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Szczepański, C.; Krawczyk, M.;

Zajdel, A.; Borodacz, K. Quaternion

Attitude Control System of Highly

Maneuverable Aircraft. Electronics

2022, 11, 3775. https://doi.org/

10.3390/electronics11223775

Academic Editors: Imre J. Rudas,

Piotr Szymak, Stanisław Hożyń and
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Abstract: In the era of rapid advancements in manned and unmanned aviation and robotics, there is
a need for high-performance, robust attitude control of highly maneuverable fixed-wing aircraft, both
manned and unmanned (UAVs). This paper presents an extension to research on spacecraft attitude
control. The article extends existing concepts and applies them to the control problem of aircraft
operating in Earth’s atmosphere. First, a general concept of quaternions is presented. Next, the
attitude controller’s architecture is discussed. The controller synthesis is described using quaternion
algebra. The quaternion-based attitude controller is then compared with a classical Euler-based
attitude controller. The methodology for comparison and performance evaluation of both controllers
is described. Lastly, the results of the simulations and a comparison of the two controllers are
presented and discussed. The presented control scheme outperforms classical methods based on
Euler angles, particularly at the aircraft’s high pitch and roll angles.

Keywords: attitude; control; aircraft; UAV; fixed-wing; quaternions; Euler angles; avionics

1. Introduction

The objective of this paper is to present an attitude controller for fixed-wing aircraft
operating over large ranges of pitch and roll angles. The presented controller provides
desired control qualities over a wide range of flight conditions in terms of speed of response
and performance robustness. The aircraft considered in this paper is the Extra 330SC, which
is a single-seat aerobatic airplane, manufactured by Extra Flugzeugbau. The long-term
goal justifying the need for such a controller is to design a complete autopilot system
for unmanned, highly maneuverable fixed-wing strike and fighter aircraft. The attitude
controller in this context can be thought of as one of the internal control loops of the
autopilot. It means that input to the attitude controller comes from an external controller,
such as a guidance system.

Often when speaking about an aircraft’s attitude, Euler angles appear in mathematical
description. The Euler angles approach is frequently chosen because of its intuitiveness.
Although intuitive, Euler angles suffer from non-linearities and singularities, resulting in
undesired effects such as gimbal lock. Moreover, an aircraft’s control based on Euler angles
results in unwanted effects of control coupling between a rudder and an elevator for high
roll and pitch angles. This paper presents an effective way of dealing with shortcomings
associated with Euler angles by replacing them with quaternions in attitude description
and control.

A quaternion number system extends the complex number system and is applied to
describe rotations in three-dimensional space. A more stable and often simpler attitude
representation can be achieved with quaternions than with Euler angles. Quaternions’
computational stability comes from the fact that only unit quaternions are required to
describe rotations, reducing numeric errors when they are normalized. They lack the
gimbal-lock effect inherent to Euler angles because of their relationship to the axis–angle
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representation. Their mathematical simpleness comes from the fact that no trigonometric
functions are required, only arithmetic functions such as quaternion products (which are
computationally efficient). Mathematical tools associated with quaternions also prove the
advantage of quaternions over Euler angles. Linear interpolation between two rotations is
straightforward in quaternion notation, while impossible in Euler angles notation. More-
over, integrating angular rates to quaternions is much easier than integrating angular rates
to Euler angles. This article will present an efficient use of quaternions in an airplane
attitude control problem.

Research in quaternion attitude control has been conducted in the area of spacecraft
control, and its results can be found in [1–3]. This article aims to extend this control concept
and apply it to the aircraft operating in Earth’s atmosphere.

The quaternion number system extends the complex number system. A quaternion
is a four-dimensional hyper-complex number that can describe transformations in three-
dimensional space. Unit quaternions, being quaternions with a norm equal to one, are
often used to describe rotations in three-dimensional space. Publications [4–6] explain the
quaternion construct and associated quaternion algebra in more detail.

A quaternion consists of one real part and three imaginary parts. qw is called the real
part and qx, qy, qz are called imaginary parts. Equations (1) and (2) present the two most
popular quaternion notations.

q = qw + qxi + qyj + qzk (1)

q =
[
qw qx qy qz

]T (2)

The complex conjugate of a quaternion is defined as:

q =
[
qw − qx − qy − qz

]T (3)

The norm of a quaternion q is defined as:

|q| =
√

q2
w + q2

x + q2
y + q2

z (4)

The unit quaternion is a quaternion of the norm equal to one.

|qunit| = 1 (5)

The quaternion inverse is defined as:

q−1 =
q

‖q‖2 (6)

For unit quaternion, its inverse is equal to its conjugate:

qunit
−1 = qunit (7)

The quaternion product of quaternions p and q, also called the Hamilton product and
denoted by ⊗, is defined as:

p⊗ q =


pwqw − pxqx − pyqy − pzqz
pwqx + pxqw + pyqz − pzqy
pwqy − pxqz + pyqw + pzqx
pwqz + pxqy − pyqx + pzqw

 (8)

Quaternion multiplication is non-commutative in the same way as real-life rotations are
non-commutative:

p⊗ q 6= q⊗ p (9)
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All quaternions used in this paper to represent rotation or attitude are unit quaternions.
Please note that this does not apply to quaternion derivatives. Care must be taken when
calculating a product of a quaternion and a quaternion derivative since this product will
also not be unitary.

2. Materials and Methods

The entire attitude control process is performed in the quaternion form. Yaw, pitch
and roll angles are not used to control the aircraft’s attitude. The classical three controllers
(each for a separate: yaw, pitch and roll angle) have been replaced with one controller
operating on a single quaternion representing the aircraft’s attitude. The proposed con-
troller is comprised of two major parts working in a cascade. The first (external) part
consists of a single quaternion “Q_P Attitude Controller” working similarly to a classical
“P” (proportional) controller but being evaluated in quaternion space (Q_P stands for
quaternion proportional). The second (internal) part consists of three PID controllers [7]
responsible for angular rate control of the aircraft in its three axes. The inputs to the Q_P
Attitude Controller are: a desired (setpoint) attitude in the form of a quaternion, denoted
as qsp, and a measured attitude in the form of a quaternion, denoted as qmeas. Internally,
the controller calculates the attitude error, denoted as qerr, according to Equation (11). The
output of the Q_P Attitude Controller are three angular rate setpoints of the aircraft around
its three axes: x, y, z, denoted as: ωxsp , ωysp , ωzsp . The output of the Q_P Attitude Controller
(after saturation) constitutes an input to the three angular rate controllers, which are PID
controllers [7]. The PID controllers take two inputs. The first input is the setpoint angular
rate, and the second is the measured angular rate from the feedback path. The PI part of
the controller works on the angular rate error (setpoint minus measured value), and the D
part works on the measured value from the feedback path. The outputs from the angular
rate controllers are the desired angles of deflection of the aircraft’s control surfaces denoted
as: δAsp , δHsp , δVsp , which correspond to the deflection angles of the ailerons, elevator and
rudder, respectively. Feedback signals in the system consist of three measured angular
rates around the x, y and z axes denoted as: ωxmeas , ωymeas , ωzmeas , and a quaternion repre-
senting an aircraft’s measured attitude qmeas. All signals in the feedback path come from
the aircraft’s Attitude and Heading Reference System (AHRS) (Figure 1).
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It has to be noted that the presented quaternion attitude control system is not a
complete autopilot system. The presented attitude controller constitutes an inner part of
the autopilot. An outer part in a form of a guidance system (GS) is required for a complete
autopilot. The guidance system is responsible for calculating the setpoint attitude of the
aircraft based on assumed flight plan, in particular the assumed flight trajectory and flight
parameters. The attitude control system then executes the setpoint attitude calculated by
the GS. In this paper, the GS was replaced by man-generated attitude setpoints contained
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in test scenarios. In the future, we plan to make GS work fully automatically, which can be
achieved, for example, by implementing the inverse dynamics methods described in [8,9].

The assumed coordinate system of the airplane is the standard aeronautical reference
system [10], where the x-axis points to the nose of the aircraft, the y-axis points to the
right wingtip of the aircraft and the z-axis points to the bottom of the airplane’s fuselage
(Figure 2).
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This section describes the process of the Q_P Attitude Controller synthesis. We begin
with a definition of the aircraft’s attitude error. The attitude error is a difference between a
setpoint attitude and a measured attitude. Typically, in a regular PID controller operating
on real numbers, an error value is defined as a difference between the desired setpoint
(SP) and the measured process variable (PV), i.e., e(t) = SP(t) − PV(t) [7]. In the proposed
quaternion attitude controller, the attitude error quaternion qerr is calculated based on the
following relationship (10) between the setpoint attitude quaternion qsp and the measured
attitude quaternion qmeas, assuming intrinsic rotations:

qsp = qmeas ⊗ qerr (10)

Thus, after left-multiplication by qmeas we obtain:

qerr = qmeas ⊗ qsp (11)

Since two rotations can describe every attitude, we have to ensure that the attitude
error qerr is represented by the shorter of the two possible rotations. To do this, we convert
a quaternion qerr to axis–angle representation (12). In this representation, we check the
angle of rotation θerr around the axis u. If the angle is greater than 180 degrees (13), we
invert the axis of rotation and calculate a new angle of the shorter rotation θerrshort (14).

θerr = 2·acos(qwerr )

ux = qx√
1−q2

werr

uy =
qy√

1−q2
werr

uz =
qz√

1−q2
werr

(12)

If:
θerr > π (13)

then:
θerrshort = |θerr − 2π|

uxshort = −ux

uyshort = −uy

uzshort = −uz

(14)
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else:
θerrshort = θerr
uxshort = ux

uyshort = uy

uzshort = uz

(15)

Next, we need to convert the new attitude error from the axis–angle representation
back to the quaternion form (16).

qwerrshort
= cos

(
θerrshort

2

)
qxerrshort

= uxshort · sin
(

θerrshort
2

)
qyerrshort

= uyshort · sin
(

θerrshort
2

)
qzerrshort

= uzshort · sin
(

θerrshort
2

)
(16)

A faster check for the shorter rotation can be performed according to [2].
If:

qwerr < 0 (17)

then:
qwerrshort

= −qwerr

qxerrshort
= −qxerr

qyerrshort
= −qyerr

qzerrshort
= −qzerr

(18)

else:
qwerrshort

= qwerr

qxerrshort
= qxerr

qyerrshort
= qyerr

qzerrshort
= qzerr

(19)

Next, we assume that a quaternion derivative
.
qsp representing a desired (setpoint) rate

of rotation required to achieve a desired (setpoint) attitude is proportional to the attitude
error, i.e.,

.
qsp ∝ qerr. After the introduction of proportional gain Kp the setpoint rate of

rotation becomes (20):
.
qsp = Kp· qerrshort (20)

Next, we need to express the obtained setpoint rate of rotation as an angular rate
vector ωsp. The relationship between the quaternion derivative and angular rate vector in
the body reference frame is given by [6] (21):

ω = 2q⊗ .
q (21)

Thus:
ωsp = 2qu ⊗

.
qsp (22)

where qu is an unrotated unit quaternion (23):

qu = [1 0 0 0]T (23)

and its conjugate qu (24):
qu = qu (24)
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In extended form, the setpoint angular rate vector becomes (25):

ωxsp

ωysp

ωzsp

 =2·

qwu
· .qxsp

+ qxu
· .qwsp

+ qyu
· .qzsp
− qzu

· .qysp

qwu
· .qysp

− qxu
· .qzsp

+ qyu
· .qwsp

+ qzu
· .qxsp

qwu
· .qzsp

+ qxu
· .qysp

− qyu
· .qxsp

+ qzu
· .qwsp

 (25)

Thus, after simplification (26):

ωxsp

ωysp

ωzsp

 = 2·


.
qxsp.
qysp.
qzsp

 (26)

and finally (27): ωxsp

ωysp

ωzsp

 = 2·Kp·

qxerrshort
qyerrshort
qzerrshort

 (27)

The ωsp vector is an output from the Q_P Attitude Controller and input to the three
PID controllers responsible for the aircraft’s angular rate control, as shown in Figure 1.
The simplicity of the result makes the control computationally efficient and makes a direct
physical interpretation of the result possible. A fact worth noting is that, unlike Euler-
based attitude controllers, the quaternion-based controller will tend to generate a rotation
resulting in the shortest path, provided that the aircraft under consideration can achieve
the same angular rates in all three (body) axes.

The controller was fully implemented in the “C” language. An extensive quaternion
math library was created to support the required quaternion algebra. Preliminary tests
were conducted on a simple dynamic model and ran on a simulation in the “C” language.
Further tests were conducted using Simulink R2020b combined with Laminar Research
X-Plane 11 simulation environment, using a much more complex dynamic model. The
controller’s compiled “C” files were used as Simulink blocks during simulations. X-Plane
flight dynamics and dynamic airplane models were used during the simulations.

To evaluate the performance of the attitude control, the quaternion-based controller
(Figure 1) was compared to the conventional Euler-based controller (Figure 3). The Euler-
based controller operates on three Euler angles to represent the aircraft’s attitude. Therefore,
the attitude control is performed on these three angles instead of the one quaternion as it is
accomplished in the quaternion-based controller.
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control loop, and the inner control loop is the airplane’s angular rate control loop. The
outer loop consists of three proportional (“P”) controllers. The inner loop consists of three
PID controllers, a variation of a classical PID controller, as described in [7]. The outer
control loop output (after saturation) constitutes an input to the inner control loop. ϕsp,
θsp, ψsp denote setpoint roll, pitch and yaw angles, respectively. ωxsp , ωysp , ωzsp denote
setpoint angular rates in the airplane’s x, y and z axes, respectively. δAsp , δHsp , δVsp denote
commanded deflections of ailerons, elevator and rudder, respectively. ωxmeas , ωymeas , ωzmeas

on the feedback path denote measured angular rates in the airplane’s x, y and z axes,
respectively. ϕmeas, θmeas, ψmeas on the feedback path denote the airplane’s measured roll,
pitch and yaw angles, respectively. Details of the classical, Euler-based, cascaded controller
can be found in [11]. Computations required to convert from quaternion to Euler angles
are described in [5].

Both controllers were implemented in Simulink and coupled with X-Plane 11 simula-
tion environment and then tested against each other during several test scenarios. The test
scenarios were designed in such a way as to reflect real-life turn maneuvers of an airplane
performed at various roll angles. For example, the turns were simulated at the following
roll angles: 30, 60 (Figure 4), 80 and 90 degrees (knife-edge turn).
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The test scenarios were designed in the following way: each aircraft’s distinct (key)
setpoint attitude during the maneuver was given a setpoint “pose” number. The Euler
angles (psi, theta, phi) were determined for each distinct pose. Between the following
poses, time differences (delta T) were determined. Test scenarios created this way (Figure 5)
were inputs to the Simulink/X-Plane simulation.
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Each test scenario was processed in Simulink in the following fashion. First, each
setpoint pose attitude was converted from Euler angles representation to quaternion repre-
sentation. Then, intermediate poses were calculated using Spherical Linear Interpolation
(SLERP) between all distinct key poses from the scenarios. In this way, a smooth transi-
tion between key setpoint poses was obtained. A smooth attitude setpoint was therefore
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achieved. This smooth, interpolated attitude setpoint was finally fed to the inputs of the
attitude controllers (quaternion-based and Euler-based).

An Extra 330 SC airplane (Figure 6) was chosen to be simulated. A dynamic model
of the airplane for the X-Plane 11 was purchased from the official X-Plane Store. Part
number of the product: Vertigo-330SC. The fact of its use by one of the Red Bull Air Race
professional pilots, during his virtual trainings, validates the accuracy of the purchased
dynamic model.
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Figure 6. Extra 330 SC during the simulated turn.

Both attitude controllers utilized equal proportional gains. In addition, both controllers
used the same internal loop responsible for angular rate control, so the same PID gains
were automatically assured between the two controllers. Therefore, it is important when
comparing the performance of the two controllers.

To improve the robustness of the control, the outputs of the angular rate controllers
were correlated with the square of the aircraft airspeed, which comes directly from the lift
force equation [10].

3. Results

This section presents the results of the performed simulations. The simulations con-
sisted of turns performed at 30-, 60-, 80- and 90-degree roll angles by the quaternion-based
and the Euler-based controllers. For each simulated turn, two types of plots are presented—
the setpoint tracking performance plot and the tracking error plot. The setpoint tracking
performance plots illustrate the setpoint attitude and the measured attitude achieved by
the two controllers, presented in the form of Euler angles (ψ, θ, ϕ). The tracking error plots
illustrate tracking errors in yaw, pitch and roll for both controllers.

First, the turns at a 30-degree roll angle were simulated, with the results as shown in
(Figures 7 and 8).
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At the 30-degree roll angle, both controllers perform the turn very well. The quaternion-
based controller has a slight edge in tracking yaw and pitch angles, though.

Next, the turns at a 60-degree roll angle were simulated, with the results as shown in
(Figures 9 and 10).
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At the 60-degree roll angle, both controllers also perform well. Once again, the
quaternion-based controller has a slight edge in tracking yaw and pitch angles.

Next, the turns at an 80-degree roll angle were simulated, with the results as shown in
(Figures 11 and 12).

At the 80-degree roll angle, the difference in the performance of the two controllers
becomes apparent. The quaternion-based controller performs significantly better with
a much tighter tracking of yaw and pitch angles. The Euler-based controller performs
worse than the quaternion one due to the couplings: rudder–pitch, and elevator–yaw in the
aircraft’s control. The Euler-based controller does not “understand” that at high roll angles,
the rudder controls the pitch angle, and the elevator controls the yaw angle. Due to its
architecture and mathematical properties of quaternions, the quaternion-based controller
“understands” this phenomenon and is able to perform proper and efficient control of
the aircraft.
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Lastly, the turns at a 90-degree roll angle were simulated, with the results as shown in
(Figures 13 and 14).

At the 90-degree roll angle, the difference in the performance of the two controllers
becomes even more significant. The quaternion-based controller continues to perform
better and better as the roll angle increases, compared to the Euler-based controller. It is
due to stronger rudder–pitch and elevator–yaw couplings as the roll angle increases.

Because the dynamic model was purchased and there was no insight into it, the
experimental stability analysis of the controller was performed. The quaternion-based
controller response was evaluated at various attitudes and various setpoints resulting in
attitude errors spanning from 0 to 180 degrees in all three Euler angles. The experimental
stability analysis did not show any unstable areas in the system.
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The proposed controller outperforms the Euler angle-based controller. The difference
in performance between the two controllers becomes larger as the pitch and roll angles of
the aircraft’s maneuver increase. Where Euler-based attitude control is sufficient at low
pitch and roll angles, it becomes lacking at high angles, mostly due to the elevator and
rudder couplings. The major advantage of the quaternion approach reveals itself at high
roll and pitch angles. The major difference in the setpoint tracking is observed in the yaw
and pitch channels. There is no relevant difference in the setpoint tracking for the roll
channel between the two controllers. This is because the roll is the last rotation in Euler
angles and is equivalent to the aircraft’s rotation around its x-axis.
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4. Conclusions

The controller can be successfully employed to control manned and unmanned aerial
vehicles operating at high pitch and roll angles. In addition, a slightly modified version of
the controller can be used to control cruising missiles and space rockets. Some preliminary
tests were conducted in this direction, employing a Matlab simulation of an ILR-33 Amber
sounding rocket, with great results.

Quaternion attitude control, counterintuitively, can be less complex than Euler angle
control since a single quaternion represents a single rotation. In contrast, a single set of
Euler angles represent three consecutive rotations, adding to the complexity of the control.
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