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Abstract: The most common problems with magnetic cores in high-stress applications are changes in
their permeability and low saturation flux density, forcing designers to use special nanocrystalline
cores, which raises the overall cost of the circuit. This paper evaluates the performance of a low-
cost magnetic material composed of unsaturated polyester la mination resin COR61-AA-531EX and
200 mesh iron powder with a grain size of 74 µm, which has magnetic properties of the so-called “soft
magnetic composites”, which have good magnetic characteristics in high-frequency and high-stress
applications. This composite material was used for the elaboration of magnetic cores for the inductors
of a resonant converter, which aims to achieve a high power factor, where in this type of application,
there are large current and voltage excursions in the magnetic components that vary between high
and low frequencies, being a suitable application for testing the inductors with a magnetic core
of resin/iron powder. The converter was designed to operate off-resonance at different switching
frequencies from 300 kHz to 800 kHz to feed a resistive load with a power output of 19 watts. The
operation of the circuit was experimentally validated using a resistive load at the output, validating
the theoretical analysis and achieving a power factor above 98%.

Keywords: soft magnetic composites; high-frequency magnetic components; magnetic powder cores;
resonant converters; core losses

1. Introduction

The development of electronic systems has been constant, with advantages in areas
such as switched-mode power supply systems, electronic ballasts, filters, etc. Nowadays,
designers have focused on reducing cost and size and increasing energy efficiency to
achieve good use of energy and extend the life of electronic devices [1,2]. The use of
new semiconductor materials for the creation of integrated circuits and other devices has
made it possible to significantly reduce the size of any type of electronic system [3,4].
Regarding losses in semiconductor devices, there are soft-switching techniques that greatly
reduce this drawback, allowing them to operate at high frequencies to reduce the size of
passive elements [5–7]. The problems of losses due to magnetic materials are the most
difficult to deal with and have led designers to try different materials in the construction
of cores for the magnetic components of power converters [8–10]. Currently, the most
commonly used magnetic components for high-frequency applications use ferrite, air, and
nanocrystalline magnetic cores [1–13]. The problem with using ferrite cores is that they have
a low saturation flux density, typically between 0.2 and 0.5 T, whereas air-core inductors
have drawbacks with unwanted stray inductances, causing electromagnetic interference
that can affect nearby devices [14–16]. Regarding the nanocrystalline cores, these belong
to the category of the so-called “soft magnetic composites”, which have presented good
magnetic properties such as high saturation flux density, high permeability, and a high
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Curie temperature, in addition to being more resistant in structure compared to ferrite
cores [17,18].

The problem with these nanocrystalline cores is their high cost, which causes the
converter to raise its total price and does not comply with the economic saving desired
by consumers [11,19]. Due to the above, in this paper, we evaluated the performance of a
type of soft magnetic material composed of resin and iron powder, which presented good
magnetic properties at a high frequency and was also low cost, proving to be a suitable
material for the elaboration of the magnetic components of converters operating with
switching frequencies above 100 kHz.

As a method for evaluating the performance of this magnetic material, the resonant
converter shown in Figure 1 was implemented, operating off-resonance at different switch-
ing frequencies from 300 kHz to 800 kHz to feed a resistive load of 19 watts at the output,
where the inductor “La” was built with a toroidal core made of this soft magnetic material
composed of resin and iron powder. The reason the experimental tests were performed
at different operating frequencies was to check if the permeability of the magnetic cores
composed of resin/iron powder varied with the frequency since it is well known that one of
the problems of magnetic components is the changes in the permeability of their magnetic
cores in applications where high operating frequencies are required [20–22].
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Figure 1. High power factor LC series resonant converter implemented to test the performance of 
magnetic cores made of resin/iron powder composite material. 

To further stress the test magnetic cores, it was decided that the converter should 
operate off-resonance to obtain higher peak currents circulating in the resonant tank since, 
by operating off-resonance, the peak currents are higher compared to operating at reso-
nance. In addition, in order to further stress the test inductor, it was decided that the pro-
posed resonant converter would operate as a power factor corrector, which leads the cir-
culating current in the resonant network to increase and decrease as the line voltage in-
creases and decreases [23,24], generating higher magnetic field excursions that would sat-
urate a conventional magnetic core [25]. Figure 2 shows the current waveform difference 
in the resonant network of a resonant converter with a VDC source at the input and another 
resonant converter operating as a power factor corrector. 

  

Figure 1. High power factor LC series resonant converter implemented to test the performance of
magnetic cores made of resin/iron powder composite material.

To further stress the test magnetic cores, it was decided that the converter should
operate off-resonance to obtain higher peak currents circulating in the resonant tank since,
by operating off-resonance, the peak currents are higher compared to operating at resonance.
In addition, in order to further stress the test inductor, it was decided that the proposed
resonant converter would operate as a power factor corrector, which leads the circulating
current in the resonant network to increase and decrease as the line voltage increases
and decreases [23,24], generating higher magnetic field excursions that would saturate
a conventional magnetic core [25]. Figure 2 shows the current waveform difference in
the resonant network of a resonant converter with a VDC source at the input and another
resonant converter operating as a power factor corrector.
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The main contribution of this paper is to show the performance of this soft composite
magnetic material in the construction of high-frequency magnetic cores to provide an
option to the scientific community for selecting the appropriate material, satisfying the
needs of cost, size, and energy efficiency. In addition, the analysis of this resonant converter
with a high power factor operating off-resonance is presented, where the operation is first
validated in a simulation and then experimentally in order to show that the established
design methodology is correct.

2. Development of the Resin/Iron Powder Composite Core
2.1. Good Magnetic and Mechanical Properties

We decided to elaborate magnetic cores with this composite material of unsaturated
polyester laminate resin COR61-AA-531EX and iron powder Mesh 200 with a grain size
of 74 µm due to the good characteristics provided by each of these materials. Regarding
the resin, this is an organic binder that presents characteristics such as excellent toughness,
excellent fiberglass wet-out, high-temperature resistance, and low-laminate exothermic
composition, which results in good mechanical properties (mechanical strength, plasticity,
toughness) for the creation of magnetic cores in comparison with ferrite ceramic cores that
are very brittle and very sensitive to temperature [26–28]. In addition, as shown in Figure 3,
the resin provides insulating coatings for the iron powder particles, resulting in an increase
in the electrical resistivity of the material, which greatly reduces the eddy currents in the
core and provides a distributed air gap formed by binders, which reduces core saturation
and increases magnetic flux density [29,30].
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Figure 3. Proposed toroidal core with distributed air gap composed of resin and iron powder particles.

Regarding the magnetic characteristics, these are given by the iron powder particles,
which are a ferromagnetic material with a grain size of 74 µm that benefits from low
coercive forces that help to reduce the demagnetization fields and have narrower hysteresis
cycles with lower energy losses in the core. The size of the iron powder particles is very
important because if they are too small, the core will have poor fluidity and magnetic
properties, and if they are too large, the compaction of the magnetic core will be difficult. A
particle size between 50 and 100 µm is suitable for this type of application [31–33].

2.2. Manufacturing of the Proposed Toroidal Core

The manufacturing process consisted of using silicon molds in the shape of a toroidal
core to give the size and shape to the proposed magnetic cores. The cores were manufac-
tured with different percentages of iron powder from 55 to 85%. It was necessary to weigh
the iron powder and resin to create the different cores with different percentages of iron
powder. After determining the weights corresponding to each material, they were mixed
with an organic binder and a catalyst to ensure uniformity, then the mixture was introduced
into the silicon molds, followed by cold compaction to help form the toroidal shape. The
last step was the machining process of the cores to eliminate imperfections. Figure 4 shows
the cores after machining.
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Figure 4. Toroidal magnetic cores elaborated with the composite material after machining.

3. Determination of the Permeability of the Magnetic Cores with the
Proposed Material

After manufacturing the toroidal cores, it was necessary to determine the relative
permeability of each core. For this purpose, the inductive method proposed by the ASTM
A772/A772M standard for toroidal-shaped cores was applied [34]. This standard indicates
that two windings must be applied to the toroidal core with the same number of turns
and then an alternating current must circulate in the primary winding. Figure 5 shows the
magnetic cores with the two windings already applied, and Figure 6 graphically illustrates
this procedure.
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Figure 6. Proposed method with ASTM A772/A772M standard.

In order to apply the ASTM A772/A772M standard equations, it was necessary to
obtain measurements of the core geometry: the magnetic path length “Lm” and cross-
sectional area “Ac”. Figure 7 shows these measurements graphically; the equation to
determine the length of the magnetic path is determined as follows:

lm =
π(Do + Di)

2
(1)

where Do is the outside diameter and Di is the inside diameter, as shown in Figure 6.
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As shown in Figure 6, it was necessary to generate a high-frequency sinusoidal current,
which was generated by implementing the resonant inverter, as seen in Figure 8, where
the inductor of the resonant network contains the test core and must be in resonance with
the capacitor. The design of the resonant inverter takes into account the inductance of the
primary winding of each inductor “Lp”, where the reactance of this inductor should be of
the same value as the reactance of the capacitor “Cp”. The value of the resonant capacitor is
determined as follows:

Cp =
1

ωo2Lp
(2)

where ωo represents the angular frequency.
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In order to determine the relative permeability of the cores that were made using the
ASTM A772/A772M standard, it was necessary to do some circuit measurements such
as the RMS current flowing in the primary winding and the RMS voltage induced in the
secondary winding. These values were measured with a digital oscilloscope as shown in
Figure 8. With the corresponding measurements, it is possible to determine the maximum
magnetic flux density “Bmax” and the maximum magnetic field intensity “Hmax”, defined as

Bmax =
1

n2 Ac

T∫
0

V2(t)dt (3)

where V2(t) represents the voltage induced in the secondary winding.

Hmax =
n1ip(t)

lm
(4)

where ip(t) represents the current flowing in the primary winding.
By solving and simplifying Equations (3) and (4) in terms of RMS values, the equations

indicated by the ASTM A772/A772M standard are obtained:

B′max =
VRMS√

2π frn2 Ac
(5)
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where VRMS represents the RMS voltage in the secondary winding, fr is the resonance
frequency, Ac is the cross-sectional area of the core, and n2 is the number of turns in the
secondary winding.

H′max =

√
2n1 IRMS

lm
(6)

where IRMS represents the RMS current in the primary winding, n2 is the number of turns
in the primary winding, and lm is the length of the magnetic path.

Equations (5) and (6) are used to determine the relative permeability of the cores,
defined as

µr =
Bmax

Hmaxµo
(7)

where µo represents the magnetic permeability of the vacuum (4π × 10−7). Figure 9 shows
the graph with the obtained values of B and H at the switching frequency of 100 kHz and
1 MHz, and Figure 10 shows the variation in the relative permeability of each core, with
different percentages of iron powder in the range of switching frequencies from 100 kHz to
1 MHz. As shown in Figure 9, the resulting plots at the two switching frequencies follow a
linear trend, very similar to the hysteresis plot of the air-core inductors, where the relative
permeability is equal to 1 and there is no magnetic hysteresis loss due to the absence of
hysteresis cycling. In addition, the linear trend shown in the graphs in Figure 9 indicates
that the magnetic permeability of the cores does not vary with increasing H or frequency.
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switching frequency range from 100 kHz to 1 MHz.

Figure 10 shows the variation in the relative permeability in each core operating in the
switching frequency range from 100 kHz to 1 MHz. As can be seen, the relative permeability
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values in each core do not vary greatly, which shows that these cores made with the resin
and iron powder composite material are suitable for high-frequency applications and can be
used in the construction of magnetic components of converters that operate in a switching
frequency range between 100 kHz and 1 MHz.

4. Analysis of the Circuit

The first harmonic approximation (FHA) method was used for the analysis of the cir-
cuit in Figure 1, which is a modeling technique used to analyze the performance of resonant
power converters, where it is assumed that only the first harmonic signal contributes to the
power transfer [35,36]. This analysis has been studied and reported many times; therefore,
the procedure is not included in this paper but can be found in detail in [37,38].

Power Factor Correction

In this section, the analysis of the resonant converter that achieves a high power factor
operating off-resonance is developed. The circuit in Figure 11 is considered, where “Req”
represents the equivalent of the rectifier stage, the output capacitor, and the load. The
procedure to determine this equivalent resistance can be found in detail in [39] and is
determined by Equation (8).

π2RL
8ηreq

(8)

where RL represents the load at the output and ïreq is the efficiency of the full-bridge
rectifier at the output. As shown in Figure 11, the voltage that is coming out of the input
rectifier is defined as

vr =|VL sin ωLt| (9)

where VL represents the peak value of the line voltage. Figure 11 also shows the voltage
that is coming out of the input rectifier that is being applied to the input of the resonant
tank, defined as

vrec(t) = {|VLsin(Lt)|0 < t < T/20 T/2 < t < T (10)

where T represents the switching period of the inverter and ωL the angular frequency of
the line voltage.
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The fundamental voltage at the inverter switching frequency is defined as

v1 =
2VL
π
| sin ωLt| sin(ωt + φ) (11)

where φ represents the displacement angle and is defined as

φ = tan−1 (XL − XC)

Req
(12)



Electronics 2022, 11, 3761 8 of 17

With the fundamental voltage applied to the resonant tank determined by Equation (11),
a voltage divider is applied to the equivalent resistor “Req” determining the instantaneous
current delivered by the input rectifier, defined as

irec(t) =
2VL

π
√

R2
eq + (XL − XC)

2
| sin ωLt| sin(ωt + φ) (13)

As the applied voltage to the resonant tank is defined by Equation (10), the instanta-
neous current delivered by the input rectifier “Irec(t)” is defined as

irec(t) = {Ir|sinωLt|sin(t + φ)0 < t < T/20 T/2 < t < T (14)

where Ir represents the maximum current delivered by the input rectifier and is defined as

Ir =
2VL

π
√

R2
eq + (XL − XC)

2
(15)

Figure 12 shows the instantaneous current delivered by the rectifier “Irec(t)” and the
maximum current “Ir”. The instantaneous power that is entering into the class D inverter
is defined as

prec(t) = vrec(t)irec(t) = {VLIr|sinωLt|sin(t + φ)0 < t < T/20 T/2 < t < T (16)
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Equation (16) is integrated to find the average power in a high-frequency cycle:

Prec =
VL Ir |sin ωLt|

2π

π∫
0

sin(θ + φ)dθ = VL Ir |sin ωLt|
2π [− cos(θ + φ)]π0 =

= VL Ir |sin(ωLt)|cos φ
π

(17)

From Equation (17), it is possible to obtain the average high-frequency current deliv-
ered by the rectifier, which is defined as

IL =
Ir cos φ

π
(18)

The instantaneous current delivered by the rectifier at a low frequency is defined as

i′r = IL
∣∣sin(ωLt)

∣∣ (19)

Figure 13 shows the average current “IL” and the instantaneous current “i’r”, both
in green.
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With Equations (19) and (9), it is possible to calculate the instantaneous power deliv-
ered by the rectifier at a low frequency, which is defined as

pr = vri′r = ILVL
∣∣sin(ωLt)

∣∣2 (20)

Equation (18) is substituted in (20):

pr =
IrVL cos φ

π
| sin(ωLt)|2 (21)

Equation (15) is substituted in (21):

pr =
2V2

L cos φ

π2
√

R2
eq + (XL − XC)

2
| sin(ωLt)|2 (22)

Equation (22) is integrated to find the average power delivered by the rectifier at
low frequency:

Pr =
2V2

L cos φ

π3
√

R2
eq+(XL−XC)

2

π∫
0

sin (θ′)2dθ

=
V2

L cos φ

π3
√

R2
eq+(XL−XC)

2

[
θ′ − 1

2 sin 2θ′
]π

0
=

V2
L cos φ

π2
√

R2
eq+(XL−XC)

2

(23)

where θ’ is replacing (ωLt). The apparent power coming out of the input rectifier is found.
With Equation (9), the RMS voltage of the input rectifier is determined and defined as

VRMS =

√
1
π

π∫
0

V2
L sin(θ′)dθ′ = VL

√
1

2π

[
θ′ − 1

2 sin 2θ′
]π

0
=

= VL√
2

(24)

Considering Equation (19), the RMS current of the input rectifier is determined and
defined as

IRMS =

√
1
π

π∫
0

I2
L sin (θ′)2dθ′ = IL

√
1

2π

[
θ′ − 1

2 sin 2θ′
]π

0
=

= IL√
2

(25)

Equation (18) is substituted in (25):

IRMS =
Ir cos φ√

2π
(26)
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The apparent power that is coming out of the input rectifier is determined by multi-
plying Equations (24) and (26) and is defined as follows:

Sr = VRMS IRMS =
VL Ir cos φ

2π
(27)

Equation (15) is substituted in (27):

Sr =
V2

L cos φ

π2
√

R2
eq + (XL − XC)

2
(28)

Assuming 100% efficiency in the input rectifier, the power factor is expressed as follows:

PF =
Pr

Sr
→

V2
L cos φ

π2
√

R2
eq+(XL−XC)

2

V2
L cos φ

π2
√

R2
eq+(XL−XC)

2

= 1 (29)

5. Design Methodology

In order to validate the above equations, a design methodology is proposed in this
work to test the operation of this converter. Table 1 shows the operating parameters of the
converter for the experimental tests and Table 2 presents the proposed design methodology
for a switching frequency of 500 kHz, which is verified in the simulation in Section 6.

Table 1. Design parameters for experimental tests.

Parameter Description Value

Vin Input voltage 127 VRMS
Vout Output voltage 27 Volts
Po Output power 19 Watts
fsw Switching Frequency 300–800 kHz

Table 2. Design methodology for a switching frequency of 500 kHz.

Parameter Description Equation Value

RL Load V2
o

Po
38 Ω

Io Output current Vo
RL

720 mA
Ir Maximum resonant tank current 2VL

π
√

R2
eq+(XL−Xc)

2
1.60 A

IL High-frequency average current Ir cos φ
π 200 mA

Cr Freewheeling capacitor IL
20VLωL

154 nF
nreq Rectifier efficiency 1

1+
Vf
Vo

0.96

Req Equivalent resistance π2RL
8ηreq

29.16 Ω

Q Quality factor XL
Req

4

L1 Complementary inductor in resonance QReq
ωo

37 µH

Lout Complementary off-resonance inductor Req

√
1

M2 −1
ωo

20.76 µH

La Resonant inductor L1 + Lout 57.76 µH
Ca Resonant capacitor 1

ω2
o L1

2.73 nF

PF Power factor
V2

L cos φ

π2
√

R2
eq+(XL−Xc)

2

V2
L cos φ

π2
√

R2
eq+(XL−Xc)

2

≈100%
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6. Simulation and Experimental Results
6.1. Simulation of the Circuit

In order to validate the design methodology, the resonant converter circuit shown in
Figure 1 was simulated in the software OrCAD PSpice with the values shown in Table 2.
The simulation time was 500 ms, which ensures the stability of the output voltage. The
simulation results are shown in Figures 14–17.
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Figure 17. Voltage and current plots of the AC source at the input of the resonant converter simulated
in SPICE.

Figures 14 and 15 show the output voltage and current, which present a low-frequency
ripple characteristic of single-stage power-factor-correcting circuits [40,41]. Figure 16 shows
the output power, which complies with the design parameter given in Table 1. Figure 17
shows the AC source voltage and current at the input of the converter, which shows that the
incoming current is very close to a sinusoidal shape and is in phase with the voltage signal.
In addition, Figure 17 shows the maximum current value “IL” calculated in Equation (18),
which coincides with the values shown in the design methodology in Table 2.
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6.2. Experimental Results

The circuit in Figure 1 was implemented to experimentally validate the design method-
ology in Table 2 and test the performance of inductors with different magnetic cores in
the resonant tank at different switching frequencies from 300 kHz to 800 kHz. Figure 18
shows the resonant converter circuit used to perform the experimental tests. For the experi-
mental tests, current (TCP0020) and differential voltage (THDP0200) probes and a digital
oscilloscope (DPO2014B) from TEKTRONIX were used.
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Figures 19–21 show the oscilloscope captures taken during the corresponding mea-
surements in the experimental tests to validate the operation of the circuit. Figure 19 shows
the output voltage, output current, and output power measurements, which comply with
the design parameters in Table 1. These measurements show that the resonant converter
is operating properly and that the design methodology established in Table 2 is correct.
Figure 20 shows the input voltage and input current of the converter. As can be seen,
the input current waveform is very close to a sinusoidal shape and is in phase with the
voltage. This measurement shows the low distortion of the input current with which it
is possible to obtain a high power factor. Figure 21 shows the waveforms corresponding
to the drain-source voltage of the MOSFET M2 and the current through the resonant tank
operating off-resonance. In the experimental tests, different toroidal inductors with differ-
ent magnetic cores were used to identify the power losses in the resonant tank. For this, a
power subtraction was performed between the power coming out of the inverter Pout(inver)
and the power entering the output rectifier Pin(bridge). The equation to determine the losses
in the resonant tank is defined as follows:

Ptank = Pout(inver) − Pin(bridge) (30)
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Figure 22 shows in blocks the locations where these measurements were performed
in the converter. The toroidal cores used were those created with the composite material
with iron powder percentages of 85%, 80%, and 75%. Since we wanted to compare the
performance of these cores, they were compared with the following cores: a toroidal powder
core Kool Mµ from Magnetics (Hong Kong), NiZn ferrite toroidal core from Fair-Rite, and
toroidal air core, where the toroidal air core was manufactured with a mixture of organic
binder and catalyst without iron powder. The dimensions of the cores correspond to those
shown in Figure 7. Figure 23 shows the power losses in the resonant tank with each core
operating in a switching frequency range from 300 kHz to 800 kHz with an output power of
19 watts, as established in Table 1. Figure 24 shows the variation in the converter efficiency.
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Figure 23. Power losses in the resonant tank at different switching frequencies.
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Figure 24. Efficiency in the resonant converter with inductors using different magnetic cores.

As shown in Figures 23 and 24, the magnetic core with the highest losses and lowest
efficiency was the 85% iron powder core, and the core with the lowest losses and highest
efficiency was the Kool Mu core from magnetics. It is interesting to see that using the core
with 75% iron powder resulted in better circuit efficiency than when using the air core
and also better efficiency than when using the ferrite core with a switching frequency of
600 kHz to 800 kHz. These results show that a higher percentage of iron powder in the
composite material results in higher core losses, whereas in the air-core inductor, despite
having no core losses, the losses increase due to stray inductances that change the required
inductance, generating higher losses during switching, as well as wiring losses and parasitic
capacitances that increase with the number of turns and the switching frequency. Figure 25
shows the number of turns for the required inductance at each switching frequency, where
the air core needed the highest number of turns.
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Other measurements were taken to evaluate the power factor and total harmonic
distortion in the input current using each test core. For these measurements, the AC
Power source/Analyzer 6812B from Agilent (Santa Clara, CA, USA) was used, which is
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designed for applications requiring precise control, accurate measurements, and analysis
of single-phase and three-phase AC power. High-power-factor values were obtained at
all switching frequencies, but we decided to show the results operating at the highest
switching frequency since the effect of the stray inductances in the air-core inductor was
observed there, which presented the lowest power factor due to the increase in the current
phase shift angle. Table 3 shows the power factor and THD levels using each core at a
switching frequency of 800 kHz. As shown in Table 3, the inductors with magnetic cores
made of the resin/iron powder composite material presented very similar THD and power
factor values to those of the inductors with commercial ferrite and iron powder cores,
avoiding unwanted stray inductances in the circuit.

Table 3. Total harmonic distortion (THD) and power factor (PF) at 800 kHz switching frequency in
the input current.

Inductor THD Power Factor

85% Fe 14.46 98.97
80% Fe 14.53 98.96
75% Fe 14.67 98.94
Ferrite 14.39 98.98

Kool Mµ 14.46 98.97
Air 19.50 98.15

7. Conclusions

The magnetic cores made with the resin and iron powder composite material proved
to be suitable for high-frequency applications since, as shown in Figure 10, the relative
permeability of the cores did not change significantly in frequency ranges from 100 kHz
to 1 MHz. These cores also showed no saturation or inductance changes during the
experimental tests in frequency ranges from 300 kHz to 800 kHz, complying with the
design parameters of the resonant converter previously established in Table 1 and achieving
high-power-factor values, as shown in Table 3, demonstrating that the design methodology
and circuit analysis were correct. During the experimental tests, it was observed that a
mixture of resin and 75% iron powder can be an option for the manufacturing of toroidal
magnetic cores for high-frequency applications since, as shown in Figures 23 and 24, the
75% iron powder core presented better performance than the commercial ferrite core at
switching frequencies from 600 kHz to 800 kHz and better performance than the air-core
inductor at all switching frequencies. Therefore, it can be concluded that resin and iron
powder composite cores can be an option in high-frequency applications, especially at
frequencies above 600 kHz since their permeability does not vary with the frequency, they
have a distributed air gap, their performance is very similar to commercial powder cores
but with low-cost manufacturing, and they can replace air-core inductors since they have
lower stray inductances due to higher magnetic permeability, which helps to avoid changes
in the inductance of the magnetic components, avoiding inconveniences such as in the case
of resonant converters, where a change in the inductance in the resonant tank generates
higher switching losses due to a higher current phase shift.
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