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Abstract: Hardware Trojans (HTs) pose a security threat to the Internet of Things (IoT). Attackers
can take control of devices in IoT through HTs, which seriously jeopardize the security of many
systems in transportation, finance, healthcare, etc. Since subtle differences in the circuit are reflected
in far-field signals emitted by the system, the detection of HT status can be performed by monitoring
the radio frequency fingerprinting (RFF) of the transmitting signals. For the detection of HTs, a
non-destructive detection method based on RFF is proposed in this paper. Based on the proposed
method, the detection of HTs can be achieved without integrating additional devices in the receiver,
which reduces associated costs and energy consumption. QPSK and triangular-wave signals are
measured and identified via experimentation, and the results validate the proposed method. For
identifying the presence and operating state of Trojan, the average accuracy achieved measures
as high as 98.7%. Notably, with regard to capturing the moment of Trojan activation in the AES
encryption circuit, the accuracy of the proposed method is 100% and can provide warning of the
threat in a timely manner.

Keywords: hardware security; hardware Trojan detection; radio frequency fingerprinting; AES;
USRP; triangular wave; QPSK

1. Introduction

Internet of Things (IoT) products are becoming prevalent globally due to the devel-
opment of wireless devices and communication systems. IoT is a system where smart
devices are connected as the basis for interconnection. In many cases, IoT devices collect
confidential information and connect to the cloud via wireless communication, due to their
mobility as well as computing and energy limitations. However, the propagation of wire-
less signals in the public domain renders them vulnerable to security flaws [1]. Therefore,
the security and integrity of IoT communications have received much attention. In many
studies, hardware Trojan (HT) attacks have been considered as a major security issue for
integrated circuits (ICs). With the rapid development of the integrated circuit industry and
the globalization of manufacturing, hardware suppliers often outsource product manufac-
turing to third-party vendors to reduce costs. However, some of the insecure third-party
vendors may neglect potentially implanted HTs in the electronic products. HTs can be
triggered under specific conditions, which can lead to serious errors in circuit function
or leakage of information. Nowadays, integrated circuits are extremely complex, and the
number of nodes in circuits is growing exponentially. It is easy to conceal the presence of
HTs, whereas it is challenging to detect their presence in circuits.
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Because of the threat of HTs, Trojan-detection methods are increasingly being em-
phasized. In the pre-silicon phase, static-detection techniques can extract and analyze the
characteristics of the gate-level netlists to identify suspicious networks without logical
or functional simulation, and machine learning methods can be used to classify the
unknown networks into Trojan and normal networks efficiently [2–5]. However, these
techniques make it difficult to build perfect models for all ICs. The detection techniques
in the post-silicon phase can be divided into destructive and non-destructive detection
techniques. Since destructive detection techniques are extremely expensive and time-
consuming, non-destructive detection techniques tend to receive more attention. The
dominant non-destructive detection is realized by testing or side-channel analysis. Logic
testing is usually achieved by activating the Trojan payloads and detecting errors in the
output. By generating input trigger vectors and Trojan detection vectors, HTs can be
detected; however, the specific type of Trojan horse needs to be known in advance [6].
In order to synthesize Trojan circuits with the desired trigger probabilities, researchers
have discussed methods to design combinatorial rare situations [7]. However, only the
detection of combinatorial logic Trojans is considered. In order to detect Trojans, two
or more detection methods can be used together [8]. In practice, the Trojan-detection
methods based on logic testing have limitations due to the unknown nature of the Trojan,
and it is impossible to traverse all the test vectors. The side-channel detection methods
are realized by measuring various side-channel signals from the IC to identify differences
caused by Trojan circuits [9]. Such information includes path delay, transient current,
power signal, temperature profile, and EM radiation profile [10–16]. The implantation of
a Trojan horse affects normal circuit operation, and changes in the circuit are reflected in
the side-channel information. The IC fingerprint can be extracted from the side-channel
information and used to detect the Trojan, but this method has been validated only in the
detection of several specific Trojans [9]. The IC fingerprints are then extracted from the
side-channel signals of all path delays in the netlist, and they are proposed to be used
to classify the explicit payload and implicit payload Trojans [10]. The delay caused by
the implicit load Trojan is quite small, so small that its use renders it difficult to detect
Trojans. Since the delay path is proportional to the number of chip nodes, this method
is seldom used to test large circuits. For the large noise caused by process variation,
the multidimensional side-channel analysis is proposed for Trojan detection [11]. The
dynamic current measurement using vector generation can improve the sensitivity of
Trojan detection. To improve detection accuracy, logic testing and side-channel analysis
can be combined [12]. The probability of Trojan activation is increased by statistically
generated test vectors, while the accuracy of the detection method based on side-channel
information is improved by functional and structural analyses. Nonetheless, this method
is rarely applied for real-time detection. For Trojan detection in large circuits, the inspec-
tion can take up to ten hours. The Trojan circuit can be detected by analyzing transient
power-supply signals [13]. Although the adverse effect of process variations on Trojan
resolution is considered, the detection method is not scalable in circuit size. Methods
using temperature side-channel information of the board effectively detect the HT in the
off-the-shelf ICs, and these methods can detect a Trojan before it is triggered [14].

The golden reference of the chip is necessary for the side-channel detection methods,
but the golden references are not always available. Sometimes the EM side-channel
information in the early stage of the IC life cycle can replace the golden reference [15].
However, there is a deviation between the golden reference and the EM side-channel
signal used as the reference. This method is only proven for the detection of several
types of Trojan, and the Trojan has to be restricted to specific areas to achieve a more
concentrated EM radiation. In order to detect the HT without golden reference, an
unsupervised clustering algorithm is proposed, which is achieved by classifying the data
based on controllability and observability of the gate-level netlists information [17]. This
method only performs static analysis of the netlist without test vectors to activate the
Trojan. The gate-level netlists are not actually available in their entirety, so this method
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does not always work. The use of a self-referencing approach to detect Trojan horses
eliminates the need for the golden chip. Since the method relies on the device under
test for training, process variations do not affect its detection mechanism [18]. However,
the method requires highly precise side-channel signal acquisition, and monitoring
consumes considerable energy.

For wireless encrypted ICs, there exists a portion of Trojans that can evade the detection
of some existing methods, and the information is leaked over the wireless channel. The side-
channel information is proposed to detect whether there is information leakage through
the wireless channel [19]. The side-channel analysis is proved in the detection of HTs in the
wireless communication circuit [20]. It is experimentally derived that the impact of a Trojan
is hidden in the transmission tolerances of legitimate process variations, and is coupled to
the communication channel and noise. In addition, this method also needs the complete
design for the accurate identification of HTs.

In order to detect the HT in the wireless encryption transmitter, a non-destructive
detection method is proposed, which is based on radio frequency fingerprinting (RFF).
By analyzing the received signal in the receiver, the presence and status of HTs can be
recognized. The proposed method can work well without additional devices or components.
Moreover, for detecting HTs, updating of the system requires less cost and energy.

The remainder of this paper is organized as follows. Section 2 describes the general-
ized structure of Trojan circuits and the basic methods of RFF. Section 3 introduces the HT
identification method based on RFF in detail. Section 4 describes the wireless communica-
tion experimental platform. The experimental results evaluating the proposed detection
method are presented and discussed in Section 5. Finally, Section 6 concludes the paper.

2. Background

An HT is a malicious modification of the original circuit, and represents a hidden
autonomous circuit. When the HT is triggered, the functionality of the system will be
altered. The effects of HTs can be classified as the change of functionality, the degradation
of performances, the leakage of information, and the denial of service [21]. The data-
leakage Trojans can transmit the internal signal of the circuit to the output port, and
hide the information in the RF signal. Then the security information will be leaked to
the attacker.

Typically, an HT consists of two parts, namely the trigger and the payload [22].
Figure 1 shows a general HT. The Trojan payload is triggered only when an enabling sig-
nal is sent from the trigger. Thus, HTs are difficult to detect during the circuit verification
phase. Some HTs can be activated by specific conditions, and others can be activated after
a pre-set delay. Depending on the payload type, the Trojan can be considered as explicit
payload Trojans and implicit payload Trojans [10]. The explicit payload modifies the
internal control signals or data signals, which then changes the original function of the
circuit. The implicit payload uses the internal signals for excitation of the trigger. Accord-
ing to its working mechanism, the implicit payload Trojan does not usually destroy the
value of the internal signals after triggering, but it may reduce the overall chip life or leak
information by activating additional modules. The circuit shown in Figure 1 presents
an implicit payload Trojan. When its payload is activated, the internal signals will be
transmitted to the specific module. Most of the known data-leakage Trojans are implicit
payload Trojans, and can leak confidential system information through hidden channels.
This presents a major security risk to system security and communication security.
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Figure 1. Sequential Trojan circuit architecture.

The detection method of HTs mainly involves identifying the difference between
the Trojan-infected circuit and the golden reference. Compared to Trojan-free circuits,
the Trojan circuits cause changes in electromagnetic parameters such as leakage current
and parasitic capacitance. These changes can be observed via side-channel detection.
Meanwhile, alterations caused by the Trojans will also be indicated in the far-field wireless
signal. The proposed method uses the test modality of the wireless transmission channel.
It detects Trojan circuits using RFF which is obtained by feature extraction of the collected
wireless signals. The impact of activated Trojans in the transmitter circuit will be studied in
this paper, and the presence and operating status of Trojans will be identified via RFF. At
the receiver side, the wireless signal r(t) is mathematically expressed as

r(t) = h(t) ∗ T (sI(t) + jsQ(t)) + n(t), (1)

T (·) =
{
Tdor(·), Trigger = 0
Tact(·), Trigger = 1

(2)

where h(t) is the channel impulse response. Trigger is the activation signal of Trojan circuit.
Tdor(·) is the Trojan distortion function in dormant state. Tact(·) is the Trojan distortion
function in active state. sI(t) and sQ(t) represent the in-phase and quadrature part of the
transmitted signals, respectively. n(t) is the Gaussian white noise signal. Figure 2 shows
the time-domain baseband signal of Quadrature Phase Shift Keying (QPSK) data. The valid
signal part contains five sample frames.

The RFF is caused by device-processing errors. Transmitter-processing inevitably
introduces reasonable errors, and these errors will be reflected in the transmitted RF signal.
RFF has already been proven to be stable and unique [23]. Both explicit payload and
implicit payload Trojans can change the internal logic of the circuit, which in turn affects
the electromagnetic near field and far field. When the HT is activated, the circuit will also
become altered, and the change will be indicated in the RFF. Thus, the RFF can be used to
detect the HT in the circuit of the transmitter.
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Figure 2. IQ-captured time domain signal samples.

The RFF can be divided into transient RFF and steady-state RFF. The transient
RFF are the signal features contained in the instantaneous signal when the transmitter
is turned on or off. The extraction of transient RFF features requires a highly precise
received signal at the receiver. The steady-state fingerprint feature is the fingerprint
feature contained in the stable operation of the transmitter. The extraction of steady-state
fingerprint features does not require a relatively high-performance receiver. The RFF fea-
tures that have been proven effective are carrier frequency offset, synchronization signal
correlation value, baseband I/Q offset, and amplitude and phase offset of the demodu-
lated signal [24]. Compared to the RFF extraction methods based on expert knowledge,
the application of machine learning in RFF recognition improves the identification in
terms of accuracy without expert knowledge [25]. In this case, RFF = DNN(IQsamples).
It is well known that recurrent neural networks (RNNs) can process correlations of series
data, but the residuals returned by recurrent neural networks decrease exponentially as
the running time continues, which results in slow updating of network weights. To solve
the problem of residual descent, long short-term memory (LSTM) uses forget gate and
input gate to control the residual information. In this paper, the steady-state RFF will
be used for the detection of hardware Trojans concerning their impact on the internal
transmitter circuit.

3. Hardware Trojan Detection Based on Radio Frequency Fingerprinting

The received signals are sequential, and the features of the sequential signals should
be extracted to detect the presence and status of the Trojan. The revived RF signal is often
measured in frames, and each frame carries a specific message. Thus, the signal itself
is not only related to past-sequence information but also future-sequence information.
Since LSTM can only use past-signal information, the bidirectional LSTM (Bi-LSTM) will
be employed in this paper. The different signal modulation methods result in various
dominant features carried by different sections of the frame. The self-attention method
will be used to extract the relationship between temporal features to achieve accurate
recognition. The overall flow of the detection method is shown in Figure 3. The proposed
method is trained to learn a map F (·) to obtain the RFF feature of the wireless signal. The
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detection system is then used as a classifier to precisely identify whether the IC is infected
with a Trojan circuit based on RFF. This is formulated as

RFF f eature = F (r[n]), (3)

where F is the model-mapping function.

Label

Signal Collection

RFF Extraction

RFF Classification

Signal

Pre-processing

Multilayer Perceptron

Receiver

USRP N210

Self-attention layer

Bi-LSTM

Signal 

Frames

RF Signal

Weighted RFF

IQ Samples

Trojan-

free

Trojan-

active

Figure 3. Structure diagram of the proposed hardware Trojan-detection method.
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Bi-LSTM consists of a forward LSTM and a backward LSTM as shown in Figure 4,
which is a special neural network model designed to solve problems with dependence on
temporal relationships, consisting of forget gates, input gates, and output gates. Bi-LSTM
is used to extract the feature of RFF for accurate identification.

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

Forward

states

Backward

states

Input layer

Feature layer

Backward layer

Forward layer

Figure 4. Bi-LSTM structure.

The LSTM input comprises the output of the previous LSTM cell, ht−1, and the input
of the current cell, st. The information required to remove is controlled by the forget gate,
and is given as follows

ft = σ(W f · [ht−1, st] + b f ), (4)

where σ is the activation function. The value of σ is between 0 and 1, and is used to adjust
the nonlinear transformation. W f is the parameter of this cell. b f indicates the offset. W f
and b f are used to relate ft to the state of the previous cell. The input gates are computed
in parallel to control the content of the next LSTM cells. The input gate is

i f = σ(Wi · [ht−1, st] + bi), (5)

C̃t = tanh(Wc · [ht−1, st] + bC), (6)

where C̃t is the updated value of the previous state. i f is the input. By adding the input
gate and the forget gate, the state of the current LSTM cell, Ct, can be obtained. The output
gate needs to consider the forget gate and the input gate to determine the output value of
the current LSTM cell, ht. The output gate is calculated as

ot = σ(Wo · [ht−1, st] + bo), (7)

ht = ot ∗ tanh(Ct). (8)
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After the received signal has been processed by Bi-LSTM, the features extracted by
each cell are output in temporal order. Since the self-attention mechanism can extract the
long-distance dependencies of features, it is used to learn the temporal relations of features
extracted by Bi-LSTM. The self-attention takes a set of Bi-LSTM sequential features as the
input, and uses the Query and Key mapped by the linear layer to determine the weights of
each feature. The output of self-attention is a vector of weighted feature values as shown in
the following

βi =
n

∑
m=1

So f tmax(
qikmT
√

dk
)vm, (9)

where qi is the Query mapped by the i-th output of Bi-LSTM. km is the Key mapped by m
number of outputs of Bi-LSTM. vm is the value mapped by m number of Bi-LSTM outputs.
dk is the dimension of Query and Key, and it is used to scale. βi is the result of self-attention
for the i-th output of Bi-LSTM. Based on the Bi-LSTM model, this paper proposes an
algorithm to extract the RFF as shown in Algorithm 1.

Algorithm 1 RFF Extraction Algorithm Based on Bi-LSTM

Input: wireless signal r[n]
Output: RFF feature β

1: epoch = number of training epochs.
2: m = number of signals
3: Generate a set of training samples Dm = {(rm[n], labelm}
4: for j =1 to epoch do
5: for i =1 to m do
6: Update Forget Gate ft based on Equation (4)
7: Update Input Gate i f based on Equation (5)
8: Update LSTM Cell Ct based on Equation (6)
9: Update Output Gate ht based on Equation (8)

10: Compute self-attention vector βi based on Equation (9)
11: end for
12: end for
13: return bi-LSTM model

After obtaining the RFF features, a multilayer perceptron (MLP) is used to classify and
identify the received signal. ReLU is used to perform the nonlinear transfer to accelerated
convergence and prevent overfitting and gradient disappearance.

4. Experimental Section

In order to validate the proposed method, the programmable universal software
radio peripheral (USRP) is used to simulate the Trojan-free transmitter and the Trojan-
infected transmitter. Our experiment comprises two parts, namely the platform construc-
tion and the dataset generation. For platform construction, the FPGA development kit
we used for experimentation is ISE14.7. The USRP Hardware Driver (UHD) is 3.11.1 and
the Current Hardware Revision of N210 is 4. Narrowband-IoT (NB-IoT), a standard for
Low-Power Wide-Area Networks (LPWAN), offers longer transmission range and lower
energy consumption. QPSK (Downlink transmission scheme) and π/4-QPSK (Uplink
transmission scheme) modulation schemes are used in the physical channels of NB-IoT.
In the experiment, QPSK modulation is used. The RF receiver is set to receive a sam-
pling rate of 5 MHz to oversample the wireless signal. The carrier is set at a frequency
of 2.43 GHz.



Electronics 2022, 11, 3776 9 of 17

4.1. Experimental Platform

A wireless communication experimental platform is set up to evaluate the proposed
approach. The wireless encryption IC used in the experimental platform is USRP N210
from Ettus, which consists of a digital part and an analog part.

The digital part is a Xilinx Spartan 3A-DSP 3400 FPGA integrated into the board,
and is used as the controller circuit. The digital circuit works at a master clock frequency
of 100 MHz. From a complexity perspective, the Spartan-3A DSP 3400 chip provides
3.4 million system gates. This FPGA chip is comparable to the millions of gates of SoC
tested in real production. The RF daughterboard, as the analog part, is CBX-40. It
operates in the RF frequency range from DC to 6 GHz, and supports a maximum of
25 MHz RF bandwidth with 16-bit samples. USRP N210 uses a Dual 100 MS/s, 14-bit
ADC, and a Dual 400 MS/s, 16-bit DAC to complete the complex sampling of the signal.
This increases the maximum processing capacity of the full-duplex communication
system to 100 MS/s, while potentially improving processing latency. We performed
additional functions based on the original functions of the N210 digital part in order to
simulate the working operation of a wireless transmitter with subtle differences. With
the programmable FPGA, we implemented a Trojan-free transmitter with encryption
and a Trojan-infected transmitter on the Spartan-3A DSP 3400 chip.

4.1.1. Trojan-Free Transmitter

The Trojan-free transmitter with the function of encrypting the transmit signal is
implemented. The circuit benchmark used in this paper is AES. AES is a widely used key
encryption algorithm, and it is popular in the field of wireless communication encryption.
It should be noted that the proposed method is not limited to detecting Trojans in the AES
cryptographic circuits. The detailed implementation of the encryption circuit is based on
the AES IP core. The IP core is a sequential design with an input plaintext length of 128 bits.
A total of 10 iterations are employed, with each iteration comprising 4 phases, namely byte
substitution, row shifting, column mixing, and round key addition.

In the experiment, AES-128 with OFB mode is used. A 128-bit register is set for storing
the encrypted output. The default data sample on the USRP N210 board is a 32-bit fixed-
point number. The AES encryption module receives the plaintext in 32-bit length, and the
128-bit key is stored on the chip to encrypt the plaintext. To meet the data throughput rate
of the encrypted communication circuit N210, the AES-128 module uses pipelined parallel
computing. The setup time of the pipelined circuit requires 20 clock cycles. The top-level
module of the AES IP core includes a sub-module for performing key expansion and a
sub-module for implementing the single-round AES encryption algorithm.

4.1.2. Transmitter with Trojan

Most HT-detection methods are evaluated by the Trojan circuit benchmarks of the
trust HUB online repository [26]. The data leakage Trojan AES-T2100 is used to attack the
AES encryption module in the wireless encryption IC. This Trojan is designed to leak data
via a leakage current channel, and will be triggered after a specific number of encryptions.
It is also representative of the implicit load circuit.

To test the sensitivity of the proposed method regarding the detection of the
implicit load-numbing circuit, the triggering process of the Trojan horse is simulated.
After processing a pre-set amount of data, the Trojan horse will be activated. The
signals emitted by the transmitter with both dormant Trojan and active Trojan are
received and analyzed.

The circuit of the Trojan is shown in Figure 5. A shift register holding sensitive
information, and multiple sets of inverters comprise the load circuit of the AES-T2100
Trojan. The least significant bit of the shift register is connected to the first inverter, and
the output of this inverter is connected to another inverter. When the least significant bit
of the shift register remains low, the PMOS of the first inverter conducts. Meanwhile,
the path between the input pin of the other inverter and the ground is composed,
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and the NMOS conducts to set the output pin low. A direct path between power and
ground in each couple of inverters is composed in a limited time. This temporary
leakage current causes a direct increase in power consumption of the circuit. Sensitive
information is leaked out stealthily. The Trojan can apparently be detected by measuring
the electromagnetic information in the near field [16]. However, variations in EM energy
in the Trojan circuit will also have an impact on the emitted RF signal.

Payload

rst

AES-T2100

Q

Q
SET

CLR

D

Trigger

+

ADDERCONSTANT:1

1

+

ADDERCONSTANT:1

1

Key(127:0)

=
111...111

COMPARATORCONSTANT:1

LEAKBit

clk

trigger

plaintext(31:0)

AES(OFB)-Block
Key(127:0)

out(31:0)

Figure 5. Circuit diagram of AES-T2100 Trojan.

The lookup table (LUT) is the smallest unit-storing circuit in an FPGA circuit. The
number and percentage of LUTs utilized in the FPGA system infected by AES-T2100
Trojan are shown in Table 1. The second, third, and fourth columns of the table show
the number of LUTs utilized in the FPGA system, the LUTs utilized in the encryption
module and the LUTs utilized in the Trojan module, respectively. It can be deduced
from the table that the AES-T2100 Trojan is a subtle variation compared to the N210’s
FPGA system.

Table 1. Resource utilization of the AES circuit and AES-T2100 Trojan circuit.

FPGA Syetem LUTs LUTs for AES LUTs for Trojan

Transmitter with AES-T2100 32883 129 (0.392%) 103 (0.313%)

4.1.3. Wireless Communication System

The communication flow block diagram of the experimental platform is shown
in Figure 6. The AES-T2100 Trojan is inserted into the FPGA of USRP in the func-
tional design phase, and this USRP is used as the RF transmitter. The USRP is con-
nected to the host computer via a Gigabit Ethernet cable. With the software radio
operating on the host computer, we can easily change multiple communication stan-
dards on this experimental platform to simulate the transmitter equipment in real
communication networks.

Another Trojan-free USRP is used to receive the signal. The receiver is also connected
to the host computer. The computer is used to sort and identify the received signal to detect
the Trojan and evaluate the detection method.
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Figure 6. Trojan detection procedure along wireless communication flow block diagram.

4.2. Dataset Generation

The received signal needs to be preprocessed before RFF recognition. On the detection
side, the collected RF signal is first preprocessed by synchronization and framing to obtain
the signal with the same frame structure as the transmitter. Then, the RFF is performed on
the framed signal. The preamble sequence in the data frame structure is searched by the
correlation operation in the following

Rpr(m) =
+∞

∑
n=−∞

p(n) ∗ r(n + m) (10)

where p(n) is the preamble sequence, and r(n) is the received time-domain sequence. m is
taken as the range where there is an overlap between the two sequences after time shifting.
The calculation result Rpr(m) is the correlation sequence.

The maximum points in the correlation sequence are the candidate positions for the
preamble. Furthermore, it should be confirmed whether the interval between the maximum
points is equal to the frame length of the transmit signal. After filtering by the previous
two criteria, the framing position of the original signal is obtained from the correlation
sequence. However, for the modified target benchmark circuit, the preamble sequences
in the transmit signal are encrypted using AES in OFB mode. The segmentation between
frames becomes confused, and the Trojan-free signal and the Trojan-infested signal are then
framed according to the reliable framing position of the original signal at the same time
reference. The final obtained RF signal after framing is defined as x(n).

As mentioned in Section 2, the implicit load Trojan does not change the original
function, but adds extra logic to compromise the circuit integrity. In this experimental
platform, detection of the implicit Trojan AES-T2100 is used as an example to verify the
proposed method based on RFF.

In order to identify the status of Trojans, the proper RFF should be extracted to indicate
the distinction between circuits with subtle deviations. A dataset containing different
transmit signals is generated. Both the QPSK and triangular-wave signals are measured.
In total, more than 30,000 frames are collected for the dataset to identify the presence and
status of Trojans in the transmitter. In the experiment, the Trojan-free FPGA system and the
Trojan-infected FPGA system are burned into two USRP N210 devices, and the transmitters
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are then controlled to start communication. After that, the RF signals are received at the
detection side, and the pre-processed golden reference signal frames and the signal frames
infected with Trojan horse are stored in the dataset.

According to the Trojan-triggering process, the Trojan circuit works in the dormant and
active periods sequentially during the signal reception time. The signals are then divided
into signals from the transmitters with inactive Trojan and signals from the transmitter
with active Trojan. In this paper, these two types of signals are labeled as the HT-dormant
signal and the HT-active signal, respectively.

5. Results and Discussion

In order to evaluate the proposed method, two kinds of modulated signals commonly
applied in wireless communication are used for sorting and identification. The signals
transmitted from the Trojan-free USRP and the USRP with dormant and active Trojans are
identified using the proposed method based on Bi-LSTM.

5.1. Evaluation

The proposed detection method was evaluated in terms of both effectiveness and time
consumption. Accuracy, true-positive rate (TPR), false-positive rate (FPR), precision, and
recall are used as evaluation metrics. There are several indices for the detection method
performance: true positive (TP), true negative (TN), false positive (FP), and false negative
(FN). In the case of Trojan presence detection, TP refers to the number of correctly classified
Trojan-free signals. TN refers to the number of signals with Trojan correctly classified. TPR
is defined by TP/(TP+FN). FPR is defined by FP/(FP+TN).

The performance of the proposed method is compared with some of the latest tech-
niques based on RNN, LSTM, and MLP in Table 2. All experiments are performed on a
computer equipped with 32G memory, an Intel i7-12900 CPU and an NVIDIA GTX 3070
GPU. The received signals are fed directly into the identification network, which is an
end-to-end identification system. All networks are trained using batch-gradient descent
with a batch size of 128.

Table 2 shows that the detection accuracy of MLP model is extremely poor. It indicates
that MLP is not suitable for distinguishing Trojan signals by learning the features from the
complete signals. The general RNN and LSTM can significantly improve the classification
performance of signals with Trojan by learning the features of the time-series signals.
Compared with MLP, the improvements in RNN and LSTM likely stem from the large
number of parameters they have learned. The accuracy of Bi-LSTM is relatively high while
increasing the number of parameters. However, the 0.35M parameters of Bi-LSTM are
acceptable when compared with MobileNet(4.2M) [27] and VGG16(138M) [28] models
implemented on the FPGA platform. Although the number of Bi-LSTM model parameters
is 4.5 times greater than LSTM, it is still competitive.

The Bi-LSTM provides the highest accuracy in Table 2. The average accuracy of Bi-
LSTM is 98.9%, and the detection error rate of the Trojan is 1.625%. Compared with LSTM,
RNN, and MLP, the accuracy of Bi-LSTM is 1.1–53% more accurate. As Bi-LSTM can learn
both the forward and backward features within each frame, it performs quite well for
distinguishing devices with dormant Trojans and active Trojans.
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Table 2. Comparison between different methods.

Model Params×106 Transmission Signal Accuracy TPR FPR

MLP 0.003075
Triangular wave 42.8% 11.8% 8.95%

QPSK 46.2% 76.5% 52.3%

LSTM 0.078723
Triangular wave 95.4% 94.3% 4.1%

QPSK 97.5% 99.9% 0.25%

RNN 0.028035
Triangular wave 84.8% 80.9% 8.25%

QPSK 85.7% 78.6% 54.45%

Bi-LSTM 0.351875
Triangular wave 95.9% 94.1% 3.25%

QPSK 99.2% 100% 0%

The proposed method can be used to detect the absence of the Trojan circuit in order
to focus on high-risk devices. The identification results are shown in Table 3. It can be seen
that the identification accuracy for QPSK signals is higher than triangular-wave signals, but
both perform quite well. In addition, the detection FPR of 0 for QPSK signals indicates that
the proposed method correctly detects all Trojan samples including HT-dormant signal and
HT-active signal. Thus, the proposed method can also be used to recognize low-risk devices
and high-risk devices. For a test set with a size of 3000, the proposed method completes the
detection of triangular-wave transmission signals and QPSK transmission signals in 0.030
and 0.417 seconds, respectively. The detection of QPSK signals with a frame length of 1000
points requires substantially more time than the detection of triangular-wave signals with
a frame length of 128 points due to the high complexity of the Bi-LSTM algorithm. The
detection time-consumption indicates that the proposed method can achieve faster Trojan
detection for short-length input signals.

Table 3. Detection performance of the absent Trojan.

Transmission Signal TPR FPR Precision Recall Time(s)

Triangular wave 96.6% 2.2% 97.4% 97.4% 0.030
QPSK 100% 0% 100% 100% 0.417
Total 98.3% 1.1% 98.7% 98.7% 0.224

In order to evaluate the accuracy of the proposed method for detecting the active
status of the Trojan circuit, confusion matrices for classifying the Trojan-free signal,
HT-dormant signal, and HT-active signal are shown in Figure 7. Figure 7a shows
the classification error for QPSK signals. It can be seen that the proposed method can
recognize the status of Trojan in transmitters of QPSK signals quite well, and the accuracy
can be achieved as high as 100%. The classification error of the triangular wave signal is
shown in Figure 7b, and the diagonal data indicate the number of correctly classified
samples. For the Trojan-free signal, there are 21 samples in the classification that are
misclassified as the HT-dormant signal. For HT-dormant signals and HT-active signals,
there are 3 and 41 frames are misclassified as Trojan-free signals, respectively. It is
noticed that there is no confusion regarding the HT-dormant signal and the HT-active
signal. Therefore, the proposed method can be utilized to precisely monitor the activity
status of the Trojan for both QPSK signals transmitters and triangular-wave transmitters.
If the recognition network model is embedded in the FPGA in the receiver, real-time
detection for HT can be achieved.



Electronics 2022, 11, 3776 14 of 17

(a) (b)

Figure 7. The classification confusion matrices. (a) Confusion Matrix of QPSK Signals. (b) Confusion
Matrix of triangular-wave signals.

The detection accuracy of the Trojan status is also calculated and listed in Table 4. As
Table 4 shows, the accuracy of Trojan-state detection is 100% for both QPSK signals and
triangular-wave signals. The proposed method can identify the activated and inactivated
state of the Trojan accurately, so it can detect the moment when the Trojan is triggered
in a timely mamnner, and can accurately trigger subsequent warning and contingency
measures. Even though the proposed method has an FPR of 1.1% for detecting Trojan-
infected circuits, the method can compensate for previously performed misclassifications
by continuously operating to monitor the activation of the Trojan load in the IC.

Table 4. Detection accuracy of the Trojan status.

Status of Trojan Dormant Trojan Active Trojan Total

Accuracy for QPSK signals 100% 100% 100%
Accuracy for triangular wave signals 100% 100% 100%

Some Trojan circuits are triggered after a longer period to assist in concealing their
presence. Even some devices with Trojans are incorrectly identified as low-risk devices,
because the Trojan is not activated. Moreover, there is usually a lack of golden reference,
so the methods for identifying the status of Trojans are highly practical. Fortunately, the
proposed model can discriminate between HT-dormant signals and HT-active signals well.
Even though the proposed method cannot distinguish the presence of Trojan horses in the
circuit perfectly, it can capture the triggering of Trojan perfectly by long-term observation.
Consequently, the harm to the Trojans is reduced.

5.2. Discussion

In this paper, the RFF-based HT-detection method is evaluated and verified by iden-
tifying the measured signals. The experimental results demonstrate that the proposed
method performs effectively in detecting both dormant Trojan circuits and active Trojan
circuits. Significantly, the proposed method can detect triggering of the Trojan circuit in
time to immediately reduce any damage caused by the Trojan.

The proposed method is compared with the related works. Table 5 shows a comparison
of the proposed method, the machine-learning-based detection method at register transfer
level (RTL), the Hierarchical Temporal Memory (HTM) architecture, the co-training-based
detection method, and the learning-assisted side-channel delay analysis (LASCA) method-
ology [2,18,29,30]. The detection method at RTL is based on circuit features extracted from
the Trojan source code, so its TPR values can depend heavily on the known benchmark
Trojan circuits [2]. However, it is highly difficult to learn the operating mechanism of HTs
in practical applications. On the other hand, the circuit source code is proportional to its
design. Therefore, the detection cost is proportional to the circuit size. Nevertheless, even
for large circuits, the proposed method detects the Trojan horse only through features of the
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wireless signal. It is proved that the complexity cost of the proposed method is independent
of the circuit size.

The HTM method eliminates the need for a gold reference, and has a short-detection-
time delay [18]. Table 5 shows that the proposed method outperforms the HTM method
in terms of detection accuracy. Compared with the co-training-based detection method,
the proposed method has fewer constraints on the requirement of signal acquisition
equipment. In Table 5, some compared methods detect the HTs based on the side-channel
information of power or path delay measurement. The acquisition of these side channel
signals requires high-precision acquisition equipment. Moreover, for delay information,
calculating all possible path delays of an IC presents a time-consuming task. Meanwhile,
the huge amount of data acquired leads to a model training time of 5 h for some methods,
such as the LASCA. On the other hand, the proposed method does not require additional
acquisition equipment for detecting wireless encrypted ICs. It is also easy to integrate
into existing communication tests because it only uses the RF signals provided by the
receiver to detect the HTs. The proposed method can detect Trojans in the operating
circuit, and can detect changes in the status of the Trojan circuit in time for shorter
transmit signals (such as 128 points).

Table 5. Comparison to the existing methods.

Method Test Modality Accuracy FPR Recall Time(s)

Ours Wireless transmission channel 98.7% 1.1% 98.7% 0.224

[2] RTL code - 0% 94.94% 1.107685

[18] Power 92.2% - - 0.0072

[29] Power 93.4% - 94.7% -

[30] Path delay 87.5% 0.15% - 18,000

- means missing the value in their work.

Similar to most side-channel-based detection methods, the proposed detection
method based on RFF assumes that there is one trusted Trojan-free device. It should
be noted that it is difficult to obtain trusted Trojan-free devices in many applications.
However, in the continuous observation of the working circuit, the Trojan causes a
transient effect on the circuit whenever it is triggered. This effect can be observed
without the golden chip. Thus, for Trojans with triggers, it is easy to capture the moment
of their activation. In practice, we often have no knowledge of the triggering mechanism
of Trojan circuits. Therefore, we cannot guarantee that the signals of active Trojans and
dormant Trojans can be accurately collected. Hence, it is an effective and feasible method
to identify the presence of Trojans by monitoring the circuit.

6. Conclusions

It is widely known that the use of near-field EM side-channel information is highly
successful in detecting HTs, but the near-field information is not always easy to obtain.
In this paper, a non-destructive method for Trojan detection in wireless encryption ICs
is proposed, which employs far-field wireless signals. By extracting and identifying
the RFF of the received signals, the presence and status of Trojans can be identified.
The proposed method provides a feasible solution for the remote detection of HT. It
does not require the gate-level netlists of the IC design, saving on detection costs. The
experimental results show that the proposed method can effectively detect the presence
and status of the AES-T2100 Trojan in wireless ICs. This presents a successful attempt at
using RFF for HT detection. The proposed method can be easily integrated into a current
radio device test flow without the need for additional devices.
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