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Abstract: The recent increase in renewable energy adoption has enhanced the penetration rate of
electronic equipment, leading to an increased risk of wideband oscillations. Existing wide-area
measurement systems mainly focus on fundamental phasors, which cannot effectively monitor
wideband oscillations. This study presents an accurate wideband oscillation monitoring method
based on radial basis function (RBF) neural networks and Taylor–Fourier transform (TFT). First,
discrete Fourier transform is used to obtain a preliminary estimation of the oscillation signal, and
then, TFT is adopted to obtain a precise estimation even under dynamic conditions. To reduce the
computational burden of TFT, an RBF neural network is used for noise intensity estimation, which
adaptively determines the window length. Finally, the proposed method is verified by synthetic data
and the field data collected from Guyuan and Hami, China. The experimental results show that the
RBF neural network has an excellent denoising effect. When the signal-to-noise ratio is 45 dB, the
maximum overall phasor error and the maximum frequency error are 1% and 0.01 Hz, respectively.
Hence, it is expected to be useful for next-generation monitoring systems.

Keywords: wideband oscillation; wide-area measurement system; oscillation parameter identification;
Taylor–Fourier transform; radical basis function neural network

1. Introduction

In recent years, numerous renewable energy sources, such as wind and solar, have been
connected to the power grid by using power electronic equipment [1–3], gradually forming
a ‘double-high’ power system characterised by a high proportion of renewable energy
and a high proportion of power electronic equipment [4,5]. However, weak disturbance
rejection, low inertia, and strong coupling caused by power electronic equipment have
severely affected the safe and stable operation of power systems [6], which can easily
cause wideband oscillation accidents. For example, the doubly fed induction generators in
Texas, USA, caused sub-synchronous oscillation (SSO) accidents for oscillation frequencies
of 20–30 Hz [7,8]; a sub-and super-synchronous oscillation accident occurred in Hami,
China [9]; an oscillation accident at the frequency of 1.4 kHz occurred in the France–Spain
networking project. Such incidents may lead to equipment damage, tripping of renewable
energy units, and a wide region of power failures. According to the proposal of China’s
‘dual carbon’ target, renewable energy penetration will further increase in the near future
and the ability of the grid to withstand wideband oscillations will be further challenged [10].

Model-based methods, such as time-domain simulation and state-space modelling,
have been widely used for wideband oscillation analysis [11]. However, these methods
have a common challenge: accurate system models at wideband frequencies are not easily
accessible. Consequently, measurement-based monitoring and analysis have garnered
considerable attention. Corsi et al., reported that for uncertain system models, constructing
a wide-area monitoring system for wideband oscillations is an effective means of analysing
oscillation characteristics [12]. Analyses can be conducted based on monitoring data,
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including oscillation risk assessment, root-cause analysis, and countermeasure design
Refs. [13–15]. Moreover, constructing a wideband oscillation monitoring system is the
hardware foundation for real-time early warning, control, and protection.

Wide-area measurement systems based on phasor measurement units (PMUs) have
been used in power systems worldwide. However, the PMU only focuses on the fundamen-
tal phasor [16,17], which makes it challenging to meet the demands of wideband oscillation
monitoring. To address this issue, researchers must update the PMU algorithm to make
it applicable to wideband measurements. At present, the common methods of wideband
oscillation monitoring include the Fourier transform, wavelet transform, Hilbert–Huang
transform (HHT), Kalman filter, and Prony. In [18,19], the windowed interpolated discrete
Fourier transform (IpDFT) was combined with filters for oscillation parameter estimation,
which is accurate for stationary signals. However, this method fails when the oscillation
signals are non-stationary. In [20,21], wavelet transform was applied to process time-variant
signals; however, this resulted in low resolution when multifrequency components were
processed. In [22,23], the HHT algorithm was employed to identify oscillation parameters,
but the endpoint effect and mode-mixing related to HHT were not addressed. In [24,25], a
Kalman-filter-based algorithm was used to track wideband harmonics; however, the algo-
rithm requires many predefined parameters and is computationally expensive. In [26,27],
a morphological filter was combined with the wavelet transform and Prony algorithm to
improve the anti-noise performance. In [28], intrinsic time-scale decomposition (ITD) was
utilised for monitoring the subsynchronous oscillation, which is simple and feasible for
real-time monitoring. However, a relatively stationary signal was considered for all the
aforementioned algorithms. The stationarity assumptions lead to large errors for wideband
oscillations with strong time-variant characteristics.

The Taylor–Fourier transform (TFT) method performs better because of its dynamic
phasor model; therefore, it is efficient in wideband oscillation monitoring [29]. However,
the TFT algorithm requires a long window length [30] or an elegant filtering preprocess [31]
because it is very sensitive to noise. As indicated in extensive tests, mitigating the influence
of noise on TFT by using conventional filtering methods is challenging unless a very high-
order filter is used. However, the high-order filter significantly increases the calculation
time, and the delay degrades the real-time performance of the TFT method. Therefore,
increasing the window length is still the most effective way to enhance the performance of
TFT under noisy conditions.

This paper presents an adaptive-window-length-based TFT for wideband oscillation
monitoring. The idea is to adaptively determine the TFT window length based on the
estimated noise level. As a result, the computational and dynamic performance of wide-
band oscillation monitoring can be optimised. The main contributions of the paper are
summarized as follows.

(1) A radial basis function (RBF) neural network is adopted to estimate the noise level,
which can approximate any nonlinear function with arbitrary precision and has the
advantages of global approximation capacity, compact topology, and fast convergence.

(2) An adaptive window length is designed based on the noise level. The window length
is designed to be longer when the SNR is low, which strikes a good balance between
dynamic performance and estimation accuracy.

(3) Numerous simulation tests are conducted with field data from Guyuan and Hami
incidents. The results indicate that the proposed method is feasible and robust for
practical applications.

The remainder of this paper is organised as follows. Section 2 explains the principle
of TFT. Section 3 describes the improved TFT based on the adaptive window length.
Sections 4 and 5 present the verifications performed by using synthetic and field data.
Finally, Section 6 concludes the paper.
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2. Principle of TFT

The time-domain model of a wideband oscillation signal is

x(t) =
M

∑
m=1

Am(t) cos(2π fmt + φm(t)) + N(t), (1)

where Am(t), fm, and Φm(t) are the peak value, frequency, and initial phase of the mth signal
component, respectively; N(t) is the noise of the system; M is the total number of signal
components; and t is time.

Sampling x(t) with frequency fs can result in the following sampled discrete phasor model:

x(n) = Re

(
M

∑
m=1

pm(n)ejωmnTs

)
, (2)

pm(n) = Am(nTs)ejφm(nTs), (3)

where ωm is the angular frequency of the signal, pm(n) is the phasor of the mth signal
component, n = −Nw, . . . , 0, . . . , Nw, and Ts is the sampling period.

Expanding phasor pm(n) by applying k-th order Taylor series expansion at zero yields

pm(n) ≈ pm(0) + p′m(0)·nTs + · · ·+
pm
(k)(0)

k!
·(nTs)

k, (4)

where k is the order of the Taylor expansion.
According to Euler’s formula, Equation (2) can be written in the matrix form:

X =
1
2

BP, (5)

where X is the sampling sequence of the wideband oscillating signal, B is the base vector
matrix of the TFT, and P is the column vector composed of each derivative of the phasors
and their column vectors of the conjugate terms, expressed as follows:

X = [x(−Nw), · · · , x(0), · · · , x(Nw)]
T , (6)

P = [ph1, · · · , phm, · · · , phM]T , (7)

B = [B1, · · · , Bm, · · · , BM]. (8)

phm and Bm are given by (9) and (10), respectively, and * represents the conjugate
operator.

phm =
(

p(k)m (0), · · · pm(0), pm(0)
∗, · · · , p(k)m (0)∗

)
, (9)

Bm =



(−nTs)
k

k! e−jωmnTs · · · e−jωmnTs ejωmnTs · · · (−nTs)
k

k! ejωmnTs

...
...

...
...

...
...

0 · · · 1 1 · · · 0
...

...
...

...
...

...
(nTs)

k

p! ejωmnTs · · · ejωmnTs e−jωmnTs · · · (nTs)
k

k! e−jωmnTs


. (10)

According to matrix theory, the least squares method can be used to find P

P̂ =
(

BHWB
)−1

BHWX, (11)
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where H is the Hermitian operator, and W is the weighted diagonal matrix, which is used
to reduce the influence of high-frequency interference. The formulas for calculating the
peak value, phase, and frequency of the wideband oscillating signal are as follows:

Âm(0) = 2abs
(

ph(0)m (0)
)

φ̂m(0) = angle
(

ph(0)m (0)
)

ˆfm(0) = fm0 +
Im
(

ph(1)m (0)e−j ˆφm(0)
)

πÂm(0)

(12)

3. Improved TFT with Adaptive Window Length
3.1. Initial Frequency

The composition of the basis vector matrix, B, shows that the performance of the TFT is
dependent on the initial frequency. An inaccurate judgement of the number of frequencies
can cause TFT failure. By contrast, if the initial frequency is closer to the actual frequency,
the parameters identified by the TFT are closer to the real parameters. Therefore, in this
study, discrete Fourier transform (DFT) was applied to determine the initial frequency. To
reduce the influence of spectrum leakage and the picket fence effect, the window function
and interpolation algorithm were used. The Hamming window was selected owing to its
stable passband and fast decay in the stop-band, and the triple-spectrum-line interpolation
algorithm was adopted for the interpolation [32]. Note other algorithms such as EMD
algorithm and Prony algorithm can also be used to estimate the initial frequency. The
reason we selected the DFT is due to its efficiency and robustness.

As the windowed interpolation of the DFT cannot completely eliminate the picket
fence effect and spectrum leakage, an initial frequency with a low accuracy may still
be obtained. Therefore, the frequency obtained by Equation (9) is substituted back into
Equation (10) to update matrix B iteratively, and the corresponding parameters are recalcu-
lated by applying Equation (9). Theoretically, the TFT results become more accurate with
more iterations, but the computational efficiency will decrease accordingly.

3.2. Window Length

The weighted least squares method is used in Equation (11) to calculate vector P,
which requires substantial computation and a long operation time for a long window.
Therefore, the required data-window length should be minimized. However, vector P
contains many high-order derivative terms that are sensitive to noise, and when the noise
is large, a large amount of data is preferred to ensure accuracy. Therefore, the data-window
length of the TFT algorithm should be determined by considering both the noise intensity
and computational cost. Based on this analysis, an adaptive window length method based
on the estimated noise intensity is proposed. The steps are as follows:

• Fitting signals using RBF neural network algorithms;
• Extracting the noise by comparing the sampled and fitted waveforms, and then

estimating the signal-to-noise ratio (SNR);
• Determining the data-window length based on the SNR.

3.2.1. Denoising Using RBF Neural Network

Unlike traditional fitting methods, artificial neural networks have a small dependence
on the system’s model and high fault tolerance, making them especially suitable for dealing
with complex nonlinear problems and approximating any function; therefore, the neural
network method is used to fit the signal. The RBF neural network has a simple structure,
high speed, and high fitting accuracy, which is well-suited for denoising [33].

The RBF neural network is a three-layer feedforward network consisting of input,
hidden, and output layers. Its structure is shown in Figure 1, where X is the input layer, xi
is the input vector, R is the hidden layer, ri is the neuron, wj is the weight vector, and F is
the output layer space. An RBF neural network uses a radial basis function as the activation
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function, which directly maps the input vector space to the hidden layer. Therefore, the
hidden layer is nonlinear, whereas the output layer is linear.

Figure 1. Structure of the RBF neural network.

Equation (13) shows the key step of the RBF neural network.

f (x) =
v

∑
j=1

wjφ
(∥∥x− xj

∥∥), (13)

where f (x) is the output of the output layer, which can be obtained by the weighted
summation of the output of the neurons in the hidden layer; φ

(∥∥x− xj
∥∥) is the activation

function of the hidden layer, mostly a Gaussian function, as shown in (14); and x0 represents
the centre point of the radial basis function.

φ(‖x− x0‖) = exp

(
−‖x− x0‖2

2σ2

)
, (14)

where σ is the variance.
Let the output of the output layer be the expected response of the input vector recorded as

FT = ( f1, f2, · · · , fu); (15)

then,
φij = φ

(∥∥xi − xj
∥∥)

WT = (w1, w2, · · · , wv)
(16)

Hence, Equation (15) can be rewritten as
φ11 φ12 · · · φ1v
φ21 φ22 · · · φ2v

...
...

...
...

φu1 φu1 · · · φuv


︸ ︷︷ ︸

Φ


w1
w2
...

wv


︸ ︷︷ ︸

W

=


f1
f2
...
fu


︸ ︷︷ ︸

F

. (17)

where the signal used for training is the sampled noise signal. From Equation (17), the
output layer can be obtained as

ΦW = F. (18)

If Φ is reversible,
W = Φ−1F. (19)
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If Φ is not reversible, W can be solved with pseudo inverse. Because K-means cluster-
ing algorithm is efficient and scalable, this paper uses K-means clustering method to adjust
the basis function center. The steps are as follows:

• Network initialization: g training samples were randomly selected as the cluster center
ci (i = 1, 2, 3, . . . , g).

• The input training sample sets are grouped according to the nearest rule: The in-
put samples are assigned to each cluster set ζ p(p = 1, 2, 3, . . . , P) according to the
Euclidean distance between the input samples and the cluster center.

• Re-adjust cluster centers: Calculate the average value of training samples in each
cluster set, i.e., the new cluster center ci. If the new cluster center no longer changes,
the resulting ci is the final base function center of the RBF neural network. Otherwise,
return to the previous step for iteration.

After outputting the result ci, the weights of the hidden layer and the output layer
need to be adjusted by least squares. The adjustment formula is:

w = exp(
(

M
c2

max

)∥∥∥xg − cn

∥∥∥), (20)

where cmax is the maximum value of the cluster center, g is the number of samples, n is the
number of nodes in the hidden layer.

Because RBF neural networks increase computational complexity and reduce real-time
performance, long windows should be avoided when fitting. Only one fundamental period
of data was used for noise estimation in this study.

3.2.2. Noise Intensity Estimation

The noise data can be obtained by subtracting the original waveform from the waveform
fitted by the RBF neural network, and the SNR can be obtained according to Equation (21), with
units of dB.

SNR = 10 log10

(
PS
PN

)
, (21)

where PS and PN are the power of the signal and noise, respectively.

3.2.3. Determining the Window Length

When SNR is high, less amount of data is required and vice versa. The number of data
used for TFT is determined through trial and error, and authors did a lot of tests to find
the optimal window length under different SNRs. It is found that the TFT algorithm needs
5 cycles for the SNR higher than 40 dB and 10 cycles for the SNR lower than 15 dB. For the
SNR between 15 and 40, the window length is designed as Equation (22). If the result is
decimal, a rounding operation is performed:

Win =


fs
5 , SNR ≤ 15(

195−3×SNR
15

)
× fs

50 , 15 < SNR < 40
fs
10 , SNR ≥ 40

. (22)

The required window length in this study was always between five to ten fundamental
cycles for a 50 Hz system. This method slightly reduces the dynamic performance of the
algorithm when the SNR is low but significantly improves the accuracy under noisy
conditions. Therefore, our method strikes a good balance between dynamic performance
and estimation accuracy. Note that the window-length function in Equation (22) can be
adjusted according to monitoring needs.

3.3. Flowchart of the Proposed Method

An overall flowchart of the algorithm is shown in Figure 2. First, the order of Taylor
expansion and the number of iterations of the TFT are determined; then, fast and noise
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intensity estimation of the sampling sequence is performed to obtain the initial frequency
and window length, respectively. Finally, frequency, amplitude, and phase parameters are
calculated through iterations based on the TFT.

Figure 2. Process of the proposed algorithm.

4. Simulations Verification
4.1. Performance Assessment Standard

The C37.118.1-2011 IEEE standard [34] was used to evaluate the total vector error
(TVE) and frequency error (FE) of the results obtained by different algorithms. The TVE
and FE are defined as follows:

TVE(n) =

√√√√(
X̂r(n)− Xr(n)

)2
+
(
X̂i(n)− Xi(n)

)2

(Xr(n))
2 + (Xi(n))

2 , (23)

FE =
∣∣∣ f − f̂

∣∣∣, (24)

where Xr(n) and Xi(n) are the real and imaginary parts of the real value of the phasor at time
n, respectively; X̂r(n) and X̂i(n) are the real and imaginary parts of the estimated phasor
at time n, respectively; and f and f̂ are the true and estimated values of the frequency,
respectively.

4.2. Simulation Signal Test

The sub-synchronous oscillation is taken as an example to verify the effect of the
proposed algorithm. The simulation signal is shown in Equation (25) and 40 dB Gaussian
white noise is added. The waveform is shown in Figure 3. The Taylor Fourier is of second
order and it is iterated three times.

y = cos(2π × 49.73t +
3
4

π) + 0.1× e0.1t cos(2π × 24t +
1
3

π) (25)
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Figure 3. Waveform diagram of the simulation signal.

The window length corresponding to an SNR of 40 dB was five fundamental cy-
cles, and the fitting results are shown in Figure 4. The overall phasor error percentage
and frequency error of the fundamental frequency components are 0.17% and 0.003 Hz,
respectively, and those for the SSO components are 1.78% and 0.35 Hz, respectively.

Figure 4. Comparison between the actual and fitting waveforms.

To further verify the effect of the proposed method under complex working conditions,
the PMU test standard in the C37.118.1-2011 IEEE standard was applied and the following
simulation was designed: the noise level in each simulation was varied from 15 to 60 dB.

(1) Amplitude-modulation dynamics

In real situations, the amplitude variation of the SSO may be complicated by various
factors. In this example, the amplitude is modulated by a sinusoidal variation, and the
modulation level of the amplitude is set to 10%. The signal model is given by Equation (26),
and the results are shown in Figure 5.

y = cos(2π × 49.73t + 3π/4)+
0.1× (1 + 0.1× cos(2πt)) cos(2π × 24t + π/3)

(26)

Figure 5. Errors under amplitude modulation test. (a) Overall phasor error, (b) Frequency error.
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(2) Frequency-ramp dynamics

In an actual oscillation accident, the SSO frequency may drop or climb continuously;
therefore, the slope function is taken as an example to simulate, and the signal model
is as shown in Equation (27). The frequency component of the SSO component was
superimposed with a linear term of 10 t, and the simulation results are shown in Figure 6.

y = cos(2π × 49.73t + 3π/4)+
0.1 cos(2π × 24t + π/3 + 10πt2)

(27)

Figure 6. Errors under frequency ramp test. (a) Overall phasor error, (b) Frequency error.

(3) Frequency-modulation dynamics

In an actual power system, the change in the SSO frequency is not always linear, and
the frequency can be sinusoidally modulated. The modulation signal is shown in Equation
(28), where the frequency is superimposed with the sine term −10 sin (2π × 0.1 t). The
simulation results are shown in Figure 7.

y = cos(2π × 49.73t + 3π/4)+
0.1 cos(2π × 24t + π/3 + 100 cos(2π × 0.1t))

(28)

Figure 7. Errors under frequency modulation test. (a) Overall phasor error, (b) Frequency error.

(4) Multi-mode wideband oscillations

Multiple oscillation components may exist in wideband oscillation; for example, there
may be harmonics and interharmonics simultaneously, and the dynamic process of each
signal component is different, complicating the working conditions and increasing the
requirements of the monitoring algorithm. The simulation signal of this example is shown
in Equation (29) and the specific parameters are shown in Table 1. The simulation results
are displayed in Figure 8.

y = A1 cos(2π × 24t + φ1(t)) + A2 cos(2π × 49.73t + φ2(t))+
A3 cos(2π × 76t + φ3(t)) + A4 cos(2π × 248.65t + φ4(t))+
A5 cos(2π × 521t + φ5(t)) + A6 cos(2π × 845.41t + φ6(t))

(29)
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Table 1. Signal Parameters.

Serial Number p.u. Rad

1 0.1e0.1t π/3 + 100 cos (0.2πt)
2 1 + 5/12 cos (0.24πt) 0.75π + πt2

3 0.1e0.1t −100 cos (0.2πt)
4 0.1 7π/12 + 5πt2

5 0.1e0.15t 7π/36 + 10πt2

6 0.1 5π/3 + 17πt2

Figure 8. Error under multi-mode wideband oscillations. (a) Overall phasor error, (b) Frequency
error.

4.3. Discussion of Algorithms

1. The simulation results show that the proposed algorithm has superior dynamic perfor-
mance, as it can cope with dynamic change process and maintains its accuracy under
high noise levels. Theoretically, the dynamic performance improves with the Taylor
expansion order, but the higher expansion order increases the computation cost.

2. The phasor and frequency errors of the power frequency component are much smaller
than those of the other signal components because the power frequency component
has a larger amplitude and is less affected by noise. According to the measure-
ment standards for power frequency phasors given in IEEE Std. C37.118.1-2011, the
maximum overall phasor error and maximum frequency error are 1% and 0.01 Hz,
respectively. A combination of Figures 5–8 reveals that the proposed algorithm fully
satisfies this requirement.
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3. The TFT algorithm is extremely dependent on the initial frequency, and the oscillation
signal may be too noisy to be identified by the IpDFT algorithm at the early stage of
oscillation, which may collapse the TFT algorithm. Therefore, the sampling signal can
be pre-processed using the proposed algorithm.

4. The data-window length also has a significant influence on the TFT algorithm. If the
dynamic performance needs to be improved, specific choices can be made accord-
ing to scenario requirements, and accuracy can be sacrificed to further reduce the
window length.

4.4. Comparison of Algorithms

In this section, the proposed algorithm is compared with the IpDFT and the matrix
pencil method (MPM). The window length of the MPM was consistent with the window
length of the proposed algorithm, and singular value decomposition was performed.
Taking the ramp change in the SSO frequency as a comparison example, the simulation
settings are consistent with Equation (27), and the comparison results are shown in Figure 9.

Figure 9. Comparison with other algorithms. (a) Overall phasor error, (b) Frequency error.

The comparison results show that when identifying the sub-synchronisation com-
ponents with nonlinear frequency changes, the error of the identification results of the
IpDFT and MPM is larger because the two algorithms average the oscillation parameters in
the window. Therefore, these algorithms are more suitable for linearly changing signals
but cannot be adapted to nonlinear signals. In the identification of steady-state power
frequency components, the identification results of the two are inferior to those of the
proposed algorithm, mainly because noise and the data-window length have a greater
impact on the IpDFT and MPM.
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To show the fitting effect of the RBF neural network, this study compares locally
weighted regression smoothing (LWRS), the Chebyshev II digital filter, and the wavelet
algorithm with the RBF neural network. The signal model is as follows:

y = cos(2π × 49.73t + 3π/4 + 10πt2)+
0.1e0.1t cos(2π × 24t + π/3) + 0.15e0.2t cos(2π × 76t)

(30)

where 15 dB of white Gaussian noise is added to the simulation signal. In addition, for
observation convenience, the sampling rate was reduced to 1600 Hz. The fitting order of
the LWRS algorithm is the second order. Additionally, the window length is 15 cycles, the
passband frequency of the Chebyshev II filter is 80 Hz, the passband ripple is 0.1 dB, the
stopband frequency is 81 Hz, and the stopband attenuation is 80 dB. The wavelet algorithm
adopts the dmey wavelet, and the number of decomposition layers is set to 3. The fitting
comparison is shown in Figure 10, and the error comparison is depicted in Figure 11.

Figure 10. Comparison of fitting results.

Figure 11. Comparison of errors.

The fitting results and the error comparison chart show that the fitting error of the RBF
neural network is smaller, the SNR estimation is more accurate, and there is no complicated
parameter setting process.

The above test was conducted in the MATLAB platform (MATLAB version: 697
R2016(a), PC with 8.00 GB RAM and 3.60 GHz Intel(R) Core 698 (TM) CPU) manufactured
by Intel Corporation in Santa Clara, USA. When the signal contains a small number of har-
monic or interharmonic signals, the computational efficiency of the proposed algorithm is
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high. For example, when the signal contains only sub-synchronous oscillation components,
the calculation time of the proposed algorithm is about 0.06 s, whereas the calculation time
of the MPM algorithm and the IpDFT algorithm is about 0.25 s and 0.002 s, respectively.
However, when there are a large number of harmonics or interharmonics in the signal,
such as six oscillation components, the calculation time of the proposed algorithm becomes
0.11 s, while the calculation time of the MPM algorithm and the IpDFT algorithm is not
changed. The calculation efficiency of the proposed method is related to the signal complex-
ity, and the main reason is that the dimension of matrix B composed of Taylor Fourier basis
vectors in TFT algorithm is greatly increased with the number of oscillating components.
As a result, calculating the solution of vector P will be very time-consuming.

5. Field Data Verification

In this section, the performance of the proposed method is verified and compared
with IpDFT and MPM using the real-life wideband oscillation data collected from Guyuan,
Hebei, and Hami, Xinjiang. The power grid structure of Guyuan is shown in Figure 12. The
current at the Guyuan is shown in Figure 13, and the identification results are presented
in Figure 14. The power grid structure of Hami is shown in Figure 15. The current at the
Hami is shown in Figure 16, and the identification results are presented in Figure 17.

Figure 12. Wind farm system in Guyuan, Hebei.

Figure 13. Current waveform of a wind farm in Guyuan.
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Figure 14. Results of parameter identification. (a) Frequency identification results, (b) Amplitude
identification results.

Figure 15. A power grid structure of Hami region.
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Figure 16. Current waveform of a wind farm in Hami.

Figure 17. Results of parameter identification. (a) Frequency identification results, (b) Amplitude
identification results.
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According to the RBF fitting results, the noise intensities at the Guyuan and Hami
stations are approximately 30 dB and 55 dB, respectively. However, because of the low
sampling rates of the fault recorders of the Guyuan and Hami stations (only 3200 Hz and
1200 Hz, respectively), the data-window length slightly increases to 10 cycles.

The identification results show that only sub-synchronous oscillation occurred in
Guyuan, while the Hami station had sub- and super-synchronous components at the same
time. It can be seen that the performance of the proposed method is close to MPM, while
the result obtained by IpDFT has large differences with the other two. Comparatively,
the frequency and the magnitude identified by the proposed method are most smooth,
which indicates a reliable identification. According to post accident analysis, the causes
of oscillation accidents in Guyuan and Hami are different. The former one is caused by
the interaction between the doubly fed induction generator and the fixed series capacitor,
while the latter is caused by the control interaction between the direct-drive wind turbine
generator and the weak system. However, regardless of the type of oscillation accidents,
the amplitude of the oscillation increases rapidly in a short time, which may endanger the
system’s safe and stable operation.

6. Conclusions

This paper presents an improved TFT method for wideband oscillation monitoring
with an adaptive window length. First, DFT was used to obtain the initial frequency
parameters, and the RBF neural network was used for fitting and denoising to obtain the
noise intensity and adaptively determine the data-window length. Finally, TFT was used
to iteratively extract the oscillation parameters based on the obtained window length and
the initial frequency.

The proposed method has been verified by extensive field data collected from real-
world incidents. The results show that the RBF neural network algorithm has a good
fitting performance and the dynamic performance of TFT under adaptive window length is
satisfactory. When the SNR is 45 dB, the maximum overall phasor error and the maximum
frequency error are 1% and 0.01 Hz, respectively. The proposed method is not limited
to oscillation monitoring but can also be extended to other fields such as power quality
and transient analysis. How to reduce the computation burden and realize the real-time
monitoring will be the focus of the future research.
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