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Abstract: Knowledge distillation, in which the parameter values learned in a large teacher network
are transferred to a smaller student network, is a popular and effective network compression method.
Recently, researchers have proposed methods to improve the performance of a student network by
using a Generative Adverserial Network (GAN). However, because a GAN is an architecture that is
ideally used to create realistic synthetic images, a pure GAN architecture may not be ideally suited for
knowledge distillation. In knowledge distillation for image signal processing, synthetic images do not
need to be realistic, but instead should include features that help the training of the student network.
In the proposed Generative Image Processing (GIP) method, this is accomplished by using only the
generator portion of a GAN and utilizing special techniques to capture the distinguishing feature
capability of the teacher network. Experimental results show that the GIP method outperforms
knowledge distillation using GANs as well as training using only knowledge distillation.

Keywords: image signal processing; knowledge distillation; model compression; generative
adversarial network

1. Introduction

In recent years, the performance of image classification based on image signal process-
ing which extracts image feature with neural networks have been significantly improved
with the aid of highly complex deep neural network models. At the same time, significant
advances have been made in network compression [1], in which the complexity of the
neural network models are reduced while attempting to minimize the accompanying loss
in accuracy of the models used.

Knowledge distillation [2,3] has recently attracted attention as an effective model
compression method. Knowledge distillation is a method that transfers knowledge from a
pre-trained large neural network model (teacher network model) to a relatively small and
low-performance neural network model (student network model). By doing so, the student
network model can achieve higher performance than when it is trained from scratch using
a given training dataset. There are also other model compression methods such as neural
network quantization [4,5], pruning [6,7] and binarization [8–13]. These latter methods
sometimes used in conjunction with knowledge distillation.

The training method used in knowledge distillation varies according to the knowledge
types and knowledge distillation algorithms used. According to the survey paper written
by Gou et al. [14], knowledge types can be divided into response-based, feature-based, and
relation-based knowledge. Also, depending on the primary techniques used, distillation
algorithms are classified into adversarial knowledge distillation, data-free knowledge
distillation and other types of knowledge distillation [15–19].

Adversarial knowledge distillation is a method that uses a Generative Adversarial
Network (GAN) [20] for neural network compression using knowledge distillation. GANs
can be used in conjunction with knowledge distillation to improve the performance of
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knowledge distillation by allowing the student network to better mimic the teacher network.
Since the student network has a relatively smaller capability to learn from a given dataset,
adversarial knowledge distillation has been used to provide better knowledge about the
distribution of the dataset to the student network.

In [15], images are augmented to the existing training dataset, and this improved the
performance of knowledge distillation due to the augmented dataset. However, to train the
student network, this training method requires three additional neural networks—i.e., the
teacher network, generator network and discriminator network. Furthermore, before train-
ing the targeted student network, additional training is required for the GAN architecture.

In this paper, we propose a novel knowledge distillation training strategy based on gen-
erative image processing method, which leverages the inherent knowledge of the teacher
network captured by the generator network. Unlike previous adversarial knowledge dis-
tillation using both the generator and discriminator parts of GANs to create synthesized
training images, the proposed method uses only a generator network to create the synthe-
sized images. Furthermore, since a generator network is trained simultaneously with the
student network, no additional training processes are required for the generator network.
The intrinsic knowledge of the teacher network is used not only for knowledge distillation
itself but also for training the generator to synthesize the images.

Several techniques are utilized to improve the effectiveness of the generator network
used. Unlike in typical GANs architecture, the generator is not trained separately, but
together with the student network. A loss function is used that is based on the information
inherent in the intermediate features of the teacher network and the predictions of the
teacher network on a given dataset. Using this loss function, the synthetic images generated
are not necessarily realistic looking images—the generator is specifically designed to improve
student network training rather than to produce realistic images. However, the loss function
is also designed, using the pre-trained batch normalization statistics [21,22] of the teacher
network, so that the synthetic images produced have an image data distribution that is
close to a real dataset image distribution.

We conducted experiments to verify the effectiveness of the proposed method not only
on the full-precision neural network model but also on an extremely quantized neural net-
work model, which only uses 1-bit values for weight and activation parameters. For further
verification, we compared the performance with other GAN-based knowledge distillation
methods [15]. CIFAR-10 and CIFAR-100 datasets [23] were used for the experiments.

2. Background and Related Work

In this section, background knowledge and related work on knowledge distillation,
adversarial knowledge distillation and binarized neural networks will be explained.

2.1. Knowledge Distillation

Knowledge distillation has attracted much attention as an effective model compression
method. In response-based knowledge distillation [2], shown in Figure 1, the student
network model is trained with the aim of narrowing the distance between its output
vectors and output vectors of the teacher network. On the other hand, feature-based
knowledge distillation [24–26] also uses the knowledge of the intermediate layers of the
teacher network model. In FitNets [24], intermediate features were used to train the
student network, and the performance of the student network model was improved by
allowing the student network model to mimic the feature outputs of the teacher network.
Furthermore, attention-transfer [27] methods, which distill knowledge by transferring an
attention-map, have also been proposed. Finally, relation-based knowledge distillation
utilizes the correlation between specific layers rather than using the outputs of the layers in
the teacher network model [28].
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Figure 1. The response-based knowledge distillation training process: the output vector zstudent of
the student network model and the output vector zteacher of the teacher network model are used to
calculate a loss function LKD.

2.2. Adversarial Knowledge Distillation

Adversarial knowledge distillation attempts to improve knowledge distillation by
using GANs [20]. A number of papers [15–19] have suggested methods to create synthetic
images in various ways. In [15], fake images synthesized from a generator labeled with
the teacher’s predictions were augmented to the training dataset with a certain ratio p f ake.
The generator and discriminator network were trained using a real image dataset. In the
case of [16], synthetic images adjacent to the decision boundaries which is hard to classify
the classes are generated so that the student network model can perform well without an
actual dataset. In the case of [17], images were created by introducing various generator
loss terms based on the intrinsic knowledge of the generator. Xu et al. [22] suggested a
method whereby the network model could be compressed further by applying a data-free
knowledge distillation method with batch normalization statistics to a quantized student
neural network.

2.3. Binarized Neural Network

A Binarized Neural Network (BNN) [8–13] is a convolutional neural network with only
1-bit values for weight and activation parameters. Deep neural networks have achieved
incredibly high performance, but are accompanied by huge amounts of computation and
memory usage. Accordingly, BNNs are being actively studied as one of the promising
methods to compress neural networks. Recently, a BNN model has been combined with
knowledge distillation during the training process for higher performance [12,13]. By
reducing the Kuleback-Leibler divergence between the output of the real-valued teacher
network and the output of the binarized student network, the binarized student network
can better understand the distributions of the real-valued teacher network.

3. Proposed Method: Generative Image Processing

In the proposed Generative Image Processing (GIP) based knowledge distillation train-
ing strategy, synthetic images based on a pre-trained teacher network model’s intrinsic
knowledge are augmented to a training dataset in order to improve the performance of
the student network. The structure of the proposed GIP method strategy is illustrated in
Figure 2.

Synthetic images are processed and generated from a generator trained with loss
functions based on the intermediate layers, output layer, and batch normalization statistics
of the teacher network model. In other words, since the generator generates images from
the teacher network model rather than from the image dataset, there is no need for a
separate training process, and it is trained simultaneously with the student network model.
Furthermore, the generated synthetic images are generated anew during each epoch and
used together with the previous real image training dataset.
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Figure 2. This figure shows the two stages of the proposed GIP method. In Stage 1, shown in part (a),
xsynthetic is generated from a generator network G and used as an input to both the pre-trained teacher
network and the student network. yteacher, fteacher, µteacher, σteacher is extracted from the teacher
network to calculate the generator loss LG. The generator network is updated with knowledge
extracted from the teacher network, and the student network is updated using knowledge distillation
loss LKD calculated with yteacher and ystudent. In Stage 2, shown in part (b), real dataset images
xreal [23] are used as the input to the student network only. The cross-entropy loss LCE is calculated
and the student network is updated.

3.1. Definitions and Equations

In this section, definitions and equations related to knowledge distillation, including
Kullback-Liebler diversity loss and knowledge distillation loss, will be explained.

3.1.1. Logit Vector

The output of the teacher network model can be expressed as a logit vector y. Logit
is a function described using Equation (1), which uses the natural logarithm value of the
ratio between the probabilities p and 1− p. Therefore, knowledge distillation loss can be
represented by a logit vector ystudent of the student network model and a logit vector yteacher
of the teacher network model as shown in Figure 1.

yi = logit(pi) = ln
pi

1− pi
. (1)

3.1.2. Softmax Function with Temperature

Hinton et al. [2] introduced a softmax temperature T to “soften” the logit vector of
the teacher network model. By doing this, the student network model can be trained with
information that indicates the relationship among the entire set of classes, and not just a
specific class. This concept can be encapsulatd in a softmax function, which can be expressed
as follows.

p(yj, T) =
eyj/T

∑N
j eyj/T . (2)

3.1.3. KD Loss

In Equation (2), j represents the j-th class of the dataset and T is the softmax tempera-
ture factor. As Factor T increases, the distribution of probabilities becomes smoother. Based
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on the above softmax function, the loss between the student network model and the teacher
network model can be expressed as follows.

LKD = LKD(p(yteacher, T), p(ystudent, T)) (3)

In the knowledge distillation training process, Kuleback-Leibler divergence loss is
used as the loss function. Kullback-Leibler diversity loss (KL loss) is the difference between
cross-entropy function and entropy function. The softmax value of the teacher network
model and the softmax value of the student network model are used as inputs to KL loss.
The cross-entropy loss function and KL loss function used for the experiments can be
expressed as follows.

LCE = H(p, q) = −∑
i

pilogqi (4)

LKL = H(p, q)−H(p) = ∑
i

pilog
pi
qi

(5)

By using the above formula as a loss function for knowledge distillation training,
the loss function for knowledge distillation with the softmax function can be expressed
as follows.

LKL = LKD(p(yteacher, T), p(ystudent, T)) (6)

LKD(p(yteacher, T), p(ystudent, T)) = ∑
i

p(yteacher, T)log
p(yteacher, T)
p(ystudent, T)

(7)

Allowing the student network model to imitate the logits of the teacher network model
can achieve higher performance compared to training without knowledge distillation.

3.2. Generative Adversarial Networks

In the proposed method, GANs architecture is used to generate synthetic images.
GANs architecture consists of generator (G) and discriminator (D). G generates synthetic
images from real image dataset and D discriminates synthetic images from real image
dataset. Therefore, G learns to generate synthetic images that is difficult to distinguish, and
D is trained to well distinguish between two image groups. Through this process, G creates
synthetic images close to real image dataset. Formula of objective function, which indicates
GANs structure, can be expressed as follows.

LGAN = Er∼pdata(r))[logD(r)] +Ez∼pz(z))[log(1− D(G(z)))] (8)

where noise vector z indicates input of G, and r means real dataset. Optimized G after
training process can be expressed with optimized D as follows.

Goptimized = arg min
G

Ez∼pz(z))[log(1− Doptimized(G(z)))] (9)

As such, a general GANs structure requires a real image dataset, but [17] method
suggests a way to utilize the GANs architecture in case where the real image dataset is not
available. More specifically, the optimized D was fixed with a pre-trained teacher network
model so that it is not necessary to train D separately.

In our proposed method, we maximized the utilization of the teacher network model
by applying the generator structure of the corresponding GANs architecture to a general
knowledge distillation training process rather than a restricted scenario where the real
image dataset is not available. Since the generator object function of a typical GANs
architecture is not suitable for utilizing the knowledge of a teacher network model, new
loss functions should be introduced, and the corresponding loss functions will be described
in more detail in the later part of this section.
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3.3. Batch Normalization Statistics

According to [21], the distribution information for the training dataset can be pre-
served in the batch normalization layer of the neural network model trained with the
corresponding dataset. Therefore, batch normalization statistics (BNS), which means the
values of mean and variance of the batch normalization layers, can be used to manage the
distribution of the generated images. Accordingly, it is possible to synthesize images that
improve the performance of knowledge distillation by utilizing the knowledge inherent in
the BNS of the teacher network model. Detailed loss functions to leverage corresponding
BNS of the teacher network model will be described in the next part of this section.

3.4. Proposed Generative Image Processing (GIP) Algorithm

In the GIP Algorithm, shown in Algorithm 1, the method we proposed consists of
two parts. The first part shown in Figure 2a is a training process using synthesized images
created from the generator. SI refers to the number of iterations for training with synthetic
images. Noise vectors of a pre-determined batch size are randomly generated from a
normal distribution and used as an input of a generator. After that, xsynthetic, which is the
synthetic images of batch size same as input noise vectors, are generated from the generator.
Input the generated xsynthetic into the teacher network Nteacher and extract yteacher, fteacher,
µteacher, σteacher. The output yteacher is the prediction of the last layer of the teacher model,
fteacher is the output just before the final fully-connected layer, and µteacher and σteacher are
BNS of the teacher network. Calculate the loss function of the generator composed of the
corresponding values and update the generator. After that, also input the same xsynthetic
into the student network, and calculate the knowledge distillation loss value to update the
student network.

The second part shown in Figure 2b is a training process using real dataset images.
RI refers to the number of iterations for training with real dataset images. In this part,
input the real image dataset into the student network and update the student network by
calculating the cross entropy loss between the output prediction of the student network
and the ground truth label of real image dataset.

Algorithm 1 Knowledge distillation training improvement using generative image process-
ing
Input: Teacher network Nteacher, Student network Nstudent, Hyper-parameters, Real dataset
images
Output: Optimized student network N optimized

student
Initialize: Initialization of generator network G and student network Nstudent

1: for l = 1, 2, ..., total epochs do
2: for m = 1, 2, ..., SI do . Part1: Training with synthetic images
3: Generate random noise vector size of a batch: {zi}N

i=1;
4: Generate the synthetic images from generator: xsynthetic ← G(z);
5: Input the generated synthetic images to teacher network:
6: yteacher, fteacher, µteacher, σteacher ← Nteacher(xsynthetic);
7: Calculate the generator loss LG and update G;
8: Input the synthetic images to student network: ystudent ← NS(xsynthetic);
9: Calculate student loss LKD with Equation (7) and update Nstudent;

10: end for
11: for n = 1, 2, ..., RI do . Part2: Training with real dataset images
12: Input the real dataset images to student network:
13: yreal

student ← Nstudent(xreal);
14: Calculate cross-entropy loss as student loss with Equation (4): LCE;
15: Update student network Nstudent;
16: end for
17: end for
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3.5. Loss Functions

In the proposed algorithm, loss functions of the generator consist of a total of four
terms. The first loss function is one-hot loss LOH [17]. If the synthesized images are similar
to the real dataset images which was used to train teacher network, the output of the
teacher network that receives the synthesized image as input will be closer to the one-hot
vector. Since the total number of the classes for the image dataset is k and index of the
classes is j, oi of Equation (11) is a one-hot vector in which only the element with the largest
value among yi

teacher that passes through the softmax function is 1, and the others are 0.
Therefore, by training the generator with one-hot loss function, the output of the teacher
network will be close to the one-hot vector when using synthesized images from generator
as input.

oi = arg max
j

(yi
teacher)j (10)

LOH =
1
n ∑

i
HCE(yi

teacher, oi) (11)

Next, an information entropy loss LIE is introduced to maintain the class balance
of generated synthetic images [17]. In Equation (12), pj is the average logit in a class j.
And HINFO is the information entropy, which represents the amount of information p
has. As the number of the class is k, LIE has a minimum value when all p s are equal to
1
k . Therefore, the frequency of each class of output prediction can be made uniform by
optimizing information entropy loss function.

HINFO(p) = −1
k ∑

j
pjlogpj (12)

LIE = −HINFO(
1
n ∑

i
yi

teacher) (13)

The intermediate feature extracted by the convolution layer of the neural network
also has information about the input image. When the input image xi is used, f i

teacher is the
feature of the output right before the final fully-connected layer of the teacher network.
The closer the input image is to the real dataset image, the higher the activation value of
the feature map. Therefore, by using activation loss LACT , the generator can synthesize
images with a high activation value and make the synthesized image close to the real image
dataset [17].

LACT = − 1
n ∑

i

∥∥∥ f i
teacher

∥∥∥
L1

(14)

The last loss function is batch normalization statistics loss LBNS [22]. The distribution
information for the training dataset can be extracted from the batch normalization layer
of the neural network model trained with the corresponding dataset. When training a
teacher network, i.e., a pre-trained model, means and variances of batch normalization
layers are learned. When the synthesized images are used as input to the teacher network,
the more the newly calculated means and variances based on synthetic images are similar
to the pre-trained BNS, the distribution in which the synthesized images are generated
becomes similar to the distribution of the real image dataset. Therefore, by using the BNS
loss function to train the generator to reduce the difference between the fixed pre-trained
BNS and the mean and variance calculated from the synthesized image, images generated
from the generator become more similar to the distribution of training data.

LBNS = ∑
i

∥∥∥µnew
i − µ

f ixed
i

∥∥∥2

L2
+

∥∥∥σnew
i − σ

f ixed
i

∥∥∥2

L2
(15)
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Therefore, the final loss function for training the generator network composed of the
aforementioned loss functions is written as follows.

LG = αLOH + βLIE + γLACT + δLBNS (16)

Here, α, β, γ, δ are the coefficient for each loss function. Each coefficient is used as a
hyperparameter to adjust the weight of each loss function. The values for α, β, γ are selected
as 1, 5, and 0.1, respectively, which are the same values used in [17]. The performance is
compared by increasing δ, which is the weight of LBNS, at intervals of 0.2 from 1 to 10.
After that, the final weight values are selected as α = 1, β = 5, γ = 0.1, and δ = 5 in
Equation (16).

4. Experiments

In this section, implementation details and results of the experiments conducted are
explained. Also, an ablation study related to various loss functions of the proposed method
will be reported.

4.1. Implementation Details

All of the experiments are conducted with the PyTorch [29] machine learning frame-
work on two NVIDIA GeForce RTX 3090 GPUs. Details about the datasets and neural
network models used are described below.

4.1.1. Datasets

There are two datasets used in the experiment of the proposed method, CIFAR-10 and
CIFAR-100 dataset [23]. Both datasets consist of a total of 60,000 32 × 32 size, 3 channel
color images, of which 50,000 images are for training and 10,000 images are for testing.
CIFAR-10 is a dataset consisting of 10 classes, and CIFAR-100 is a dataset consisting of
100 classes. Accordingly, CIFAR-10 consists of 6000 images per class and CIFAR-100
consists of 600 images per class. Data augmentation methods such as random cropping,
lighting, and random horizontal flipping were applied to the corresponding datasets, and
were commonly applied to the teacher network model training, baseline training, general
knowledge distillation training and proposed method.

4.1.2. Neural Network Model Settings

We used ResNet-34 [30] as a teacher network model and ResNet-18 [30] and ReActNet-
18 [13] as a student network model. ReActNet-18 is a binarized neural network model
based on ResNet-18, and knowledge distillation is used during training. Therefore, other
model compression methods such as binarization were included in the experiment to show
the effectiveness with our proposed method.

In all experiments, the dimension of noise input to generator was 1000, the batch size
of syntheic images made from generator was 1024, and the number of training iterations
through syntheic image was 120. The generator neural network model was the same as
the model used in [17,31]. Adam optimizer [32] was used for generator network model
training, and the initial learning rate was 1e-2, without additional learning rate scheduler.
The same pre-trained ResNet-34 model was used for two different student network models.

For ResNet-18 student network model training, 200 epoch training was performed,
and the mini batch size for the real image dataset was 128. Stochastic Gradient Descent
(SGD) optimizer [33] was used, with Nesterov momentum of 0.9 and weight decay of
5× 10−4. The initial learning rate was 1× 10−1, and the learning rate was reduced by 10
times at 80 epochs and 120 epochs, respectively.

For ReActNet-18 training, we referred to the training settings of [13] and trained with
two-step training strategy. In the first step, only activations of the neural network model are
binarized, and in the second step, fine-tuning is performed based on the model parameter
learned in the first step, and not only activations but also weights are binarized. In each
step, the student network model was trained 256 epochs, and the mini-batch size for the
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real image dataset was 128. Adam optimizer was used and weight decay was 1× 10−5 at
first stage and 0 at second stage. The initial learning rate was 5× 10−4, and the learning
rate was linearly reduced from the initial value to 0.

4.2. Experiment Results

In Tables 1 and 2, dataset indicates the dataset used for the experiments, baseline means
the training of the student network model without using knowledge distillation method.
And KD refers to the method of training only by knowledge distillation method without
using the proposed method. The hyperparameter settings of baseline and KD for ResNet-18
model and ReActNet-18 are the same as that used in the proposed method. All the values
in the table are mean and standard deviation values of three repeated experiments of each
case. More specifically, each values in the table are indicating mean± standard deviation.
In all cases, ResNet-34 was used as the teacher network model. ResNet-34 model was
pretrained on each dataset and the accuracy was 95.54% on CIFAR-10 dataset and 77.62%
on CIFAR-100 dataset. The time required for training with the proposed method in our
experimental settings was about 108 s per epoch for the ResNet-18 model and about 129 s
per epoch for the ReActNet-18 model.

Table 1. Experiment results for the ResNet-18 model are shown. ResNet-34 with 95.54% of accuracy
was used as the teacher model for CIFAR-10 and ResNet-34 with 77.62% of accuracy was used
as the teacher model for CIFAR-100. The baseline is the student network model used without a
knowledge distillation method. KD refers to a basic knowledge distillation training. The proposed
method is knowledge distillation with the proposed GIP method. Each value in the table includes the
mean± standard deviation, which is calculated after three repeated experiments.

Dataset Baseline (%) KD (%) Proposed Method (%)

CIFAR-10 94.81± 0.04 94.96± 0.13 95.13± 0.08

CIFAR-100 77.22± 0.08 77.73± 0.08 78.30± 0.25

As shown in Table 1, with the CIFAR-10 dataset, the ResNet-18 model was improved
by 0.17% compared to general response-based knowledge distillation training. Also, it was
improved by 0.32% compared to the baseline. With the CIFAR-100 dataset, the ResNet-18
model was improved by 0.57% compared to the general KD method, and was improved by
1.08% compared to the baseline method.

In the case of ReActNet-18 model, as shown in Table 2, with the CIFAR-10 dataset,
the ReActNet-18 model was improved by 0.91% compared to the KD method, and was
improved by 1.20% compared to the baseline method. With the CIFAR-100 dataset, the
ReActNet-18 model was improved 3.06% compared to the general KD method, and was
improved by 3.40% compared to the baseline method.

Table 2. Experiment results for the ReActNet-18 model are shown. ResNet-34 with 95.54% of
accuracy was used as the teacher model for CIFAR-10 and ResNet-34 with 77.62% of accuracy was
used as the teacher model for CIFAR-100. The baseline is the student network model used without a
knowledge distillation method. KD refers to a basic knowledge distillation training. The proposed
method is knowledge distillation with the proposed GIP method. Each value in the table includes the
mean± standard deviation, which is calculated after three repeated experiments.

Dataset Baseline (%) KD (%) Proposed Method (%)

CIFAR-10 92.17± 0.15 92.46± 0.10 93.37± 0.19

CIFAR-100 68.53± 0.14 68.87± 0.37 71.93± 0.05

The results show that the performance in all cases improved when using our proposed
method compared to baseline and general knowledge distillation method. And the pro-
posed method was more effectively improved the performance of the student network
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model when the number of images per class is small, such as CIFAR-100. ResNet-18 model
even outperformed the teacher network with the proposed method and exceeded 0.68%
on the CIFAR-100 dataset. This means that the performance degradation of knowledge
distillation training caused by the lack of dataset can be recovered through our proposed
method.

More interestingly, the performance improvement of our proposed method was sig-
nificant even when used with other model compression method. While neural network
binarization has a high compression effect, it suffers from serious performance degrada-
tion. By leveraging our proposed knowledge distillation training strategy, performance
degradation caused by parameter binarization can be recovered significantly.

We also conducted experiment to compare our proposed method with other related
method. In [15], fake images synthesized from generator was augmented to the training
dataset. It suggested to mix the real image dataset and fake images with certain ratio p f ake.
Generator network and discriminator network was optimized with additional training
process by using real image dataset. In the Table 3, Teacher refers to the performance of
WideResNet-28-10 which is used for teacher network on each method. And Student refers
to the performance of student network trained by each method. Since the performance
values of teacher network in the two methods are different, new metric called Restored ratio
is introduced. Restored ratio indicates the percentage of student network accuracy to teacher
network accuracy. It is calculated by dividing the student accuracy with teacher accuracy
of each method.

Table 3. Performance comparison with related work [15] on CIFAR-10 dataset. The result of GAN-
TSC is from [15]. WideResNet-28-10 is used for teacher network and ResNet-18 model is used for
student network on both methods. Since the performances of teacher network in the two methods
are different, we introduce a metric, restored ratio, that represents the percentage of student network
accuracy to teacher network accuracy.

Methods Teacher (WideResNet-28-10) (%) Student (ResNet-18) (%) Restored Ratio (%)

GAN-TSC [15] 95.80 95.00 99.16

Our method 96.17 95.50± 0.04 99.30± 0.04

As shown in Table 3, Restored ratio of our proposed method was better than that of
GAN-TSC in [15]. Our proposed method leverages knowledge of teacher network model
which contains information related to the images that teacher network was trained and
teacher network itself. Therefore, student network model trained with our method was
better mimic the teacher network. Furthermore, our method does not require additional
process of training discriminator network. Therefore, our proposed method successfully
improved the performance of the related knowledge distillation method using GANs
architecture.

Since the proposed method is closely related to Data-Free Learning (DAFL) [17], we
compare the performance between the proposed method and the DAFL method using the
Restored ratio metric. As shown in Table 4, the Restored ratio of our method was better
than the DAFL method because the proposed method is using not only the synthesized
images from the generator but also the real training dataset. This implies that synthesized
images generated by the proposed method are compatible with the real training dataset for
knowledge distillation training.
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Table 4. Performance comparison with related work [17] on CIFAR-10 and CIFAR-100 datasets. The
result for DAFL is extracted from [17]. ResNet-34 is used for the teacher network and the ResNet-18
model is used for the student network in both methods. Since the performance of the teacher network
in the two methods are different, we introduce a metric, restored ratio, that represents the ratio of
student network accuracy to teacher network accuracy.

Dataset Method Teacher (%) Student (%) Restored Ratio (%)

CIFAR-10
DAFL [17] 95.58 92.22 96.48

Our method 95.54 95.13 99.57

CIFAR-100
DAFL [17] 77.84 74.47 95.67

Our method 77.62 78.30 100.88

4.3. Ablation Study

In this section, we conduct massive ablation study related to various loss functions
that we used for training the generator network. The ablation study is conducted on our
proposed knowledge distillation training strategy with CIFAR-100 dataset and ResNet-18
model. 200 epochs training was performed with the mini batch size of 256 for the real
image dataset. The initial learning rate was 1× 10−1, and the learning rate was decreased
by 10 times at 80 epochs and 120 epochs. Stochastic Gradient Descent optimizer was used,
with Nesterov momentum of 0.9 and weight decay of 5× 10−4. Other experimental settings
are equivalent to preceding experiment of our proposed method except generator loss
functions. Every possible combinations of the generator loss functions are tested. The
ablation study was repeated three times for each combinations and test accuracy of each
combinations are reported with its mean value.

As shown in Table 5, some combinations of the generator loss functions are not suitable
for our proposed knowledge distillation training strategy. When the information entropy
loss functions are not included, the student network model was not trained except for the
case which only the BNS loss function was included. It shows that maintaining the class
balance of the synthetic images plays an important role for training the student network
with the proposed method. Interestingly, when the BNS loss function is used only, it was
possible to train the student network, even though the information entropy loss function
was not included. It implies that BNS also inhere the knowledge related to the class balance
of the dataset which was used for training of corresponding batch normalization layers.
Accordingly, the combination of the information entropy loss function and the BNS loss
function showed the third good performance which achieves 77.41%. When the one-hot
loss function is included to this combination, it becomes the second good performance
case which achieves 77.45%. Finally, when all of the loss functions that we suggested are
used, the performance of the student model achieves 77.68% which is the best among the
combinations.

Ablation study experiments we conducted suggest that each of the generator loss
functions are important for our proposed method. And the experiments also showed that
the absence of a specific loss function made the student network completely untrained.

Also, further experiments were conducted to evaluate the effectiveness of the training
epoch on the performance of the proposed method. The evaluation was conducted on both
ResNet-18 model and ReActNet-18 model with CIFAR-100 dataset. The ResNet-18 model
was trained for 100 epochs for the case of fewer epochs and 300 epochs for the case of more
epochs. The ReActNet-18 model was trained for 128 epochs for the case of fewer epochs
and 384 epochs for the case of more epochs.

As shown in Table 6, for ResNet-18, increasing training epochs does not always
improve accuracy level. The result after 200 epochs, which is the result of the proposed
method, provides better results than after 300 epochs. However, for ReActNet-18 shown in
Table 7, the accuracy gain and number of training epochs show a positive correlation. This
is an interesting result and worth further exploration.
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Table 5. Ablation study experiment results of CIFAR-100 datasets.

One-Hot Loss Information Entropy Loss Activation Loss BNS Loss Accuracy (%)

X 1.00

X 77.07

X 1.00

X 77.14

X X 77.03

X X 1.00

X X 1.00

X X 76.83

X X 77.41

X X 1.00

X X X 77.05

X X X 77.45

X X X 76.62

X X X 76.81

X X X X 77.68

Table 6. Experiment of comparing the performance of different training epochs for ResNet-18 model
on CIFAR-100 dataset.

Model
Accuracy (%)

100 Epochs 200 Epochs 300 Epochs

ResNet-18 76.51 78.30 78.15

Table 7. Experiment of comparing the performance of different training epochs for and ReActNet-18
model on CIFAR-100 dataset.

Model
Accuracy (%)

128 Epochs 256 Epochs 384 Epochs

ReActNet-18 70.96 71.93 72.23

5. Conclusions

To further improve the performance of knowledge distillation training, we proposed a
generative image processing based knowledge distillation training strategy that leverages
the inherent knowledge of the pre-trained teacher network model. The generator network
does not need to be pre-trained to synthesize the images by processing the random noise.
It is simply trained while undergoing knowledge distillation training.

Experiments were conducted on widely used ResNet-18 models. In addition, experi-
ments with ReActNet-18, an extremely quantized network that uses only 1-bit values for
weight and activation parameters, were also performed to show the effectiveness of this
method in conjunction with other model compression methods such as neural network
binarization. The experiments showed that our proposed method significantly improved
the performance of the knowledge distillation training.
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