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Abstract: Focusing on the fine-grained access control challenge of multi-user searchable encryption,
we propose a hierarchical searchable encryption scheme using blockchain-based indexing (HSE-BI).
First, we propose a hierarchical search index structure based on a DAG-type access policy and a
stepwise hierarchical key derivation mechanism; which we outsourced to the blockchain network
to achieve reliable hierarchical search. We design a dynamic append-only update protocol for the
blockchain-based index to deal with adding and deleting files. Secondly, we propose a hierarchical
authorization mechanism based on broadcast encryption to achieve fine-grained search permission
granting and revoking, which can prevent a malicious server from colluding with corrupted users.
The security and complexity analysis shows that HSE-BI achieves optimal search time while satisfying
adaptive secure and revocation secure. Our experimental results are encouraging, e.g., compared
with the traditional multi-user searchable encryption schemes, HSE-BI’s hierarchical search policy
does not impact the search performance visually. The growth rate of the search latency decreases
with the increasing number of hierarchical users, which can act as an efficient crypto tool to open up
venues for other applications. We demonstrate that HSE-BI is more suitable for actual applications
with fine-grained access requirements and can act as an efficient crypto tool to open up venues for
other applications.

Keywords: searchable encryption; hierarchical search; blockchain network; broadcast encryption;
revocation secure

1. Introduction
1.1. Background and Motivation

As the demand for outsourced data storage and distributed computing grows, data
privacy is becoming one of the primary considerations. Encryption can ensure the security
of outsourced data, but how to effectively search and share outsourced encrypted data has
become a new challenge. To that end, searchable encryption (SE) [1,2] is a family of crypto-
graphic protocols that allow a data owner to outsource the encrypted data to a cloud server
maintaining the server’s search capability. In recent years, multi-user searchable encryption
(MUSE) [3–5] has been one crucial research line in searchable encryption. Compared with
the majority of works in SE, the architecture in MUSE is more complicated, where not
only the original data owner but a constant number of entities have the ability to send the
server a search query for (part of) data. MUSE opens up avenues for other applications,
such as collaborative data sharing. For example, all employees can be authenticated in an
enterprise to access the company’s outsourced encrypted files for subsequent collaboration.

A typical design challenge of multi-user searchable encryption is achieving flexible
access control for users [6,7]. Most MUSE schemes from the literature consider the case
that authenticated users always have unrestricted access to the entire dataset. However,
in the real-world data-sharing scenario, an organization often consists of a pyramid-shaped
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hierarchical access control strategy. Users in different hierarchies are assigned different
access permissions. The sensitive data in the real world is likely to be hierarchical and
different users should have different access rights. However, there are relatively few works
in MUSE considering this situation.

In addition, another problem in MUSE is that the server is often treated as a semi-
honest-but-curious party [5,8], which is assumed to store and search the secure index
correctly and does not attend to learning user’s extra information. However, this as-
sumption is too strong for many applications where the server is malicious. As most
recent research shows [9,10], the existing verification approaches for MUSE do not provide
efficient verification for search results over multiple users, and few works achieve a hier-
archical verifiable search. Therefore, it is an urgent challenge to design a solution for the
above problems.

In recent years, with the popularity of cryptocurrencies and decentralized applications,
blockchain technology has received much attention from various industries. It has been a
critical technology in constructing distributed storage platforms, such as Bigchain DB [11]
and Bluzelle [12]. Therefore, a blockchain data structure offers a possible solution to the
above problems in MUSE research. Some recent works have already considered building
MUSE schemes on top of a blockchain network. However, most of them treat blockchain
as a trusted third party to ensure reliable searches through consensus protocols [13–15],
but few works achieve hierarchical search. In this work, we take advantage of a blockchain
data structure to build a hierarchical searchable encryption scheme. Our design goal is to
make HSE-BI achieve fine-grained access control and ensure the search results are reliable
by the consistency and immutability of the blockchain-based index.

1.2. Our Contributions

We propose a hierarchical searchable encryption scheme using blockchain-based index-
ing (HSE-BI) to focus on the above challenges in MUSE. Our contributions are as follows:

• (Blockchain-based index) First, to achieve a multi-user hierarchical search, we explore
the construction of a secure hierarchical index via a blockchain network. The index is
built on a DAG-type access structure oriented real-world information flow policy. We
deploy the blockchain network to collaboratively manage the index to achieve index
immutability, aiming to make the search results reliable with no extra verification
work on the user side. We further propose an append-only index update mechanism
oriented in the blockchain index when adding/deleting is applied to outsourced files.

• (Hierarchical search control) Secondly, we propose a dynamic user authorization
mechanism that realizes fine-grained search permission control through hierarchical
key derivation. Based on this, authorized users have the right to search for the files
under their hierarchies. By deploying broadcast encryption and a hierarchical key
derivation strategy, HSE-BI can dynamically grant/revoke users’ search rights without
updating other users’ keys. Each user only needs to store its secret key locally, which
requires constant-size user storage.

• (Formal analysis evaluation) We give a formal security definition for HSE-BI, includ-
ing adaptive secure and revocation secure, and show that HSE-BI satisfies them. We
also implement HSE-BI and compare it with other related schemes. It shows that
HSE-BI’s hierarchical search policy does not impact the search performance visually.
The growth rate of the search latency decreases with the increasing number of hier-
archical users, which can act as an efficient crypto tool to open up avenues for other
applications.

The rest of the paper is summarized below: Section 2 is the literature review, which
describes the related work, followed by a description of the proposed HSE-BI model in
Section 3. Section 4 presents the concrete constructions of HSE-BI. Sections 5 and 6 discuss
HSE-BI’s security and theoretical complexity analysis, respectively. Section 6 shows the
experimental investigations. Finally, the paper is concluded in Section 7.
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2. Literature Review

Multi-User Searchable Encryption The concept of “multi-user searchable encryption
(MUSE)” was proposed by Curtmola et al. by combining a single-user SE model with
broadcast encryption [3]. In 2015, Li et al. proposed a self-authorized multi-user searchable
encryption scheme, which allows group users to be authorized to perform keyword searches
by generating shared keys to realize data sharing on mobile terminals [4]. In 2017, Deng et al.
designed a multi-user searchable encryption scheme based on a non-collusive dual-server
model, where the anti-revoking user and cloud server conspired [5] and constructed an
access policy combining search keywords and user attributes.

In the last decade, many related works have combined hierarchical access with multi-
user searchable encryption. In 2011, Hattori et al. [8] proposed a role-based multi-user
searchable encryption scheme. In their scheme, the roles of users are mapped to policy
vectors and associated with secure indexes; however, in this scheme, the authenticated user
group is static, and the adversary must declare its corruption initially. In 2014, Kaci et al. [16]
proposed a multi-user searchable encryption scheme based on attribute-based encryption to
realize flexible access control but still retain the ability to update data dynamically. In 2017,
Ye et al. [17] designed a dynamic, searchable cloud storage scheme with multiple access
hierarchies using ciphertext policy-attribute-based encryption; it constructed an access tree
for each file, which caused an exponential extra storage overhead. In 2018, Hamlin et al. [18]
designed a multi-user searchable encryption scheme via ORAM-based proxy re-encryption,
which allows data to be shared from multiple data owners to multi-level users for the
searching of single keywords; its main limitation is that the search time is linear in the total
number of files. Alderman et al. [19] proposed a multi-level searchable encryption that
allows multiple users differential access control, but it is restricted to non-practical access
policies where the set of access rights is totally ordered.

In 2019, Blomer et al. [9] proposed a verifiable multi-user searchable encryption
scheme that realized the efficient verifiable search; however, at the same time, the search
operation disclosed the attributes of users. Wang et al. [20] proposed a multi-user searchable
encryption scheme that hides access policies that ensure the privacy of a user’s attributes,
which takes the cost of too much computation and communication above the addition and
deletion of users. When the user group changes, the scheme needs to re-perform the setup
algorithm to generate a series of new parameters, and re-generate and distribute all users’
keys. In 2021, Chamani et al. [21] designed a multi-user searchable encryption scheme based
on a multi-server model and an oblivious data structure to resist the collusion of revoked
users and cloud servers. In 2022, Li et al. [22] considered the real-world application of
MUSE and proposed a hierarchical multi-user searchable encryption scheme for a medical
electronic sharing data scenario.

Blockchain-Assisted Searchable Encryption In recent years, several pioneering works
have considered building searchable encryption schemes (especially multi-user search-
able encryption) on top of the blockchain network. In 2018, Hu et al. designed the first
searchable encryption scheme based on a blockchain, where the search interaction process
is between the data owner and the blockchain. In 2018, Cai et al. [10] proposed the
design of a blockchain-assisted encrypted database with expressive content search capabili-
ties, assuring the trustworthiness of search results returned by various service providers.
In 2019, Chen et al. [13] proposed a searchable encryption scheme for EHR (electronic health
record), and Niu et al. [14] proposed an electronic health record-sharing scheme on the
blockchain. In 2021, Guptaet al. [15] deployed blockchain-assisted searchable encryption
into a cloud-based healthcare cyber-physical system. The above works [13–15] all treated
blockchain as a trusted third party, which enforces the generalized solutions of theoretical
crypto constructions in real-life scenarios. In 2022, Han et al. [6] formalized a flexible
and privacy-preserving framework for MUSE by orienting blockchain and attribute-based
encryption, which achieves fine-grained access control.
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3. The Proposed Model

We present the model of the HSE-BI scheme in this section. We start by giving the
architecture of the HSE-BI scheme in Section 3.1 and define its syntax in Section 3.2. We
will use the notations from Table 1 throughout the rest of the paper.

Table 1. Notations.

Notation Definition

F, P and G pseudo-random functions
H a collision-resistant hash function
O, S and B data owner, server and blockchain network
G = (V , E) DAG access structure
f = ( f1, . . . , fm) the outsourced file set
w = (w1, . . . , wθ) keyword dictionary
w f = (w1, . . . , wd) keyword set in file f
V = {v1, . . . , vl} hierarchy vertex set
U = {u1, . . . , un} user set
BC & T blockchain-based index & look-up table
ei or e[i] i-th element of a sequence of elements e
e[i]← j store j at location i in structure e
fi

w file set contains w in hiearchy vi
Aw hierarchy-sorted array for w in BC
addi the transaction address of ni in Aw
Ai

w array for w and hierarchy vi in BC
ni the tail node of Ai

w
ñi the masked ni stored in BC’s transaction

3.1. Architecture

HSE-BI is designed to be executed among: a data owner O, n users U = (u1, . . . , un),
a server S and a blockchain network B. The scheme model is illustrated in Figure 1:

• Data owner O develops a hierarchical DAG search structure G and outsources en-
crypted files to S .

• Each user u ∈ U can be mapped to a search hierarchy in G by O and has hierarchical
search rights to the files in their hierarchy.

• Server S is an untrusted entity that stores encrypted files and answers search queries
from U with the collaboration of B.

• Blockchain network B is organized by a network of peer nodes, which manage the
index and acts as a collaborator for searching.

The architecture is illustrated in Figure 1. To initialize the system, the data owner
O constructs a hierarchical search index based on a DAG-type authentication structure
G = (V , E), encrypts the index by hierarchical keys and outsources it to the blockchain
network B, stored as index BC. O also initializes a look-up table T outsourced to the server
S for encrypted searches. A user u can interact with O to obtain the search authority under
some hierarchy vi ∈ V . To search the files that include the keyword w, the authorized user
u ∈ U can submit search tokens τ to S that contain the masked information of the searched
keyword w and its hierarchy vi. S interacts with the blockchain network B to conduct
the encrypted search according to the search token τ, and obtains search result R, which
contains the matched file id under hierarchy vi. O is able to change any user’s hierarchy or
revoke a user’s search right at any time. O can also interact with B to dynamically update
the index BC when adding/deleting files.
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Figure 1. The architecture.

3.2. Syntax

The scheme HSE-BI (Setup, IndexGen, AddU, Search, RevokeU, Update) consists of six
algorithms/protocols:

• Setup(1k,G)→ (KO , KS , stS ): On input, the security parameter k and the authentica-
tion structure G,O computes (KO , KS , stS ), where KO isO’s key, KS is S ’s key and stS
is S ’s state.

• IndexGen(f,G, KO)→ (BC, T): On input, O’s key KO , the file set f and the authentica-
tion structure G, O computes the hierarchical index T and BC, sends T to S and sends
BC to B.

• AddU(u,G, KO ,U )→ (Ku,U ′, stS ): On input, O’s key, the authentication structure G,
the user’s identity u and O computes the user’s key Ku, the updated user group U ′
and S ’s state stS .

• Search(u : w;S : T, stS ;B : BC)→ R: To search for files contains w, a user u executes
this protocol with S on input of w and Ku, S interacts with B to query BC on input T.
The final output for the user is R.

• Update(O : KO ,G, f ;S : T,B : BC)→ (BC′, T′): On input, O’s key, file f , the authen-
tication structure G, O executes this protocol with S and B to compute the updated
index T′ and BC′.

• RevokeU(u, KO)→ (U ′, stS ): On input, O’s key and the revoked user’s identity u, O
computes the updated user group U ′ and S ’s current state stS .

4. HSE-BI Constructions
4.1. Design Challenge

Before we present HSE-BI’s detailed concrete constructions, we need to describe our
design challenge for the explicit algorithms. Since HSE-BI is designed for hierarchical
searches, how do we build a hierarchical index structure to achieve this goal? Notice first that
in a blockchain data structure, the transactions can be linked by storing the addresses
of previous transactions in current transactions. Therefore, we organize the hierarchical
DAG-type index as a constant number of sorted arrays; each array includes l nodes. To link
the nodes in the same array that stores in different transactions together as a virtual link
list, we insert each node with the transaction addresses of the previously connected nodes
in such a way that can make the index achieve hierarchical and parallel searches. Secondly,
recall that the blockchain is an append-only data store, i.e., once a block is created, it is final.
It is not possible to subsequently delete or modify the index. How can the dynamic update
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can be applied to the secure index corresponding to the update of the actual outsourced files? To
achieve dynamic update, we propose an append-only index update mechanism to support
update operations on the encrypted blockchain-based index structure.

4.2. Concrete Constructions

Let k be a public parameter, O be the data owner, U be the authenticated users,
S be a server and B be the blockchain network. Let f = ( f1, . . . , fm) be the file set,
and w = (w1, . . . , wθ) be the keyword dictionary. Let F and P be two pseudo-random
functions of fixed length {0, 1}k × {0, 1}∗ → {0, 1}k [15], G be a full-domain pseudo-
random function {0, 1}k × {0, 1}∗ → {0, 1}∗ and H be a collision-resistant hash function
{0, 1}k × {0, 1}∗ → {0, 1}∗. HSE-BI also makes black-box use of crypto primitives: a
private key encryption scheme SKE = (Gen, Enc, Dec) [23], a CPA-secure broadcast
encryption scheme BE = (KeyGen, Join, Enc, Dec) [24] and a blockchain data store
ΩBC = (Init, Put, Get) [25]. Consider that HSE-BI works as follows:

4.2.1. Setup

To initialize the system, the data owner O constructs the hierarchical authentication
structure as a directed acyclic graph G = (V , E). V contains l vertices {v1, . . . , vl}, each of
which represents an access hierarchy in G. The directed edge set E represents the affiliations
among hierarchies. If there exists (vi, vj) ∈ E , then the hierarchy of vi is directly afflicted
by the hierarchy of vj. Any authenticated user u ∈ U or file f ∈ f can be mapped to a

vertex in V : v(u)i ∈ V and v( f )
j ∈ V . A user u can access file f if and only if v( f )

j is afflicted

by v(u)i , which means that v( f )
j is reachable from v(u)i in G. After G is established, the data

owner O generates the hierarchy keys as l triples of k-bit strings {(ki,1, ki,2, ki,3)i∈[l]}. O
also initializes the authenticated user group U , and computes their master key msk by
BE.KeyGen(1k) for enrolling users. Then O inserts server S into U . It also computes the
server’s key kS by BE.Joinmsk(S) and generates a k-bit string kr as the authentication key by
SKE.Gen(1k), encrypts kr as the current server state stS by BE.Enckr (U ). Finally, O sends
(kS , stS ) to S , and stores its key KO as (msk, kr, {(ki,1, ki,2, ki,3)i∈[l]}) at local. This algorithm
is shown in Algorithm 1.

Algorithm 1 Setup (1k,G).

Require: Security parameters 1k

Ensure: KO , KS , stS
1: initialize the DAG authentication structure G = (V , E)
2: choose l triple of k bit strings {ki,1, ki,2, ki,3}i∈l
3: compute kr ← SKE.Gen(1k)
4: compute msk← BE.KeyGen(1k)
5: initialize the authenticated user group U
6: set U ← {S}
7: compute kS ← BE.Joinmsk(S)
8: compute stS ← BE.Enckr (U )
9: send kS , stS to S

10: store KO as (msk, {ki,1, ki,2, ki,3}i∈l)

4.2.2. IndexGen

Data owner O constructs a hierarchical secure index BC outsourced to blockchain
network B and a look-up table T outsourced to server S . This algorithm is shown in
Algorithm 2.

• The index BC consists of θ keyword-guided hierarchy-sorted arrays Aw1 , . . . , Awθ
. Each

array contains l nodes n1, . . . , nl. At a high level, the information stored in ni should
at least include the identities of files in hierarchy vi that contain the keyword w. These
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nodes should be linked in the sorted arrays to generate a hierarchical DAG index. To out-
source the index to the blockchain network, O interacts with B to initialize BC using
ΩBC.Init(1k). To connect different nodes in Aw , besides the above information stores in
ni,O inserts ni with additional address information addrj—the transaction address of the
connected nodes {nj}∀(vi ,vj)∈E in Aw, where vj is directly affiliated by vi: (vi, vj) ∈ E .
To guarantee confidentiality and hierarchical search control, O should mask the
information stored in each node. We define the structure of the masked node ñi as
(fi

w, {addrj, Pkj,2
(w)}(vi ,vj)∈E )⊕ H(Pki,2

(w)), where fi
w is the file set that contains the

keyword w and corresponds to the hierarchy vi, addj is the address of node nj where
vj is directly afflicted by vi: (vi, vj) ∈ E , Pkj,2

(w) is the key to decrypt the masked node
ñj. O then encrypts each node ni ∈ Aw in an orderly way from i = l to i = 1, inserts
ñi as a transaction into the blockchain index BC by ΩBC.Put(BC, ñi), and receives
the transaction address addri. Specifically, for nl , the tail node in Aw, there is no
node for the lower hierarchy in the ordered array Aw, O computes the masked ñl as
((fl

w,⊥,⊥)⊕ H(Pkl,2
(w)).

• To support the search, we design a look-up table T at the server side to store the
masked tail address of each virtual hierarchy-sorted array in BC. The entries in T
contain each masked (w, vi) pair, which does not point to the address of the initial
node in each Aw, but to the masked address of the tail node ni of Ai

w in the blockchain
BC. For example, to retrieve array Aw in hierarchy vi, we should only retrieve its
sub-array Ai

w from the blockchain BC. Since the search can not traverse back through
the encrypted virtual link list, the available search results are the identifiers for the
files that both contain the keyword w and are affiliated by hierarchy vi, as required by
DAG structure. Therefore, for each i ∈ [l], O generates the entry Fki,1

(w) in T, which
points to the masked address addrj ⊕ Gki,3

(w): T[Fki,1
(w)]← addri ⊕ Gki,3

(w). Finally,
O sends T to server S .

Algorithm 2 IndexGen (f,G, KO).

Require: f,G, KO
Ensure: BC,T

1: initial the blockchain index BC← ΩBC.Init(1k)
2: initialize the lookup table T
3: extract the keyword dictionary w = (w1, . . . , wθ)
4: for each f ∈ f
5: set f as (w1, . . . , wd, i), where i ∈ [l]
6: for every w ∈ w:
7: set fl

w as { fd}l∈ fd
8: initialize a list Aw as Aw = (n1, . . . , nl).
9: compute Pkl,2

(w)
10: compute H(Pkl,2

(w))

11: compute ñl = ((fl
w,⊥,⊥)⊕ H(Pkl,2

(w))
12: send ñl to B
13: B runs addrl ← ΩBC.Put(BC, ñl)
14: B sends addrl to O
15: for i ∈ (l, 1]
16: parse fi

w as { fd}i∈ fd
17: generate Pki,2

(w)
18: compute H(Pki,2

(w))

19: ∀(vi, vj) ∈ E , compute ñj = ( f j
w, {add(j),

Pkj,2
(w)})⊕ H(Pkj,2

(w))

20: send ñj to B
21: B runs addrj ← ΩBC.Put(BC, ñj)
22: B sends addrj to O
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23: compute addrj ⊕ Gkj,3
(w)

24: set T[Fkj,1
(w)]← addrj ⊕ Gkj,3

(w)

25: send T to the server S

4.2.3. AddU/RevokeU

A user u can interact with the data owner O to obtain the search authority under
their hierarchy vi. Data owner O adds the user id u to the authenticated user group U as
U ∪ {u}, and generates the user’s key ku by BE.Joinmsk(u). Since group U is updated, O
should also refresh kr as a new k-bit string by SKE.Gen(1k) and encrypts kr as a new server
state stS by BE.Enckr (U ). Finally, O sends the user’s key Ku = (ku, ki,1, ki,2, ki,3) to u and
sends stS to server S .

If the data owner O would like to revoke u’s search right at any time, they need to
delete the user id u from the authenticated user group U as U\{u}. O should also refresh
kr as a new k-bit string by SKE.Gen(1k), and encrypt kr as the current server state stS by
BE.Enckr (U ). Finally, O sends stS to S . AddU and RevokeU algorithms are shown in
Algorithms 3 and 4.

Algorithm 3 AddU (u,G, KO ,U )).
Require: f,G, KO
Ensure: Ku,U ′, stS

1: set U ← U ∪ {u}
2: compute ku ← BE.Joinmsk(u)
3: compute kr ← SKE.Gen(1k)
4: send Ku = (ku, ki,1, ki,2, ki,3) to u
5: compute stS ← BE.Enckr (U )
6: send stS to S

Algorithm 4 RevokeU (u, KO).

Require: u, KO
Ensure: U ′, stS

1: set U ← U\{u}
2: compute kr ← SKE.Gen(1k)
3: compute stS ← BE.Enckr (U )
4: send stS to S

4.2.4. Search

To search the files that contain the keyword w, the authorized user u ∈ U can submit
search token τ to server S , which contains the masked information of the search keyword
w and its hierarchy vi . S interacts with the blockchain network B to conduct an encrypted
search according to the search token τ. The specific process is as follows:

User u first retrieves the server’s current state stS , uses their key ku to decrypt stS as r
by running BE.Decku (stS ) and generates the search token as τ ← SKE.Encr(Fkj,1

(w), Gkj,1

(w), Pkj,1
(w)), then sends τ to server S . S first runs BE.DeckS (stS ) to decrypt stS as r′ and

uses r′ to decrypt τ as SKE.Decr′(τ). If τ is decrypted successfully, that means r = r′ = kr;
then the token sender u is an authorized user. S then initializes an empty search result set
R, and parses SKE.Decr′(τ) as (r1, r2, r3), uses r1 as the entry to retrieve T[r1], which points
to the masked address of the tail node ni of Ai

w in the blockchain B, uses r2 to decrypt the
address as T[r1]⊕ r2 that stores masked ñi—the tail node of the hierarchy-sorted Ai

w in BC.
S interacts with B to obtain the transaction ñi with address T[r1]⊕ r2, uses r3 to decrypt
ñi, and sets (z1, z2, z3) = ñj ⊕ H(r3). If z3 6= 0, then z2 is the transaction addresses set of
{ñj}(vi ,vj)∈E , where each nj is affiliated directly with ni. S adds z1 to the result set R as
R ∪ {z1}, and continues the above process parallel to retrieve the nodes by addresses in
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z2 until z3 = 0. After S has retrieved all the nodes in Ai
w = {n1, . . . , ni}, search result R

then contains those identifiers for files containing w, and the hierarchy is affiliated with
vi, as required by the DAG structure. Finally, S sends the result R to u. This algorithm is
shown in Algorithm 5.

Algorithm 5 Search (u : w, Ku; S : T, stS ; B : BC).

Require: u : w, Ku; S : T, stS ; B : BC
Ensure: R

1: u extracts stS from S
2: u computes r ← BE.Decku(stS )
3: u computes Fkj,1

(w), Gkj,1
(w), Pkj,1

(w);
4: u generates τ ← SKE.Encr(Fkj,1

(w), Gkj,1
(w), Pkj,1

(w))

5: u sends τ to S .
6: S computes r′ ← BE.DeckS (stS )
7: S computes (r1, r2, r3)← SKE.Decr′(τ)
8: S initializes an empty search result R
9: S retrieves T[r1]

10: S computes T[r1]⊕ r2
11: S sends T[r1]⊕ r2 to B.
12: B computes ñi ← ΩBC.Get(T[r1]⊕ r2).
13: B sends ñi to S
14: S computes (z1, z2, z3) = ñj ⊕ H(r3)
15: while z3 6= 0,
16: S sets R← R ∪ z1
17: S parses z2 as ({zi

2})i∈[t]
18: S sends ({zi

2})i∈[t] to B.
19: for each i ∈ [t]
20: B computes ñj ← BC.Get(zi

2).
21: B sends {ñi

j}i∈[t] to S
22: S and B repeats (15)–(21) until z3 = 0.
23: S sends R to u.

4.2.5. Update

When adding or deleting file f in hierarchy vi with keywords w f = (w1, . . . , wd),
data owner O should update the secure index BC and T accordingly. For wj ∈ w f , O
interacts with B and runs ΩBC.Get(BC, addri) to get the transaction that stores masked ñi.
O decrypts it as ñi ⊕Gki,3

(wj) = (z1, z2, z3). If file f is added,O computes the updated ñi as
(z1 ∪ { f }, z2, z3)⊕Gki,2

(wj). If file f is deleted,O computes ñi as (z1\{ f }, z2, z3)⊕ Pki,2
(wj).

Then O inserts ñi as a new transaction into BC, and receives its new address addr′i by
ΩBC.Put(BC, ñi).

For each q from i − 1 to 1, O interacts with B and runs ΩBC.Get(BC, addrq) to get
the transaction that stores the masked ñq. O decrypts nq as ñq ⊕ Gkq,3(wj), computes
ñ′q = (z1, z2 ∪ {addr′q+1}\{addrq+1}, z3)⊕ Pkq,2(wj), inserts a new transaction that stores
masked ñ′q into BC and runs addr′q as ΩBC.Put(BC, ñ′q) to get the transaction address addr′q,
masks addr′q with Gkq,3(w) and generates addr′q ⊕ Gkq,3(w). O parses the update token

tq = (tq
1, tq

2), where tq
1 = Fkq,1(w1) and tq

2 = addr′q ⊕ Gkq,3(w). Finally, O sends tq to S . S
updates the lookup table T by setting T[Fkj,1

(w1)] as addri ⊕ Gki,3
(w). This algorithm is

shown in Algorithm 6.

Algorithm 6 Update (O : KO , f ;S : T,B : BC).

Require: O : KO , f ;S : T,B : BC
Ensure: BC′, T′

1: O sets f as (w1, . . . , wd, i)
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2: for j ∈ [d]
3: O computes ti = (t1

i , t2
i , t3

i ) = (Fki,1
(wj), Pki,2

(wj), Gki,3
(wj))

4: O sends ti to S .
5: S sets θi ← T[t1

i ],
6: S computes addri = θi ⊕ t2

i ,
7: S computes ñi ← ΩBC.Get(BC, T[t1

i ]⊕ t2
i )

8: S computes ni ← ñj ⊕ t3
i

9: S parses ni as (z1, z2, z3)
10: If add f , S computes ñi = ( f ∪ z1, z2, z3)⊕ t2

i
If delete f , S computes ñi = ( f \z1, z2, z3)⊕ t2

i
11: S computes addr′i ← ΩBC.Put(BC, ñi) .
12: S sends (addr′i , addri) to O
13: for j from i− 1 to 1:
14: O computes ñj ← ΩBC.Get(BC, addrj).
15: O computes nj = ñj ⊕ t3

i
16: O parses nj as (z1, z2, z3)

17: O computes ñ′j = (z1, z2 ∪ {addr′j+1}\{addrj+1}, z3)⊕ t2
i

18: O computes addr′j ← ΩBC.Put(BC, ñ′i)
19: O computes addr′j ⊕ Gkj,3

(w)

20: O sets tj
1 = Fkj,1

(w1)

21: O sets tj
2 = addr′j ⊕ Gkj,3

(w)

22: O parses tj = (tj
1, tj

2)
23: O sends tj to S

24: S sets T(tj
1) = tj

2
25: i−−

5. Security Analysis

We present the security analysis for HSE-BI in this section. The notions of security
focus on two aspects: (1) User’s view: for each user u ∈ U with hierarchy vi, it cannot
learn any information for the files whose hierarchy is higher than vi. (2) Server’s view:
although it can conclude with some revoked or relegated users, it cannot provide a valid
search token.

We formalize the security required in HSE-BI. Suppose A is an adversary with pseudo-
random polynomial time (PPT) computation ability, who is given the security parameter k.
In that case, the search policy is G, and the server key is KS , also provided is access to the
following oracles, where · denotes the parameters that are provided by A themselves.

- OIndexGen(·,G, K): A can send index generation to this oracle, which runs IndexGen by
the input provided by A. The oracle OIndexGen outputs BC, T.

- OAddU(·,U , ui, vj): A can send an add user request to this oracle, which runs AddU by
the input provided by A. If ui ∈ U , then the oracle ORevoke outputs ⊥.

- ORevokeU(·,U , ui, vj): A can send a revoke request to this oracle, who runs Revoke by
the input provided by A. If ui /∈ U , then the oracle ORevoke outputs ⊥.

- OSearch(·, T, BC, ku, stS , w): A can send a search request for keyword w to this oracle.
A generates a search token τw and sends it to OSearch which runs Search and outputs
the search result Rw to A.

Definition 1 (Adaptive Secure). The security definition of adaptive secure requires that the
execution of the scheme in the real-world, Real (1k), is indistinguishable from an ideal-world, Ideal
(1k). In Real (1k), the protocols between A and U execute just as in the real scheme. In Ideal (1k),
there exist a simulator Sim that can obtain the leakage information from the oracles above and try
to simulate the execution of A in Real (1k). HSE-BI achieves adaptive secure if, for all polynomial
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times of A, there exists a polynomial time simulator Sim such that the following two distribution

ensembles are computationally indistinguishable: OutputReal(1k)
A ≈ OutputIdeal(1k)

Sim .

Theorem 1. If SKE is CPA secure, and functions F, G, P and H are pseudo-random, let HSE-BI
be the hierarchical searchable symmetric encryption scheme with a blockchain-based index, then
HSE-BI satisfies adaptive secure, which is defined in Definition 1.

Proof Sketch. To show adaptive secure we reduce the security to that of the indistinguisha-
bility of the output of SKE.Enc and functions F, G, P and H are indistinguishable from the
output of a truly random function. We assume the possibility of an adversary A that is able
to break the adaptive secure property of HSE-BI, then we build a distinguisher D that is
able to use A as a sub-routine to distinguish between the output of SKE.Enc and functions
F, G, P, H and a truly random function with non-negligible probability.

Definition 2 (Revocation Secure). Consider ExpRevoke
A (1k), which is interactively executed by

a challenger C and an adversary A who have the ability to add and revoke users in the real scheme.
After a polynomial number of queries, C revokes all users that are queried to the OAddU oracle but
are not subsequently queried to ORevokeU (i.e., all users for which A holds their valid user keys).
A generates a search token τ in the Search protocol. If the output of the Search is not ⊥, then it
returns 1, otherwise, it returns 0. After several rounds of queries, if A’s probability of winning
the revocation secure experiment with PPT computation ability is negligible, then we can say that
HSE-BI satisfies revocation secure.

Theorem 2. If BE is CPA secure, let HSE-BI be the hierarchical searchable symmetric encryption
scheme with a blockchain-based index, then HSE-BI satisfies revocation secure, which is defined in
Definition 2.

Proof Sketch. Assuming the advantage of A winning ExpRevoke
A (1k) is negligible, we can

construct an adversary Abe, who can break the CPA secure of BE with assistance from A.
If A has a non-negligible advantage in ExpRevoke

A (1k), then we can construct an adversary
Abe that usesA as a subroutine to break the CPA secure of BE. Since BE is proven to be CPA
secure [6]; there exists no A to produce a valid search token, even though it does not hold a
non-revoked key that can win ExpRevoke

A (1k) with non-negligible probability, and HSE-BI
satisfies revocation secure as defined in Definition 2.

6. Theoretical Analysis

We give the theoretical analysis of HSE-BI in this section. Table 2 presents a detailed
complexities analysis of HSE-BI. In the Setup phase, the computation and storage complex-
ity of data owner O is linear with the number of hierarchies l, since O needs to generate
the keys for all hierarchies. The IndexGen phase, as shown in Section 4.2.2, needs the data
owner O to construct the search index into: (1) θ keyword-guided arrays Aw1 , . . . , Awθ

with
l nodes n1, . . . , nl , which need O((l + m)θ) operations; (2) a look-up table T contains all
masked (w, vi) pairs as entries with O(lθ) operations. The arrays are outsourced to B, and
T is outsourced to S , so their storage overheads are O((l + m)θ) and O(lθ), respectively.
To search for wq, a user sends a constant size token to S , S interacts with B to perform
2logl−logi works to operate XOR functions from the array Awq in the subtree-rooted vi, as pre-
sented in Section 4.2.4. Therefore, we require that the computational complexities included
user-side and S-side are O(1) and (2logl−logi), respectively, which are both independent in
the number of files that contain wq.

Moreover, HSE-BI also achieves a constant-time computation and storage cost to
add/delete user. The owner can dynamically add or revoke users by updating the state
parameter. Each user only needs to store their secret key locally, which requires constant
user storage O(1). The search and update complexities is related to the concrete instance of
the DAG-type index, which can be formalized as a full and complete binary tree. To update
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the index for a file f of hierarchy vi with keywords w f = (w1, . . . , wd), O adds (logi)d
new transactions as newer versions of Aw1 , . . . , Awd in all subtrees rooted from vi to v1,
which is described in Section 4.2.5, which needs to update (logi)d-related entries in T with
O((logi)d) operations.

Table 3 shows the complexities and property comparisons of HSE-BI with the existing
related multi-user searchable encryption schemes [16,18–20]. From the figure, we can see
that the search and update complexities in HSE-BI are less than other schemes, which
does not depend on the number of files. The DAG authentication structure makes the
search complexity depend on the user’s search hierarchy, while in [18], the number of data
items searched for is linear with the user’s rights and the files contain keywords; further,
searching in [16,18,20] requires traversing all files. The index storage complexity in HSE-BI
is linear with the size of the keyword dictionary and the hierarchy number. It is comparable
with [19], the index of which is designed specifically for partial order access. Compared
with [19], the size of the server’ storage overload of HSE-BI is about m/l times larger, where
l is the number of access hierarchies and m is the total file number. The hierarchical search
property of HSE-BI will not significantly affect the index generation and search complexity.
In terms of other properties, compared with the existing schemes, HSE-BI is secure from
attacks from adaptive adversaries and supports the efficient updating for index and users
while satisfying the revocation secure.

Table 2. Complexity.

StorO Storu StorS StorB CompO Compu CompS CompB

Setup O(l) – O(1) – O(l) – – –
IndexGen O(1) – O(lθ) O((l + m)θ) O((l + m)θ) – – –
Add/RevokeU – O(1) O(1) – O(1) – – –
Search – O(1) O(1) O(1) – O(1) O(2logl−logi) O(2logl−logi)
Update O(d) – O(1) O(1) O(d) – O((logi)d) O((logi)d)

l: number of hierarchies; θ: keywords number; m: files number; i: the hierarchy of search user; d: the number of
keywords in updated file.

Table 3. Comparison.

[16] [18] [19] [20] HSE-BI

Index Size O(θm) O(θln) O(lθ) O(θ) O((m + l)θ)
Search Cost O(m) O(m) O((1− n\l)m) O(m) O(2logl−logi)
Update Cost O(dm) (dm) – O(dm) O((logi)d)
Hierarchical search ◦ ◦ •◦ ◦ •
Adaptive Secure • • • ◦ •
Revocation Secure • ◦ ◦ ◦ •
Collusion Resistant • ◦ ◦ ◦ •

l: number of hierarchies; θ: keywords number; m: files number; i: the hierarchy of search user; d: the number of
keywords in updated file.

7. Experimental Evaluation

We implement HSE-BI in C++ and Python. In the simulation experiments, security
parameter k is 256 bits, and the key length of broadcast encryption is 1024 bits. The ex-
periment uses OpenSSL library [26] to implement basic cryptography algorithms, such as
AES-CBC-256 for private-key encryption and SHA256 for hash and pseudo-random func-
tions. Since running experiments on the blockchain main net is expensive, we simulate the
blockchain network on Ropsten’s testnet [27], which provides custom transaction input of
up to 1 KB, which we use to store the index BC. We fund our wallet using Ropsten’s faucet.
In addition, we use BGW2 [24] to realize broadcast encryption. We use the U.S. National
Science Foundation (NSF) Research Awards Abstracts 1990–2003 [28] as the hierarchical
file collection. The experiment simulates a hierarchical DAG authentication structure G on
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top of the collection containing 10 hierarchies. The hierarchy affiliation, number of files
and users in each hierarchy is illustrated in Figure 2.

Figure 2. The Simulated Authentication Structure.

7.1. Search Performance

We analyzed the search performance for answering requests from users of different
hierarchies. The search is performed by the server, and the process includes querying and
communicating with the blockchain network to obtain transaction data. The search latency
and communication overhead for the different hierarchy is presented in Figures 3 and 4.

Figure 3. The Relationship of Search Times and Hierarchies.

Figure 4. The Relationship of Communication Sizes and Hierarchies.

To analyze the search latency, we performed a keyword search with different hier-
archies. Figure 3 plots the average search latency per 50 searches for 1, 2, 3, 4 and 5
independent keywords with 1, 3, 5, 7 and 9 hierarchies. From the figure, we can learn that,
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with the hierarchy of search users increasing, the search latency decreases with a smooth
and orderly curve, i.e., the search times for three keywords are about 0.61, 0.53, 0.47, 0.39
and 0.36 ms with 1, 3, 5, 7 and 9 hierarchies, respectively. We identified the main efficiency
bottleneck to be the on-chain processing. In fact, as long as enough transaction data size
is deployed in transactions, the broadcast transactions will be mined and processed effi-
ciently. The XOR operation and the PRF evaluation for the transaction data are related
to the hierarchy directly, which decreases as the hierarchy increases. Therefore, from the
performance shown in Figure 3, we observe that Search in HSE-BI is efficient, and the search
latency (around a few milliseconds) is acceptable.

In terms of communication, we mainly analyze the amount of data transformed
between the search user and the server. Figure 4 plots the average communication overhead
between them per 50 searches when we have performed 1, 2, 3, 4 and 5 independent
keywords, with 1, 3, 5, 7 and 9 hierarchies. We do not record the blockchain network
communication overhead since it depends on the real-time network connection condition.
From the figure, we can see the communication size decreases with the increasing hierarchy
of search users, i.e., to search for three keywords, the communication sizes are 0.99, 0.68,
0.40, 0.21 and 0.20 kb for 1, 3, 5, 7 and 9 hierarchies, respectively, and each search only needs
one round of interaction, which is tolerable with bandwidth latency. It is worth mentioning
that as the hierarchy gets lower, the communication size slows down due to the specific
DAG-type access structure shown in Figure 2. In general, from the performance shown in
Figure 4, we can observe that the communication overhead is acceptable and is consistent
with the theoretical analysis.

7.2. Comparison

We also implement schemes [18,19] and compare their experimental results with HSE-
BI. We analyzed the influence of search users’ hierarchies and the number of users on the
search latency of the three schemes. We assume that the number of searched keywords
in the above schemes are all set to three. Figure 5 plots the relationship between search
times and hierarchies. Figure 6 plots the relationship between the number of users and
the search times. It should be mentioned that we implemented multiple user searches
by deploying several hosts acting as users to submit search requests to the server host
simultaneously. Each user host stores one user’s private information locally and interacts
with the server independently.

Figure 5. The Relationship between Hierarchy and Search Time.
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Figure 6. The Relationship between Number of Users and Search Time.

Search Latency The experimental results in Figure 5 demonstrate that HSE-BI spends
much less time searching than that of [18,19], where 10 users with the same hierarchy
submit search requests simultaneously in the three schemes. In detail, compared to [18], the
search time of which does not change visibly and remains approximately 19 ms, the search
time of HSE-BI is maintained in [3 ms, 6 ms], which is significantly better. One reason
is the search operation in [18] needs to traverse the whole index and is independent of
the hierarchies of users. Another reason is that searching operations in HSE-BI is not as
complicated as [18], where the latter needs to traverse more of the index for the same
hierarchy and consists of ORAM operations, which are not very efficient since ORAM
incurs heavy computational and communication costs.

Compared with [19], the search performance of HSE-BI is less affected by hierarchy,
while that in [19] has a stable, approximately linear relationship with the number of
hierarchies. In detail, we observe that the HSE-BI’s search time for hierarchy 10 is 0.37 ms,
which is slightly more than that in [19] (0.31 ms). Still, from hierarchy 9 to hierarchy 1, HSE-
BI’s search performance is better than [19]. The increasing rate of efficiency is improved by
73% (for hierarchy 9) to 110% (for hierarchy 1), and as the hierarchy gets lower, the search
latency in [19] considerably increases, more steeply than HSE-BI. One important reason
is that HSE-BI supports parallel searches with a hierarchical index (especially the specific
DAG-type access structure in Figure 2).

Scalability We also compared the scalability of the three schemes, which is the impact
of the increasing number of users on search performance. We recorded the search times
for 10, 20, 30, 40, 50 and 60 users who submitted search requests simultaneously to the
server in the three schemes and plotted the relationship between the number of users and
the search time, as illustrated in Figure 6. We observe that, for the same number of search
users, the search performance of HSE-BI is better than others. In detail, the search time in
HSE-BI is 38–49% less than [19] and 35–62% less than [18], where the curves in [18,19] are
stably linear with the number of users. It is essential to notice that, in HSE-BI, the increase
in search time slows down with the growing number of search users. Therefore, in the case
of a large number of users, the growing number of search users has a weaker impact on
the time consumption of the search protocol than [18,19]; that is, the number of users that
the scheme can carry has an extensible space to meet the actual scalability requirements of
hierarchical multi-user search.

8. Conclusions

In this paper, we propose a hierarchical searchable encryption scheme using blockchain-
based indexing (HSE-BI). We focus on fine-grained access control policy, which is a crucial
aspect for multi-user searchable encryption, but there are relatively few works considering
this research area. We designed a hierarchical search index structure based on stepwise
hierarchical key derivation and outsourced it to the blockchain network to achieve search
reliability. We also propose a hierarchical user authorization mechanism based on broadcast
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encryption to achieve efficient user permission granting and revoking while preventing
the malicious server from colluding with corrupted users. The security and performance
analysis show that HSE-BI is adaptive secure and revocation secure. Our experimental re-
sults are encouraging in that HSE-BI’s hierarchical search policy does not impact the search
performance visually, which is more suitable for actual complex application scenarios with
fine-grained access requirements.
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