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Abstract: The introduction of convolutional neural networks (CNNs) into single-image super-
resolution (SISR) has resulted in remarkable performance in the last decade. There is a contradiction
in SISR between indiscriminate processing and the different processing difficulties in different re-
gions, leading to the need for locally differentiated processing of SR networks. In this paper, we
propose an epistemic-uncertainty-based divide-and-conquer network (EU-DC) in order to address
this problem. Firstly, we build an image-gradient-based divide-and-conquer network (IG-DC) that
utilizes gradient-based division to separate degraded images into easy and hard processing regions.
Secondly, we model the IG-DC’s epistemic uncertainty map (EUM) by using Monte Carlo dropout
and, thus, measure the output confidence of the IG-DC. The lower the output confidence is, the more
difficult the IG-DC is to process. The EUM-based division is generated by quantizing the EUM into
two levels. Finally, the IG-DC is transformed into an EU-DC by substituting the gradient-based
division with EUM-based division. Our extensive experiments demonstrate that the proposed EU-DC
achieves better reconstruction performance than that of multiple state-of-the-art SISR methods in
terms of both quantitative and visual quality.

Keywords: single-image super-resolution; epistemic uncertainty; neural networks

1. Introduction

Single-image super-resolution (SISR) is an important research topic in computer vision.
It aims to reconstruct high-resolution (HR) images from low-resolution (LR) images. SISR
has been extensively used in many fields, including information security, monitoring,
medical imaging, and satellite images. However, SISR is an ill-posed problem, since
multiple HR images may degenerate into one specific LR image. Numerous deep-learning
SR methods have been widely developed over the last few years to establish mappings
between LR and HR images. They are mainly PSNR-oriented and GAN-driven methods.
PSNR-oriented methods [1–6] are trained with the MSE or L1 as loss functions and achieve
excellent PSNR. Nevertheless, these losses tend to drive the super-resolution (SR) result to
an average or a median of several possible SR predictions [7], causing excessive smoothing
of the images. Hence, GAN-driven methods [8–13] have been proposed to address the
issue of missing details. However, GAN-driven methods tend to generate pseudo-textures
in the reconstructed HR image. Furthermore, by maintaining constant mapping complexity,
both PSNR-oriented and GAN-driven methods fail to infer realistic details of complex
structures and natural textures, ignoring the contradiction between the indiscriminate
processing and the disparate difficulties in processing regions [13]. To divide and conquer
the images, Wei et al. [13] proposed a network with different processing capabilities for the
various components of a degraded image. Next, they divided and conquered the degraded
images according to their opinions. Moreover, Wang et al. [9] proposed SFTGAN, which
distinguished the processing difficulty by using HR images’ category information. These
division methods mentioned above are all entirely based on image information.
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However, the processing difficulty is not a property of an image, but the quantification
of the network processing power for different areas of images. Taking image restoration
as an example, when an input image seriously degenerates, it may become challenging or
impossible to deal with its restoration [14]. Further, the processing power of a model and
its adaptability for coping with specific issues are critical as well [15]. Overall, quantizing
the processing difficulty must encompass not only the image information, but also the
model properties. Therefore, it is urgent to propose a divide-and-conquer network that
follows the substance of the network processing difficulty.

Lately, the successful adoptions of Bayesian uncertainty in classification [16], segmen-
tation [17], and camera re-localization problems [18] have shown the power of uncertainty
in vision tasks. Recent progress was made by obtaining Bayesian uncertainty through
dropout [16] or batch normalization [19]. The main types of uncertainty are epistemic un-
certainty and aleatoric uncertainty. Epistemic uncertainty measures the output confidence
of a model in processing input images. On the one hand, image information and network
properties are key factors affecting output confidence. On the other hand, the lower the
confidence level, the harder it is to process. Consequently, epistemic uncertainty is an
appropriate measurement of the processing difficulty, as it describes how much a model
is uncertain about its predictions related to the model and data. In this way, divide-and-
conquer networks can localize difficult and easy processing regions more precisely by
quantizing the epistemic uncertainty.

In this paper, we propose an epistemic-uncertainty-based divide-and-conquer network
(EU-DC). Firstly, an image-gradient-based divide-and-conquer network (IG-DC) is built,
which utilizes gradient-based division to divide. Specifically, the gradient-based division
employs Harris to separate images into easy and hard processing areas. Secondly, we
measure the output confidence of the IG-DC by applying Monte Carlo dropout in order
to model the IG-DC’s epistemic uncertainty map (EUM). The EUM-based division is
proposed by quantizing the EUM into easy and hard processing regions. Finally, the
IG-DC is transformed into an EU-DC by replacing the gradient-based division with EUM-
based division.

In sum, the innovation of this paper is the proposal of a novel method for the division
of processing difficulty by quantizing the epistemic uncertainty. Based on our novel
division method, we further propose a divide-and-conquer SR method, which is an effective
solution to the practical problem of discriminating among the difficulties in processing
distinct regions. Most previous SR works ignored this problem and processed input images
indiscriminately. Furthermore, some researchers only used image information (categories
or gradients) to quantify the processing difficulty, but these division methods do not meet
the definition of network processing difficulty. Our division considers the properties of
the input image and the network’s processing power for different regions of the input
image. Our comprehensive experiments prove that epistemic-uncertainty-based division
is reasonable and effective in quantizing the processing difficulty. Moreover, our EU-DC
method is superior to the advanced SR approaches mentioned above when considering a
combination of quantitative analysis and visual quality.

Our contributions can be summarized as follows:

• We introduce epistemic uncertainty in order to quantify the output confidence of
the network. By utilizing the output confidence, we can clearly understand the
distribution of the network’s processing capabilities on the input images.

• We propose a novel division based on epistemic uncertainty, which is consistent with
the substance of the processing difficulty. This division based on epistemic uncertainty
accurately and reasonably distinguishes areas with different processing difficulties.

• We construct an EU-DC that divides LR images through EUM-based division and can
infer clear structures and realistic textures. Extensive simulation results demonstrate
that our proposed method is superior to multiple comparable state-of-the-art methods.
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2. Related Work

In this paper, we propose an epistemic-uncertainty-based divide-and-conquer network.
To improve the visual quality of the final result, an adversarial generative network is applied
in our approach. Therefore, we first introduce the work related to SISR (from PSNR-oriented
to GAN-driven methods). We present some of the previous divide-and-conquer approaches
and their limitations for the contradiction in SISR between indiscriminate processing and
disparate difficulties in processing different regions. Finally, we introduce the development
of Bayesian uncertainty because we are motivated by epistemic uncertainty to propose a
more reasonable and practical divide-and-conquer SISR network.

2.1. Single-Image Super-Resolution

Here, we review SISR methods, which can be classified into two categories: PSNR-
oriented and GAN-driven methods. We also investigate specific divide-and-conquer ap-
proaches.

2.1.1. PSNR-Oriented Methods

Most previous SISR networks targeted high-PSNR metrics. Dong et al. [1] initially
proposed SRCNN, which introduced the convolutional neural network (CNN) to SISR
and achieved superior performance to that of previous works. Kim et al. [2] designed
deeper VDSR with 20 layers based on residual learning. Lim et al. [3] proposed the EDSR
network by stacking modified residual blocks in which the batch-normalization layers were
removed. Zhang et al. [4] proposed RCAN, which modeled the inter-dependencies between
feature channels by using the channel attention mechanism and dynamically re-adjusted
the weights of each channel feature. Zhang et al. [5] introduced dense connections in
RDN to utilize every hierarchical feature from all of the convolutional layers. Dai et al. [6]
proposed a second-order channel attention mechanism to adaptively rescale features by
considering statistics higher than the first order and constructed a non-locally enhanced
residual group structure to build a deep network. PSNR-oriented methods tend to drive the
SR result to an average or a median of several possible SR predictions [7], causing excessive
smoothing of the images.

2.1.2. GAN-Driven Methods

The PSNR-oriented methods mentioned above focused on achieving high PSNR
and, thus, employed the L1 or MSE loss as loss functions to measure the distance of the
output results and HR images. However, the images restored by PSNR-oriented methods
are always blurry. Johnson et al. [20] proposed perceptual loss to improve the visual
quality of reconstructed images. Ledig et al. [8] designed SRGAN, which introduced
adversarial generation networks to the field of super-resolution for the first time, and
they built the first framework for generating photo-realistic HR images. Furthermore,
Wang et al. [10] constructed an efficient GAN-driven framework named ESRGAN by
adopting both a residual-in-residual dense block (RRDB) and perceptual loss. Soh et al. [11]
designed natural manifold discrimination to make the resulting images more realistic. Ma
et al. [12] proposed SPSR, which utilized image gradient information to restore clear
structures. To improve the visual quality of the final result, we used the same GAN loss
as that in ESRGAN [10] to optimize our proposed ED-DC. However, the GAN-driven
SR methods mentioned above performed indiscriminate processing in every region with
disparate difficulties, leading to a failure to infer realistic details of complex structures and
textures [13].

2.1.3. Divide-and-Conquer Framework

By maintaining a constant mapping complexity, neither PSNR-oriented nor GAN-
driven methods can succeed in inferring the realistic details of complex structures and
textures because they carry out indiscriminate processing on different regions of the input
images. However, networks have distinct processing capabilities for separate areas of input
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images. Some previous work was shown to be more effective for differential processing
of input images [21–23]. Differential processing was also introduced into the field of SISR.
Wang et al. [9] proposed SFTGAN, which divided input images based on semantic seg-
mentation networks and employed an attention mechanism to conquer the resolution
reconstruction problem. Wei et al. [13] proposed that various components’ processing
difficulties are diverse. Therefore, they established a division method based on the image
components. It is worth noting that the processing difficulty is an abstract description of
a network’s processing capabilities for degraded images. Causing a differentiation in the
processing power lies not only in the information of the degraded images, but also in the
properties of the network. However, existing division frameworks are utterly dependent
on image information, ignoring the definition of network processing difficulty.

2.2. Bayesian Uncertainty

Understanding a model’s limitations is crucial for many machine learning systems.
Powerful abstract expressions from high-dimensional images for mapping to the outputs
are learned by deep learning models through data-driven methods. The output results
of unknown test data are often considered blindly and are believed to be reliable, which
is not always true. Bayesian uncertainty plays a vital role in quantizing the output confi-
dence of a model during testing. Output confidence helps in the decision-making process.
Therefore, uncertainty is a powerful tool for any prediction and reconstruction system.
Bayesian uncertainty has been proven to have advanced capacities in classification [16],
segmentation [17], and camera re-localization problems [18]. In Bayesian modeling, there
are two main types of uncertainty [16]. Noise inherent in the observations can be captured
by aleatoric uncertainty. For instance, motion or sensor noise causes uncertainty even if a
model is fed more data. On the other hand, epistemic uncertainty accounts for the uncer-
tainty in the model parameters. Epistemic uncertainty can be explained away when given
large quantities of data in machine vision and is often referred to as model uncertainty.
Recent contributions utilized dropout [16] or batch normalization [19] to obtain Bayesian
uncertainty. We applied the epistemic uncertainty modeling approach [16] in order to
construct the divide-and-conquer SR method in this paper.

3. Method
3.1. Outline

As shown in Figure 1, the main line of the proposed method involves three steps.
In the first step, inspired by [13], we construct a divide-and-conquer network structure
based on image gradient division. The IG-DC divides an image into hard regions Hardmap
and easy regions Easymap by using Harris (a method that detects the gradient changes in
an image). Multi-path supervision and reasonable allocation of computational overhead
strategies are employed to optimize the IG-DC. In the second step, Monte Carlo dropout is
introduced in order to model the IG-DC’s EUM by measuring the output confidence of the
IG-DC. The lower the output confidence, the more difficult the IG-DC is to process. Further,
we present a division method based on epistemic uncertainty by quantizing the EUM. The
division based on epistemic uncertainty is consistent with the substance of the processing
difficulty because of it considers not only degraded images’ features, but also the properties
of the network. In the third step, we set the IG-DC as the base model. We propose the
EU-DC by substituting for image-gradient-based division with EUM-based division. It is
worth noting that the different steps of the main line employ the same network structure
and training strategy.
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Figure 1. The overall structure of our proposed SR method. Conv denotes a 3× 3 convolution layer.
The RRDB block and up block are the same as those proposed in [10]. Up Block (×4) + Dropout
denotes the sequential connection of the up block (×4) and dropout layer. � and ⊕ denote element-
wise multiplication and element-wise addition operations. The main line of research includes three
steps. Step 1: Building the IG-DC. Step 2: Modeling the IG-DC’s output confidence to obtain division
based on epistemic uncertainty. Step 3: Constructing an EU-DC by applying division based on
epistemic uncertainty to the IG-DC.

3.2. IG-DC

Given the differences in the difficulties of reconstructing different areas, we use a
divide-and-conquer network structure to build the IG-DC. Motivated by [13], the IG-DC
measures the processing difficulty by using Harris to detect gradient changes in images.
Specifically, as shown in Figure 1, an HR image is divided into three components by Harris.
The edge and corner components are identified as the hard regions. Meanwhile, the flat
component is defined as a simple region. Moreover, we adopt multi-path supervision and
strategies for reasonable allocation of computational overhead to optimize the IG-DC.

3.2.1. Multi-Path Supervision

To facilitate the feature learning in the IG-DC from easy to hard, the IG-DC built easy
and hard branches to overcome regions with various processing difficulties. We define the
results of the easy routing as sEasy and sEasymap. Meanwhile, sHard and sHardmap are the
outputs of the hard branch. The overall result SRout is obtained by using weighted fusion
of the results of the two routings:

SRout = sEasy� sEasymap + sHard� sHardmap, (1)

Different loss functions are employed to supervise the multi-path SR results. SRout is
supervised by utilizing a combination loss LG comprising the pixel loss Lpix, perceptual
loss Lper [20], and GAN loss Lgan. The definitions of Lpix, Lper, and Lgan are:

Lpix = ||SR− HR||1, (2)

Lper = ||Φi(SR)−Φi(HR)||1, (3)

where Φi(·) denotes the ith-layer output of the VGG [24] model.

Lgan = −ESR[log(D(SR, HR))]− EHR[log(1− D(HR, SR)]], (4)

Thus, the combination loss LG is shown below:

LG = α1Lpix + β1Lper + γ1Lgan, (5)
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where α1, β1, and γ1 denote the trade-off hyperparameters of different losses. The loss for
the easy branch is formulated as:

Leasy = ||Easymap � sEasy− Easymap � HR||1, (6)

Lhard = ||Hardmap � sHard− Hardmap � HR||1, (7)

Finally, the loss function for the IG-DC’s generator is expressed as:

Ltotal = α2Leasy + β2Lhard + γ2LG, (8)

where α2, β2, and γ2 denote the trade-off hyperparameters of different branches.
The IG-DC’s discriminator network is a VGG128 model [24], and the discriminator

loss is formulated as:

LD = −ESR[log(D(HR, SR))]− EHR[log(1− D(SR, HR)]], (9)

The IG-DC’s discriminator and generator are optimized through adversarial learn-
ing. Through multi-path supervision, we guide the network in emphatically learning
processing-difficulty-attentive masks, with Hardmap and Easymap providing guidance from
the gradient information in the HR images. In other words, sEasy focuses more on the
generation of simple regions because of the supervision from Equation (6), which is similar
to that of sHard. Furthermore, to produce SRout with a higher quality, it is proper for the
direction of optimization for sHardmap and sEasymap to be regional distributions of Hardmap
and Easymap, respectively. The IG-DC’s generator produces processing-difficulty-attentive
masks and intermediate SR predictions. Therefore, relatively independent branches super-
vise the various regions, making it possible to perform differential processing.

3.2.2. Reasonable Allocation of Computational Overhead

To reasonably allocate the computational overhead of the network, we build the
generator of the IG-DC with a stacked architecture comprising 20 RRDBs, making it
beneficial for adjusting our emphases on different regions. The main factors limiting the
overall quality of reconstruction are the areas that are challenging to reconstruct. Therefore,
putting more attention into extracting features in problematic areas is, theoretically, a
more reasonable option. We exploit the first part of the stacked architecture to reconstruct
accessible areas and the rest to inherit the first part’s output for restoring complex areas.
At this point, we carry out the reasonable allocation of computational overhead in the
feature extraction stage. We utilize the feature extraction stage and the backpropagation
phase to achieve discriminate processing. Distinct values are configured for α2 and β2 in
Equation (8) to modify the proportions of the original gradients of the different branches,
which is a method for implicitly adjusting the allocation of computational overhead.

3.3. Modeling the IG-DC’s EUM

The processing difficulty distribution map of the IG-DC is based on gradient changes
in HR images, which is not consistent with the substance of network processing difficulty.

A reasonable processing difficulty division method should have two characteristics.
On the one hand, the input image information and model properties play a decisive role.
On the other hand, it should have a stable relationship of transformation with the process-
ing difficulty. The model’s output confidence is a good choice because it falls perfectly
in line with these two characteristics. To measure the model’s output confidence, we
introduce epistemic uncertainty into SISR. Compared to modeling the EUM by using batch
normalization, adopting dropout as a Bayesian approximation alleviates the computational
consumption and accuracy degradation that may be caused by the uncertainty characteri-
zation process in deep learning models. Thus, we model the EUM of the IG-DC by using
the Monte Carlo dropout. Specifically, the status of the dropout is configured to “true”. We
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utilize the dropout to randomly sample the image features after the up block (×4) and then
reconstruct the HR image by using the sampled features.

In training, the network structure and training strategy remain the same as those in
the IG-DC. In the test procedure, we enter an LR image as an input N times and obtain a
set of different outputs [SRout1, SRout2, . . . , SRoutN−1, SRoutN]. The EUM is formulated
as the variance of the outputs:

EUM = norm(
∑i SRout2

i
N

− (
∑i SRouti

N
)2), (10)

where norm(x) = x/xmax is the operation of normalization.
Finally, we obtain the IG-DC’s EUM for each image in the training dataset.

3.4. EU-DC

To build a divide-and-conquer network that is consistent with the network processing
difficulty, we transform the IG-DC into the EU-DC by substituting the image-gradient-based
division with EUM-based division. On the one hand, the EUM considers the properties
of both the input image and the network. On the other hand, the value of the EUM has
256 levels; thus, the difficulty of image processing is divided more accurately and finely.
Further, the EUM-based division is constructed with the EUM as the prior information of
the IG-DC’s processing difficulty distribution. Specifically, we quantify the EUM according
to two levels to define Easymap and Hardmap. As shown in Figure 1, the EUM is binarized by
OTSU [25] to get the hard areas, i.e., Hardmap = OTSU(EUM). The Easymap can be obtained
by reversing Hardmap, i.e., Easymap = 1-Hardmap.

Before the training of the EU-DC, we utilized the Monte Carlo dropout to model the
epistemic uncertainty on all of Div2K’s data. To obtain the values of Hardmap and Easymap
required for network training, we employed OTSU to quantify the epistemic uncertainty
map into two levels. Finally, we applied Hardmap and Easymap to guide the network in
restoring the complicated regions and accessible regions, respectively.

In the training procedure, by obtaining the IG-DC’s EUM for each image in the second
step of our main line, we no longer need the dropout to model the EUM; thus, the dropout
is turned off. The EU-DC utilizes the same dataset, loss function, and training strategy as
those in the ID-DC to perform supervised learning. Compared with the IG-DC, the EUM is
an additional input for the SR model because we need to use the EUM-based division to
transform the EUM into Hardmap and Easymap. Through the EUM’s guidance, the EU-DC
accurately allocates more computing power to areas in which IG-DC does not process well
and improves the overall processing performance in these regions. In other words, Hardmap
according to the EUM is where the IG-DC does not perform well. The EU-DC pays attention
to Hardmap to obtain more excellent overall capabilities. During the test, we no longer
need to enter the EUM and only input the degraded image because the EUM’s only role
is to guide the supervised learning of EU-DC, and generating SRout does not require the
EUM. The EU-DC can reconstruct HR images and predict the processing-difficulty-attentive
masks, accessible processing areas sEasymap, and complex processing areas sHardmap.

In summary, we transform the IG-DC into the EU-DC by replacing the gradient-based
division method with the EUM-based division method. EU-DC is an upgraded version
that improves upon the IG-DC’s imperfections.

4. Experiment

To evaluate our technique, we carried out a comprehensive set of experiments with
the aim of answering the following two questions:

• What are the superiorities of the proposed EU-DC SR model? The answer to this
question is based on its characteristics, including the allocation of computational
overhead, the analysis of the EUM, and the division method.

• Is the proposed reconstruction solution superior to the state-of-the-art SR methods
when comparison the combination of a quantitative analysis and the visual quality?
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The answer to this question is based on a comprehensive comparison with other SR
methods. We analyzed objective metrics, visual quality, model parameters, and run-
ning times.

4.1. Implementation Details

The IG-DC and EU-DC were trained with a training set (800 images) from DIV2K [26].
Both of the hyperparameters—the block size and window size for Harris—in the IG-DC
were set to 3. The free parameter in the corner detection equation for Harris is was to 0.04.
Moreover, the training set was processed with a scaling factor of ×4 between the LR and
HR images. The input LR images were obtained by down-sampling their GT images by
using the bicubic method [27]. We set the batch size to 16. The spatial size of the cropped
HR patch was 128× 128. The Adam optimizer [28] was used, in which β1 was 0.9 and β2
was 0.99. We set the learning rates to 1× 10−4 for both the generator and the discriminator
and reduced them to half at 50 k, 100 k, 200 k, and 300 k iterations. The hyperparameters in
Equation (5), namely, α1, β1, and γ1, were set to 0.1, 1, and 0.005, respectively. α2, β2, and γ2
in Equation (8) were set to 1, 4, and 1, respectively. We set the sampling rate of the dropout
to 0.2. Our stacked architecture in the IG-DC included 20 RRDB blocks. We allocated 5 and
15 RRDB blocks for the easy and hard regions, respectively. Before training the EU-DC, we
first obtained the IG-DC’s EUM for each image in the training set (800 images) from DIV2K.
For the test of the EU-DC, we used four benchmark datasets, namely, Set5 [29], Set14 [30],
BSDS100 [31], and Urban100 [32].

4.2. Superiority Analysis

To demonstrate the superiority of the EU-DC, we performed comprehensive studies
on our method. As shown in Table 1, the base model was the IG-DC. Na and Nb denote
the Na basic RRDB blocks that reconstructed simple areas and the other Nb basic RRDB
blocks that served to restore difficult areas. α2 and β2 in Table 2 are identical to those
in Equation (8). All results from the reconstructed degraded images in the Set14 dataset
were comprehensively evaluated with objective and visual metrics. The objective metrics
included the PSNR and SSIM [33], and the visual metrics included the NIQE [34] and
LPIPS [35]. The higher the indicators of the PSNR and SSIM, the better the quantitative
quality of the reconstructed image. The lower the values of the NIQE and LPIPS, the better
the visual quality of the reconstructed image.

Table 1. A study of the RRDB allocation schemes in the Set14 dataset.

Scheme PSNR SSIM NIQE LPIPS

IG-DC + 5 & 15 26.463 0.7800 3.827 0.1419
IG-DC + 10 & 10 26.453 0.7751 3.811 0.1417
IG-DC + 15 & 5 26.458 0.7760 3.843 0.1429
EU-DC + 5 & 15 27.538 0.8161 3.621 0.1309
EU-DC + 10 & 10 27.144 0.8058 3.501 0.1257
EU-DC + 15 & 5 27.504 0.8094 3.602 0.1324

Table 2. A study of the loss weights in the Set14 dataset.

Scheme α2 & β2 PSNR SSIM NIQE LPIPS

1 & 1 27.538 0.8161 3.621 0.1309
1 & 2 27.537 0.8159 3.617 0.1306
1 & 4 27.535 0.8158 3.612 0.1297
1 & 6 27.531 0.8142 3.619 0.1307
1 & 8 27.109 0.8029 3.629 0.1337
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4.2.1. Allocation of Computational Overhead

In order to prove that our proposed network structure can reasonably allocate comput-
ing power, we conducted experiments on control variables for module allocation. Both the
IG-DC and EU-DC divided an input image into two difficulty levels, resulting in the final
reconstruction being affected by the restoration qualities of regions with distinct ratings.
Discriminate processing was carried out in the feature extraction and backpropagation
phases. We demonstrated the roles of these two stages by using control variates. α2 = 1
and β2 = 1 were our initial conditions. It is worth emphasizing that the EU-DC and its
corresponding IG-DC adopted the same network structure and loss functions, regardless of
the allocation scheme employed.

To demonstrate the essential effect of the stacked structures in obtaining excellent
overall performance, we experimented with RRDB allocation schemes under the conditions
of α2 = 1 and β2 = 1. As shown in Table 1, we adopted three different schemes for
allocation of computational overhead. The distribution of “5 & 15” means that more
computational overhead was concentrated on challenging areas. By contrast, “15 & 5”
denotes that we paid more attention to reconstructing simple regions. “10 & 10” is a
balanced option. Compared to “15 & 5”, “5 & 15” surpasses it in all indicators, regardless of
if the IG-DC or EU-DC is used. Between “5 & 15” and “10 & 10”, “5 & 15” obtains a better
quantitative quality, whereas “10 & 10” is superior in visual quality. It is worth noting that
“5 & 15” surpasses “10 & 10” very much in objective quality, but “10 & 10” does not surpass
“5 & 15” very much in visual quality. Therefore, “5 & 15” is an excellent option for the
IG-DC and EU-DC.

Moreover, to prove the effect of modifying the loss weights on the allocation of the
computational power, an experiment on the loss weights was performed with the best
RRDB allocation scheme, “5 & 15”. We fixed the value of α2 to 1 and modified the various
branches’ loss weights by adopting values from the list [1, 2, 4, 6, 8] for β2. As shown in
Table 2, we transformed β2 from 1 to 4. The objective indicators slightly decreased, while
the visual indicators significantly improved, especially in the NIQE. Further, by continuing
to raise the value of α2, our emphasis was heavily unbalanced, causing all indicators to
decline to varying degrees. Consequently, setting β2 to 4 was a great choice for improving
the all-around performance, and the loss weights affected the distribution of the computing
power and balanced the overall effect of reconstruction.

To put it in a nutshell, the EU-DC reasonably allocated computational overhead in
both the feature extraction and backpropagation phases, and it realized an exceptional
balance between quantitative quality and visual performance.

4.2.2. Analysis of the EUM

In order to analyze the rationality of quantizing the processing difficulty with the
EUM, we visually analyzed it. As shown in Figure 2, we utilized MATLAB’s colormap to
visualize the IG-DC’s EUM for a more intuitive understanding. We first analyze Figure 2a.
The information in “lenna” contains fine textural details and edge structures. Figure 2b
shows the EUM of “lenna”. The large numerical values are mainly concentrated in the hair
texture area, which indicates that it is challenging for the IG-DC to reconstruct complex
textures. This is consistent with the fact that GAN-driven SR methods tend to create pseudo-
textures in complex regions. Figure 2e includes more flat regions, and Figure 2f mainly
positions the edge structure, which demonstrates that the EUM dynamically adapts to
input images with different characteristics. In addition, the EUM quantifies the processing
difficulty into 256 levels, which is more refined than the gradient-based division method.
To illustrate that the EUM can effectively guide the EU-DC in dividing and conquering
input images, the processing-difficulty-attentive masks (sEasymap and sHardmap) are also
presented in Figure 2. Figure 2c accurately locates the area with a high value in the
EUM, and it is regionally complementary to Figure 2d. Figure 2g,h also complement each
other in certain regions, which proves that the network can effectively carry out regional
supervised learning.
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Figure 2. The EUM of the IG-DC. (a,e) “lenna” from Set14 and “butterfly” from Set5, (b,f) lenna’s
EUM and butterfly’s EUM from the ID-DC, (c,g) lenna’s sEasymap and butterflt’s sEasymap from the
EU-DC, (d,h) lenna’s sHardmap and butterflt’s sHardmap from the EU-DC.

To sum up, on the one hand, the regions with higher values in the EUM were, indeed,
strongly correlated with areas that were difficult to handle. On the other hand, the EUM
was able achieve more refined division. Consequently, the EUM is a reasonable and precise
program for quantifying processing difficulty.

4.2.3. Division Method

We performed a comprehensive experimental analysis to demonstrate that epistemic-
uncertainty-based division is more reasonable and effective in quantizing the process-
ing difficulty than image-gradient-based division. As shown in Figure 3, on the one
hand, Hardmap varied widely for the IG-DC and EU-DC. The low numerical distribution
in Figure 3(b1) indicates that the IG-DC model considered the ROI of “man” to be easily
reconstructed for the network. By contrast, the HR image in Figure 3(c1) that was restored
by the ID-DC was full of pseudo-textures, which indicated that gradient-based difficulty
division methods do not accurately locate the distributions of actual processing difficulties.
Meanwhile, Figure 3(d1) shows that the EU-DC accurately located difficult processing
areas. The HR results in Figure 3(e1) show that a natural texture was reconstructed. On the
other hand, Hardmap was similar for the IG-DC and EU-DC. As shown in Figure 3(b2,d2),
Figure 3(b2) is more regular and has many fine structures, which is unreasonable because
images with degraded resolutions have often lost these tiny features. Consequently, dis-
tortions appear in the reconstructed HR image in Figure 3(c2). Figure 3(d2) is relatively
flat and can completely cover delicate structures. The results restored by the EU-DC in
Figure 3(e2) are well structured.

Based on the above analysis, EUM-based division is more reasonable and adequate
than image-gradient-based division because EUM-based division considers not only the
input image information, but also the network’s properties for a particular degraded image.

In addition, as shown in Table 1, no matter what allocation of computational over-
head scheme is adopted, under conditions in which the network structure and training
strategy are identical, the EU-DC surpasses the IG-DC by a large margin for all indicators.
The improvement in the indicators further illustrates the superiority of the EUM-based
division method.

In conclusion, the EU-DC is an advanced SISR model because it can accurately and
effectively divide the difficulty levels and reasonably allocate the computational overhead
for different ratings of areas.
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Figure 3. Comparison the IG-DC and EU-DC. (a1,a2) man’s original and img_004’s original of
ROI, (b1,b2) man’s Hardmap and img_004’s Hardmap defined by the IG-DC, (c1,c2) man’s result and
img_004’s result restored by the IG-DC, (d1,d2) man’s Hardmap and img_004’s Hardmap defined by
the EU-DC, and (e1,e2) man’s result and img_004’s result restored by the EU-DC.

4.3. Quantitative Analysis
4.3.1. Quantitative Evaluation

To demonstrate the superiority of the proposed method, we compared it with a variety
of recently proposed SR networks, including ESRGAN [10], NatSR [11], SPSR [12], and
ATG [36]. We used the PSNR, SSIM [33], NIQE [34], and LPIPS [35] as evaluation metrics.
Overall, our EU-DC method was able to achieve a comparable or superior performance
with respect to its existing counterparts.

In Table 3, we present the results of recent advanced super-resolution network meth-
ods on the Set5, Set14, BSDS100, and Urban100 datasets. In comparison with ESRGAN,
our approach surpassed it by a large margin for all indicators. NatSR obtained excellent
objective quality in terms of the PSNR and SSIM metrics. However, it obtained unsatis-
factory results for the visual metrics, suggesting that NatSR tends to produce relatively
blurry results with a high PSNR compared to the results of other perceptually driven
methods. Our method surpassed NatSR in the objective metrics and maintained a superior
visual quality. SPSR achieved good results for the visual indicators by introducing image
gradient information in order to suppress image distortion. At the same time, our method
achieved higher scores on all indicators than SPSR did in the objective evaluation. ATG
obtained well-rounded metrics, especially on the Set5 dataset, but our method obtained
better indicator scores when considering all of the metrics for all datasets.

Therefore, our EU-DC method comprehensively achieved excellent indicator scores
on all test datasets, and it is superior to the recent SR methods with which it was compared
in terms of both quantitative and visual quality indicators.
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Table 3. Comparison with state-of-the-art SR methods on the Set5, Set14, BSDS100, and Urban100
datasets. The best performance is highlighted in red (best) and blue (second best).

Dataset Metric Bicubic ESRGAN NatSR SPSR ATG EU-DC

Set5 NIQE 8.4927 5.1279 5.6569 4.6126 5.7913 3.7154
LPIPS 0.3440 0.0740 0.0945 0.0711 0.0667 0.0689
PSNR 28.385 30.278 30.971 30.382 31.532 31.032
SSIM 0.8249 0.8666 0.8807 0.8635 0.8876 0.8773

Set14 NIQE 7.7208 3.8098 3.8807 3.8648 4.0568 3.6117
LPIPS 0.4419 0.1378 0.1769 0.1327 0.1312 0.1297
PSNR 26.084 26.337 27.512 26.635 27.399 27.535
SSIM 0.7849 0.7811 0.8146 0.7939 0.8112 0.8158

BSDS100 NIQE 7.7050 3.5099 3.9584 3.3902 3.9852 3.3149
LPIPS 0.5252 0.1782 0.2099 0.1758 0.1598 0.1713
PSNR 25.944 25.707 26.447 25.503 26.459 26.342
SSIM 0.6686 0.6658 0.6849 0.6592 0.6932 0.6787

Urban100 NIQE 7.3326 3.8796 3.9405 3.8651 4.1292 3.8062
LPIPS 0.4742 0.1291 0.1503 0.1270 0.1241 0.1237
PSNR 23.130 24.701 25.457 24.792 25.559 25.674
SSIM 0.9009 0.9456 0.9505 0.9481 0.9557 0.9571

4.3.2. Model Size and Running Times

We analyzed the computational complexity of the EU-DC and compared it with those
of other advanced SR models. We first show the model parameter sizes of the EU-DC and
the other advanced SR models in Table 4. In addition, we recorded the running time that it
took for each method to test the Urban100 dataset.

Table 4. A study of the model size and running time. “M” denotes MByte.

ESRGAN NatSR SPSR ATG EU-DC

Model
parameters 63.94 M 53.67 M 94.93 M 63.91 M 58.51 M

Running times 28.14 s 24.98 s 28.45 s 10.70 s 13.16 s

Model Size: The parameter size of NatSR was the most lightweight, but NatSR lacked
superior performance. The EU-DC’s parameter size was secondary, and there was only
a small gap between the EU-DC and NatSR. In terms of the comprehensive performance
comparison, the EU-DC far exceeded NatSR. The model parameters of SPSR were the
largest, but it did not obtain the best overall indicator scores. ATG achieved slightly
inferior metrics than the EU-DC, but it used more model parameters than the EU-DC. It is
worth noting that ESRGAN, SPSR, and the EU-DC all employed stacked RRDB structures
to extract image features, but the EU-DC built the best-performing model by utilizing
the minimum number of RRDBs. Therefore, the EU-DC is more efficient in utilizing
computational resources to achieve better reconstruction.

Running times: We evaluated the proposed and start-of-the-art methods mentioned
above on the Urban100 dataset. We performed all experiments on a GeForce RTX 2080Ti
with 11 GB of memory. The running times are shown in Table 4. The running times of the
proposed method were slightly inferior to those of ATG. In contrast, our approach was
faster than ERSGAN, NatSR, and SPSR, which shows the EU-DC’s advantages in terms of
computational complexity.

In conclusion, the EU-DC utilizes computational resources effectively, and its compu-
tational complexity is lower than those of other advanced SR models.
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4.4. Visual Quality Comparison

We conducted visual quality comparisons to demonstrate the superiority of our ap-
proach more intuitively. In addition to the quantitative analysis conducted above, Figure 4
depicts a visualization of the results of our EU-DC method and the methods with which
it was compared. First, taking bridge.png in the Set14 dataset as an example, our EU-DC
restored more realistic tree textures than the other SR models did, thus making the rebuilt
image more natural. On the contrary, the other models produce plenty of pseudo-texture
and distortions.

Figure 4. Visual results of different GAN-driven methods. Our proposed method reduced the
distortion in the image and produced more natural textures and clearer structures than the other
SR methods did.

Another case is img_044.png from the Urban100 dataset. Restoring small periodic
structures and making them easy to identify is challenging. Therefore, previously proposed
SR approaches, from ESRGAN to ATG, have failed to address the problem. In their results,
these tiny structures still have varying degrees of blur, so it is challenging to define the
edges of each fine detail. Our EU-DC method can restore more structural minutiae, thus
making finer structures distinguishable.

As for img_004.png in the Urban100 dataset, restoring tiny and regular appearances
is notably tricky. The ellipses in img_004.png recovered by ESRGAN and NatSR were
massively distorted. The results restored by SPSR and ATG improved to some extent.
Compared with the mentioned methods, the EU-DC reconstructed regular ellipses with
little distortion.
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In summary, compared with many recently proposed advanced SR models, our pro-
posed EU-DC model recovers discernible structures and natural textures, resulting in
excellent quantitative and visual quality.

5. Conclusions

In this paper, we proposed a novel EU-DC model that achieved the restoration of
HR images with clear structures and realistic textures. First, we employed a divide-
and-conquer framework to build an IG-DC, which not only progressively facilitated the
model’s feature learning, but also reasonably allocated computational overhead. Next, we
modeled the EUM of the IG-DC by using dropout. Finally, the IG-DC was transformed
into an EU-DC by substituting the image-gradient-based division method with EUM-based
division. Extensive experiments demonstrated that epistemic-uncertainty-based division
is reasonable and effective in quantizing the processing difficulty. The EU-DC greatly
surpassed the IG-DC in all evaluations with objective indexes, especially the PSNR (an
increase of at least 0.69 dB, as shown in Table 1). Moreover, our EU-DC method achieves
excellent comprehensive indicator scores for all test datasets and alleviated geometric
distortions that commonly exist in the SR results of perceptually driven methods. In
conclusion, the EU-DC is comprehensively superior to other advanced SR approaches in
terms of the combination of quantitative analysis and visual quality.

6. Future Work

Although our method achieved good performance, we did not take the best advantage
of the EUM. The EUM can divide the processing difficulty into 256 ratings, but here, we
quantified it into simple and complicated levels without much thought. Making more
effective use of the EUM will be our future work. In addition, at present, we fixed the
allocation ratios for the operation modules. In the future, we will design the ratios as a
training parameter so that the network can automatically adjust the balance according
to the input image. Our proposed divide-and-conquer framework is universal for image
restoration. The framework is especially beneficial for non-uniform degradation of image
restoration because the EUM can accurately locate areas in which the degradation is severe.
Therefore, we will explore the potential of this method and expand its application to other
image restoration tasks, such as dehazing or deblurring. In addition, pseudo-textures
and distortions often appear in the results restored with generative denoising methods in
real-world scenarios. We will try to address this problem by utilizing uncertainty caused
by noise as prior information.
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