used, which eliminates the requirements of key storage in a
memory location. It generates R using process variation of chips. In this way, the proposed
authentication system will work against side channel attacks.

5.2.3. Modeling Attacks

This method will send a dynamic 16-bit R using the XOR operator. Neither of the two
variables can be determined from the XOR operation’s output. In addition, N2 and port
are unique. If someone gets the model, there will be no impact, and the model depends on
PUF CRP.

• Linear Regression Attacks: These use the linear relationship between variables. Equa-
tion (10) shows the linear relationship between input variable X and output variable
Y. The linear correlation coefficient from Equation (11) shows the measure of linear
relationship. If the value is 1, then a perfect positive linear relationship exists, and if
the value is 0, then there is no linear relationship. The proposed framework can resist
linear regression attack as the value of linear correlation coefficient is ∼0.1, as shown
in Table 3:

Y = mX + c (10)

r =
n(Σxy)− (Σx)(Σy)√

[nΣx2 − (Σx)2][nΣy2 − (Σy)2]
(11)

5.2.4. Physical Attacks

PUF has been utilized in order to identify any faulty and physically cloned devices. If
the AV is faulty or an adversary tries to tamper with the device, then the PUF will behave
differently, which will cause it to generate an inaccurate response when a challenge is
given to the client. CRP mismatch will be comprehended by the client by generating model
outputs during authentication steps. CRP will be generated on demand, and this eliminates
the need to store secret keys in a device’s memory; consequently, any cryptographic keys
cannot be obtained from an AV by an enemy who has physical control of the device. The
proposed mechanism will guarantee security from physical assaults in this way. Any effort
at manipulation would cause the PUF to differ significantly, and the server would be able
to recognize any CRP irregularity.
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5.2.5. DoS Attacks

This authentication system will be able to resist DoS attack. If the server gets invalid
authentication requests more than a certain number of times, for example five times, it will
place the illegal device in a block list and will not accept further authentication requests.

5.2.6. Replay Attacks

In this proposed system, the randomly generated number technique has the ability to
prevent replay attacks. It is evident that the proposed system can block replay attacks by
using random numbers, and this work is not affected by clock synchronization problems.

5.2.7. Eavesdropping Attacks

As stated earlier, each PUF has different characteristics that ensure that CRP guarantees
only the server, and clients can communicate with each other. Eavesdroppers cannot spoof
without having access to the CRP and SML model because the server stores everything at
the enrollment procedure [48].

5.2.8. Man In the Middle Attacks

For the authentication phases, random nonces were used as secret keys for each
message. Therefore, the server and client generate different messages, which prevents
MITM for the authentication part. All the keys (N1, N2, 16-bit R, and port) are produced
instantly on AV’ PUF for MITM attack resistance. Therefore, there is no scope to perform
the MITM attack if the attacker has no knowledge of SML model, CRPs, XOR functions,
and random numbers [48].

5.2.9. Anonymous Identity

Pseudo-random identifiers are used instead of real identifiers to preserve privacy
of the clients, and any attacker cannot track the real owner; therefore, privacy will be
protected.

5.2.10. Forward Secrecy

It is the primary goal of authentication frameworks to resist leakage of security keys.
In the proposed framework, random nonces are relevant to CRP set and time period.
Moreover, there is no chance of leakage as the nonces will not be repeated, and the proposed
framework guarantees forward secrecy.

6. Conclusions and Future Directions

In the paper, a secure and ultralight authentication method is proposed for verifying
the devices to send/receive traffic information and firmware update processes. It is an
efficient and secure authentication framework that is based on PUF and SML for the appli-
cations of the IoV. The complex certificate administration issue and the key storage issue
are not included in the proposed approach. As the authentication of both cloud server and
device is done by using two-message flow, this technique simplifies the verification time,
computational cost, communication overhead, bandwidth requirement, and storage space
of devices and the network. The proposed authentication protocol is able to prevent known
security threats. Performance analysis demonstrates that, from a security, computational,
and communication standpoint, the proposed authentication technique is more effective
than comparable state-of-the-art authentication systems. Hence, the proposed PUF and
SML based authentication scheme is more viable (3 ms computation time) for the IoV
network as it is a real time network that needs secure and faster communication compared
to other IoT applications. Moreover, the low communication overhead (21 bytes) will not
raise the burden on the transmission medium. Furthermore, the proposed method can
make a weak PUF into a strong PUF. Although this paper shows very low computational
time and communication overhead, it will be targeted to further lower time and cost by
reducing CRP generation timeline, optimizing the machine learning model, and employing



Electronics 2022, 11, 3845 24 of 26

other optimization schemes. Moreover, blockchain will be introduced to decentralize and
compare the performance. Furthermore, it is the ambition to introduce federated learning
and cluster authentication to make the framework more robust. Group key agreement and
vehicles to other element authentication will also be incorporated.
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