
����������
�������

Citation: Zhang, Z.; Zhang, P. A

Scalable Montgomery Modular

Multiplication Architecture with Low

Area-Time Product Based on

Redundant Binary Representation.

Electronics 2022, 11, 3712. https://

doi.org/10.3390/electronics11223712

Academic Editor: Thomas Walther

Received: 19 October 2022

Accepted: 7 November 2022

Published: 13 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Scalable Montgomery Modular Multiplication Architecture
with Low Area-Time Product Based on Redundant
Binary Representation
Zhaoji Zhang and Peiyong Zhang *

School of Micro-Nano Electronics, Zhejiang University, Hangzhou 310058, China
* Correspondence: zhangpy@zju.edu.cn

Abstract: The Montgomery modular multiplication is an integral operation unit in the public key
cryptographic algorithm system. Previous work achieved good performance at low input widths by
combining Redundant Binary Representation (RBR) with Montgomery modular multiplication, but it
is difficult to strike a good balance between area and time as input bit widths increase. To solve this
problem, based on the redundant Montgomery modular multiplication, in this paper, we propose
a flexible and pipeline hardware implementation of the Montgomery modular multiplication. Our
proposed structure guarantees a single-cycle delay between two-stage pipeline units and reduces the
length of the critical path by redistributing the data paths between the pipelines and preprocessing
the input in the loop. By analyzing the structure and comparing the related work in this paper,
our structure ensures a lower area-time product while achieving a controllable and small area
consumption. The comprehensive results under different Taiwan Semiconductor Manufacturing
Company (TSMC) processes demonstrate the advantages of our structure in terms of flexibility and
area-time product.

Keywords: montgomery modular multiplication; scalable architecture; low-area design; cryptosystems;
redundant binary representation

1. Introduction

Many public key cryptosystems such as Rivest–Shamir–Adleman (RSA), elliptic curve
cryptography (ECC), and sm9 require a lot of modular multiplication. Conventional
modular multiplication is an expensive operation, as it requires division; this would take a
lot of time and space to implement in hardware. What’s more, for RSA, some operands
can even reach 8192 bits, which means there is no suitable solution for traditional modulo
multiplication methods. To solve this problem, Montgomery Modular Multiplication
(MMM) [1] has been raised, which is an efficient method for calculating large integer
modular multiplication by replacing the modular operation with a simple shift operation
for hardware systems.

Several efforts have been made to optimize MMM’s hardware implementation. Some
papers mainly focus on using different multiplication algorithms such as the Karatsuba
multiplier [2] or the Toom–Cook multiplier [3], which will lead to a high-performance word-
based MMM design. Fast Fourier Transform (FFT) [4], Residue Number System (RNS) [5],
and Non-least Positive Form [2] are also introduced for accelerating. Meanwhile, others
tend to trade off between performance and area as when giving a large input width, it will
cause an extremely high cost in hardware. Digital-serial implementations are proposed
using high radix MMM, such as a radix-4 architecture using lookup tables [6] or booth
encoding [7]. Radix-8 architecture uses booth encoding [8] and typically improves schemes
based on carry-save adder (CSA) for the radix-2 system [9,10]. Some optimization has also
been made on the CSA architecture [11–13]. However, many implementations for a low area
cost have problems with their long carry chains, which will highly impact the performance

Electronics 2022, 11, 3712. https://doi.org/10.3390/electronics11223712 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11223712
https://doi.org/10.3390/electronics11223712
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11223712
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11223712?type=check_update&version=2

Electronics 2022, 11, 3712 2 of 14

of MMM. Although several high-performance adders such as the Kogge–Stone adder [14],
carry-skip adder [15], carry-select adder [16], and Reverse Carry Propagate adder [17] are
trying to solve this problem, they either have a higher demand for area or cannot meet all
radix requirements. Some optimization [18,19] are made in achieving one-cycle latency
pipeline word-based MMM by rearranging the basic pipeline algorithm in [20], but they do
not change the basic algorithm’s iteration and pay much effort on scheduling. In that case,
Ref. [21] has proposed a Redundant Binary Representation MMM (RBR-MMM) algorithm
to solve the carry-chain problem by bringing the operations of MMM into the redundant
system, which successfully eliminates the long carry chain and improves the performance
of MMM.

Although the RBR-MMM method reaches a balance of performance and cost when
the input width is 256 bits or 1024 bits, there will be an enormous area cost when the
input width becomes large as a reason for RBR-MMM’s parallel design, which costs a
large number of multipliers. RBR-MMM’s critical path delay is mainly dependent on the
k parameter, typically when k is small; this design can reach a high frequency, but for
advanced technology to reach a low latency, we always choose to have a larger optimized
multiplier, so the RBR-MMM’s ‘ATP’ (Area-Time Product) (kGates ∗µs) will be unacceptable.
Moreover, its high memory bandwidth requirement problem along with high bit width
input is critical.

To solve the RBR-MMM’s problem, in this paper, we first propose a hardware suitable
pipeline RBR-MMM (PRBR-MMM) to lessen the high area cost when the input width is
large. Then, we optimized the RBR-MMM to reach a one-cycle delay between two pipeline
stages. Finally, we take the critical path in each stage in two paths and precalculate the first
path by using our pipeline buffer, and this leads to an almost 2/3 critical path compared
with basic RBR-MMM, which will make up for a large part of the delay caused by the
pipeline. As a result, our pipeline previous calculated RBR-MMM design (PPCRBR-MMM)
has the following features:

• Low and customizable area cost: our area cost is mainly affected by the pipeline-stage-
num. When using a memory outside our module, area cost will be lower by storing
the temporary result outside.

• Small critical path: our critical path is smaller by cutting calculating into precalculate
quotient logic and multiplication-shift logic.

• Low memory bandwidth requirement: compared with RBR-MMM, which needs whole
operators simultaneously, our design only needs two words every cycle and only writes
one word out. The word size is determined by the multiplier used in our design.

• Low and customizable latency: we adapt the algorithm to the pipeline to prevent the
2-cycle delay between each stage. Latency will be determined by the stage num and
input width.

2. Algorithm Fundamentals

A redundant binary representation is a numeral system that uses more bits than
needed to represent a single binary digit. In that case, an RBR allows addition without
using a typical carry, which will prevent the long carry-chain in MMM system [16]. What is
more, different from another redundant system-RNS [5], RBR is easy to covert from normal
representation, making MMM’s operand’s translation simple. A typical 22k RBR number X
with its component xi can be expressed as (1).

X =
n−1

∑
i=0

xi · 22ki, xi ∈ {0, 1, . . . , 22k+1 − 1}; (1)

When changing a simple operand into the above-mentioned system, we only need to
divide data into 2k bits and let the Most Significant Bit (MSB) be zero. The RBR-MMM takes
the above-mentioned expression into the MMM system and prevents the transformation
between redundant numbers and nonredundant numbers during the iteration. As many

Electronics 2022, 11, 3712 3 of 14

public-key systems call MMM several times, only one additional cycle for transformation
is needed to get the final result. The RBR-MMM algorithm is described in Algorithm 1. By
representing the operands in the calculation process with redundant bases, RBR-MMM
makes the carry in the algorithm iteration process directly stored in the intermediate result
without additional conversion. At the same time, because o itself is also a redundant binary
representation, no extra carry is generated in the process of calculating o for each iteration.
The carry propagation problem in modular multiplication is solved by converting the carry
into a redundant number. The proof of Algorithm 1 has been provided by [21]; we only
discuss its critical path and area consumption in this paper.

Algorithm 1 Basic Radix-2k RBR-MMM (k ≥ 2).
INPUT:X, Y, M, M′; 0 ≤ X, Y ≤ 2M;

M is prime; X,Y,M are in RBR:
X = ∑n−1

i=0 xi · 22ki, xi ∈ {0, 1, . . . , 22k+1 − 1};
Y = ∑n−1

i=0 yi · 22ki, yi ∈ {0, 1, . . . , 22k+1 − 1};
M = ∑n−1

i=0 mi · 22ki, mi ∈ {0, 1, . . . , 22k − 1};
M′[k− 1 : 0] = −M−1mod 2k;

OUTPUT: O = XY2−2knmod M; 0 ≤ O ≤ 2M;

1: O = 0, O′ = 0;
O = ∑n−1

i=0 oi · 22ki, oi ∈ {0, 1, . . . , 22k+1 − 1};
O′ = ∑n−1

i=0 o′i · 22ki, o′i ∈ {0, 1, . . . , 23k+2 − 1};
2: ys1 = y0[2k− 1 : k], ys0 = y0[k− 1 : 0], yc0 = y_s0[2k];

o′−1 = 0, o′n = 0;
3: for j = 0 to 2n− 1 do
4: o = o0 mod 2k;
5: x = x0 mod 2k;

//computing quotient logic
6: qj = (((o + ysj · x) mod 2k) ·M′)mod 2k;

//parallel computing o’
7: for i = 0 to n− 1 do
8: o′i = (oi + ysj · xi + qj ·mi);
9: end for

//parallel computing shift right logic to cal new_o
10: for i = 0 to n− 1 do
11: oi = o′i−1[3k + 1 : 3k] + o′i [3k− 1 : k] + o′i+1[k− 1 : 0]� k;
12: end for

//convert y to binary representation
13: if j%2 == 1 do
14: {yc j+1

2
, ysj+2, ysj+1} = y j+1

2
+ yc j−1

2
;

15: end if
16: end for
17: return O

In Algorithm 1, M′ is precalculated for the reason that MMM will be called several times
using the same M, so there is no need for us to calculate M′ in our algorithm; n should be an
integer that is determined by M. Usually, we take n as n = [m+2

2k] + 1, where m bits is the bit
width of M. Thus, we can get that the cycles for hardware to do a single RBR-MMM with the
precalculated M′ can be expressed as (2), which is determined by the k value.

Electronics 2022, 11, 3712 4 of 14

loop = 2 · [m + 2
2k

] + 2; (2)

Meanwhile, we can get RBR-MMM’s critical path by reviewing the main operands in
Algorithm 1, take computing quotient logic as an example. From Figure 1, we can see that
the max delay is created by two k bits multipliers and a half adder; thus, its path is rough
(3k + 2[k

3]) · TFA, where TFA is the delay of a full adder, we can quickly get a full critical path
in (3). Finally, let us look at the RBR-MMM’s area consumption: for computing quotient
logic, there will be about two k bits multipliers and one k bits adder used as computing
quotient is needed one time for j-loop. However, for parallel computing s′ and shift right
part, n k bits × 2k bits multipliers, k bits × 2k + 1 bits multipliers, 3k + 1 bits full adder, and
2k bits adder are demanded.

Ttotal = ((3k + 2[
k
3
]) + (2k) + (3k + 2 + [

2k + 1
3

])) · TFA

≈ (10k + 3) · TFA;
(3)

It can be seen from the above analysis that the critical path length of RBR-MMM is only
related to the k value. This means that in the case of low input bit width, the parallelized
RBR-MMM algorithm can achieve better frequency and lower area through lower k. In the
case of high input bit width, the algorithm can also meet higher frequency requirements
through a lower k value. When input bits are high, which generally occurs for RSA in
high-speed encrypt system, area cost of RBR-MMM will not be decreased due to its parallel
implementation. If high speed is needed, there may not be several 2k bits multipliers for this
unit to use. Another problem is that there will be more additional cycles for RBR-MMM to
read its input and write its output back to memory, so an area scalable structure to prevent
high cost and keep a good ATP is recommended, which leads us to mix the typical pipeline
design with RBR-MMM. Our PPCRBR-MMM system will be discussed in the next section.

o0[k−1:0]

ysj[k−1:0]

x0[k−1:0]

M'[k−1:0]

qj[k−1:0]

k bits

k bits

k bits

low-k

bits

low-k

bits

k bits

low-k

bits

Figure 1. Computing quotient logic in RBR-MMM.

3. Pipeline Precalculate Redundant Binary Representation Montgomery
Modular Multiplication

According to the analysis mentioned in the previous section, a typical pipeline
MMM [20] is needed to get a better performance in ATP. However, when we go through
the parallel computing in RBR-MMM, we can find that its hard for us to implement a fully
pipeline RBR-MMM as a reason of the high dependency between the j = n and j = n + 1
loop, which is explained as: for a new oi, both oi+1 and oi is needed, which will cost two
cycles for a typical pipeline design. So, we rearrange the algorithm to adapt to a pipeline
design with one cycle delay between two stages. Then for computing quotient logic, we
split it with parallel computing, as q will not be changed for the same j loop, and consuming
one more cycle will lead to a shorter critical path. This splitting has another advantage:

Electronics 2022, 11, 3712 5 of 14

when a buffer is needed to temporary storage the last stage’s result, we can call pre-q logic
to do computing quotient logic without an additional cycle; this will be discussed later.
Our PPCRBR-MMM can be described as Algorithm 2.

Algorithm 2 Basic Radix-2k PPCRBR-MMM (k ≥ 2).
INPUT:X, Y, M, M′; 0 ≤ X, Y ≤ 2M;

M is prime; X,Y,M are in RBR:
X = ∑n−1

i=0 xi · 22ki, xi ∈ {0, 1, . . . , 22k+1 − 1};
Y = ∑n−1

i=0 yi · 22ki, yi ∈ {0, 1, . . . , 22k+1 − 1};
M = ∑n−1

i=0 mi · 22ki, mi ∈ {0, 1, . . . , 22k − 1};
M′[k− 1 : 0] = −M−1mod 2k;

OUTPUT: O = XY2−2knmod M; 0 ≤ O ≤ 2M;

1: Oj = 0, V j = 0, U j = 0;
Oj = ∑n−1

i=0 oj
i · 2

2ki, oj
i ∈ {0, 1, . . . , 22k+1 − 1};

U j = ∑n−1
i=0 uj

i · 2
2ki, uj

i ∈ {0, 1, . . . , 23k+2 − 1};
V j = ∑n−1

i=0 vj
i · 2

2ki, vj
i ∈ {0, 1, . . . , 22k+1 − 1};

2: ys1 = y0[2k− 1 : k], ys0 = y0[k− 1 : 0], yc0 = y_s0[2k];
uj
−1 = 0, uj

n = 0, u−1
i = 0, u−2

i = 0, v−1
i = 0;

// totally 2n iteration, each j means one pipeline stage
3: for j = 0 to 2n− 1 do
4: o = (vj−1

0 + uj−2
1 [k− 1 : 0]) mod 2k;

5: x = x0 mod 2k;
//computing quotient logic

6: pre_qj = (((ysj · x) mod 2k) ·M′)mod 2k;
//inner-loop: for each pipeline, n cycles are needed

7: for i = 0 to n− 1 do
8: uj

i = (vj−1
i + uj−2

i+1 [k− 1 : 0] + ysj · xi + pre_qj ·mi + o ·M′mod 2k);

9: uj
i−1[3k + 1 : 3k] = MSB(uj−1

i [k− 1 : 0] + uj
i−1[3k− 1 : k]);

10: vj
i = uj

i−1[3k + 1 : 3k] + uj
i [3k− 1 : k];

11: end for
//convert y to binary representation

12: if j%2 == 1 do
13: {yc j+1

2
, ysj+2, ysj+1} = y j+1

2
+ yc j−1

2
;

14: end if
15: end for
16: //two more cycles are needed for output
17: for i = 0 to n− 1 do
18: o2n−1

i = v2n−1
i + u2n−2

i+1 [k− 1 : 0] + u2n−1
i+1 [k− 1 : 0]� k

19: end for
20: return O

Typical pipeline design often goes with a problem in carrying. In RBR-MMM, it occurs
between two adjacent j-loop. Let the j-th pipeline-stage out and temp out be oj

i and o′ji ,we
can get (4).

o′ji = oj−1
i + ysj · xi + qj ·mi;

oj
i = o′ji−1[3k + 1 : 3k] + o′ji [3k− 1 : k] + o′ji+1[k− 1 : 0]� k;

(4)

Electronics 2022, 11, 3712 6 of 14

In this equation, every o′ji needs oj−1
i ’s result, which needs both o′j−1

i and o′j−1
i+1 to

solve out, so there will be a two cycles delay between the pipeline stage, thus we consider
rearranging our algorithm by changing the o′j−1

i+1 to the next cycle. We first ignore the o′j−1
i+1

� k to calculate oj−1
i , let our output be new(output), we can get (5)

new(oj
i) = oj

i − o′ji+1[k− 1 : 0]� k;

new(o′ji) = o′ji − oj−1
i+1 [k− 1 : 0]� k;

(5)

Ingeniously, our q calculating will be the same due to this lack of addition will only affect
the high k + 1 bits of oj−1

i , then we only need to consider the oj
i ’s lack of o′j−1

i+1 . From (4) and (5),
the temp result can be calculated as (6) and (7).

new(o′j+1
i) = oj

i + ysj+1 · xi + qj+1 ·mi − o′ji+1[k− 1 : 0]� k;

= new(oj
i) + ysj+1 · xi + qj+1 ·mi;

(6)

new(oj+1
i) = {new(o′j+1

i−1) + o′ji [k− 1 : 0]� k}[3k + 1 : 3k] + new(o′j+1
i [3k− 1 : k])

+ o′ji+1[k− 1 : 0] + o′j+1
i+1 [k− 1 : 0]� k− o′j+1

i+1 [k− 1 : 0]� k;

= {new(o′j+1
i−1) + new(o′ji)[k− 1 : 0]� k}[3k + 1 : 3k] + new(o′j+1

i [3k− 1 : k])

+ new(o′ji+1)[k− 1 : 0];

(7)

In order to avoid dependencies on the upper-level unit, we transfer the addition
of new(o′ji+1)[k − 1 : 0] to the calculation of the next-level unit. Let uj

i = new(o′ji) and

vj
i = new(oj

i)− new(o′j−1
i+1)[k− 1 : 0]. Finally, we can get that the output of the next stage

should be computed as (8)

uj+1
i = vj

i + ysj+1 · xi + qj+1 ·mi + uj−1
i+1 [k− 1 : 0];

uj+1
i−1 [3k + 1 : 3k] = MSB(uj

i [k− 1 : 0] + uj+1
i−1 [3k− 1 : k]);

vj+1
i = uj+1

i−1 [3k + 1 : 3k] + uj+1
i [3k− 1 : k];

(8)

From (8), only one cycle’s previous stage’s result is needed to get a new output with
an additional add operation of the output of the first two stages; thus, we can build up a
single cycle delay pipeline RBR-MMM design. Meanwhile, to prevent a long critical path
when k is large, we precalculate the quotient or part of the quotient in the first cycle of each
stage, which only costs one more cycle for a pipeline design. Then, we get our Algorithm 2:
PPCRBR-MMM.

According to Algorithm 2, an RBR-MMM-based pipeline architecture is proposed
in this brief, which will get a better ATP than RBR-MMM. Our algorithm’s hardware
implementation consists of several processing elements (PEs), pre-calculate quotient units,
data registers, and fewer control logics. To clarify our structure, a dependency graph is
delivered as Figure 2, and each Q job calculates pre_q value in Algorithm 2, the inner loop
is done by I job. By rearranging the RBR-MMM algorithm’s data chain, our PE can work
out its result just with the output of the last cycle, total three inputs from left PE and left
of left PE and PE self are needed. For each PE’s first cycle, the quotient will be calculated,
costing only one more cycle delay than before.

Figure 3 shows a block diagram of our pipeline RBR-MMM. The kernel part consists of
p k-param PEs. Each PE contains (8)’s logic and some registers to hold input value and temp
result. For common and low-area usage, p will often be lower than n, which means some
PE-unit will do more than one loop calculation. Thus, the PE p will compute out before PE
1 has finished n-cycle computation, and the output must be queued in a buffer before PE1
becomes available again. The buffer depth is determined by n− p and its width is defined

Electronics 2022, 11, 3712 7 of 14

as 2k + 1 (the vj
i ’s width) + k (the uj

i [k− 1 : 0]’s width) + k (the uj−1
i+1 [k− 1 : 0]’s width) + 2k

(the mi’s width) + 2k + 1 (the xi’s width), this buffer will be an inevitable but acceptable
cost compared with basic RBR-MMM design, and this register cost can be transferred to
memory outside if needed. Furthermore, quotient value can also be pre-calculated in our
buffer. In that case, o ·M′mod 2k part is not needed in (8) (as that optimization will have no
effect on our frequency and to keep our equation easy, we still do this part in our design),
and no more cycle is needed. Other parts of our block are some control logic, select logic of
buffer, final output, and ys storage.

x

Q

ys0
M'

Ix0,m0

pre_q

u 1
0

u0
−1
,v0

−1

u1
−2

x

Q

ys1
M'

Ix1,m1

u0
0

u1
−1
,v1

−1

u2
−2

Ix2,m2

u1
0

u3
−2

Ix0,m0

pre_q

u 1
1

u0
0
,v0

0

u1
−1

u1
0
,v1

0

Ix1,m1

u0
1

u2
−1

x

Q

ys2
M'

Ix0,m0

pre_q

u 1
2

u0
1
,v0

1

u1
0

j(PE)

i(inner-loop)

0

1

2

PE0 PE1 PE2

u2
0

u2
0
,v2

0

u1
1

u1
1
,v1

1

u2
0

u0
2

...

u2
−1
,v2

−1

Figure 2. Data dependence graph for Algorithm PPCRBR-MMM.

vi
p−1

ui
p−1

mi

xi

vi
p−2

ui
p−2

mi

xi

ui
1

vi
2

ui
2

ui
1

vi
1

xi

mi

ui
0

vi
0

mi

xi

mi

xi

PEp−1PE2PE1PE0

MEMO

RY

Depth: n−p

...

ys buffer

...

cal ys logic

cal part-q logic

yi

x0

xi

mi

ui
−1

vi
−1

ui+1
−2

stage

 buffer

ui+1
−1

ui
0

ui
p−3

Temp data buffer

ui
p−2

Output or

store in

buffer

Figure 3. Block diagram of PPCRBR-MMM.

Electronics 2022, 11, 3712 8 of 14

4. Analysis of PPCRBR-MMM

In this section, a critical path, area, and cycle analysis of PPCRBR-MMM is proposed
for comparison with basic RBR-MMM implementation.

4.1. Timing Analysis

Typically, we take p smaller than n to prevent a high-cost design, and then from
Figure 4, each PE unit takes n + 1 cycles to compute its first loop result. Total 2n loops
are needed to solve out final O from Algorithm 2, thus we can get that [2n/p] inner-loops
are needed for PE0-PE(2n%p), and for the final loop, 2n%p + n + 2− 1 cycles are required.
Finally, we get Equation (9).

loop = [2n/p] · n + 2 + 2n%p + n; (9)

In comparison with (2),we can get a cycle_ratio in (10). Previously, we have men-
tioned that the whole operand cannot be read or written only in one cycle, which will
also inevitably impact basic RBR-MMM. Thus the loop_ratio will be smaller than (10) in
hardware design.

loop_ratio = ([2n/p] · n + 2 + 2n%p + n)/2n

=
[2n/p] + 1

2
+

2n%p + 2
2n

;
(10)

Q

I

PE

Cycle

0

1

PE0 PE1

...

I2

I(Q)n

Q

I

...

I

...

Q

PE p−1...

...

I

I

...

I(Q)I

I

...

n+1

n+2

...

...

n+1 cycles

same cycle

...

I
...

...

...

Figure 4. schedule of typical PPCRBR-MMM.

4.2. Critical Path Analysis

To better understand our path delay and area cost, a detailed circuit schematic is
illustrated in Figure 5, the partial computing output O′i circuit consists of k× 2k, k× (2k+ 1),
k× k multipliers which are independent, thus they can fuse to addition using CSA (i.e., 4:2
compressor), to simplify our delay calculate, we let this part of critical path be a k× 2k + 1

Electronics 2022, 11, 3712 9 of 14

bits multiplier’s half adders’ path with 7:2 compressors and 3k + 1 Carry Propagate Adder
(CPA), o ·M′ and calculate o part can be broken into 4:2 compressor. The MSB of uj

i−1 will
be calculated simultaneously and will have no impact on our critical path. At last, we take
a 2k bits carry propagation adder to solve the vj

i out. Thus we can get our critical path
will be (11)

Ttotal = (2k) + (3k + 1 + 2 +
2k + 1

3
) · TFA

≈ (6k + 3) · TFA;
(11)

Obviously, pre-calculate quotient logic lets our critical path decreases; this ratio can be
expressed as (12)

path_ratio = (6k + 3) · TFA/(10k + 3) · TFA

≈ 3
5

;
(12)

2k bits

k bits

k bits

vi
j−1[2k:0]

ysj[k−1:0]

xi[2k:0]

M'[k−1:0]

k bits

2k+1

bits

k bits

3k+1

bits

o[k−1:0]

k bits

2k bits

pre_q[k−1:0]

mi[2k−1:0]

compressor

2k

 bits

3k

 bits

3k+1 bits

3k+1 bits

ui
j[3k+1:0]

ui+1
j−2[k−1:0]

 k bits

(a)

2k bits
ui−1

j[3k−1:k]

ui
j−1[k−1:0]

k bits

MSB

2 bits
ui−1

j[3k+1:3k]

(b)

ui
j[3k−1:k]

ui−1
j[3k+1:3k]

2k bits

 2 bits

vi
j[2k:0]

2k+1

bits

(c)

Figure 5. Brief schematic of PE unit in PPCRBR-MMM. (a) Computing temp result logic. (b) Comput-
ing MSB bits. (c) Computing output of PE.

Electronics 2022, 11, 3712 10 of 14

4.3. Area Analysis

For area analysis, we mainly focus on the area cost for single PE compared with the
parallel computation module in the RBR-MMM system. From Figure 5, we can summarize
a rough area cost for single PE: one 2k bits carry propagation adder for vj

i , one 3k + 2 carry

propagation adder, 5k2 + k ‘AND’ Gates and some compressors for uj
i and one calculate

carry bit logic for the MSB. The last one can be implemented by k ‘AND’ Gates and a k bits
adder. We can see that our additional logic will not consume much more area for single PE.

Obviously, considering area cost, our PE’s number will not be large; in that case, high
area cost will be eliminated for a large input case. For intuitive explanation, if we take
p = n/2, we can get a roughly ATP ratio shown in (13); Clearly, our PPCRBR-MMM design
will lead to a better ATP as area_ratio will be nearly 1/2 in that case.

// f or p =
n
2

ATP_ratio = loop_ratio · path_ratio · area_ratio

≈ 5
2
· 3

5
· area_ratio

≈ 3
2
· area_ratio;

(13)

5. Experimental Results and Comparisons
5.1. Experiments of PPCRBR-MMM and RBR-MMM Algorithms

In order to better demonstrate the advantages of PPCRBR-MMM over the RBR-MMM
algorithm, we use Verilog to implement the two algorithms and use the TSMC process
library to synthesize to obtain area and delay information under different parameters.
According to the analysis of critical path and area in the previous article, when the input
bit width is high, the proportion of control logic in the total area due to pipelining will
be reduced, which can better reflect the superiority of PPCRBR-MMM algorithm in ATP
and customizability, at the same time, to make the comparison of experimental results
general, we selected two designs with different parameters under the input of 1024 bits,
2048 bits, and 8192 bits for implementation. For better performance, we apply the parameter
condition of k = 16 to the two algorithms with 1024 bits width and the parameter condition
of k = 32 to the case of 2048 bits input. For the 8192 bits input, although a higher k value
can bring higher performance and algorithm improvement, choosing a higher k will bring
too high an area requirement, so we still choose the parameter condition of k = 32. To
reflect the advantages of customization, we analyzed the PPCRBR-MMM algorithm when
the number of PEs under the input of 8192 bits is 16, 24, 32, 48, 64.

5.2. Results and Comparisons

Table 1 shows the area and time consuming comparison of RBR-MMM and PPCRBR-
MMM under different input parameters. When the input is 1024 bits or 2048 bits, it can be
seen that to obtain better performance, the RBR-MMM algorithm must have higher area
consumption. And the pipeline algorithm can achieve better delay and area through lower
pipeline stages, thereby increasing ATP by about 20%. When the input is 8192 bits, our
algorithm still has a 10% advantage in ATP. Compared with the lower input bit width, the
area consumption of the buffer for storing the intermediate results becomes larger, so the
magnitude of improvement becomes smaller. The loss of this area can be reduced by the
memory module external to the algorithm module, as mentioned above. Figure 6 exhibits
the comparison of the area and time consumption of RBR-MMM and PPCRBR-MMM with
different parameters under 8192 bits input. When the PE number is low, our algorithm will
provide a lower area and higher latency. When the PE number becomes high, since the area
of the PE is still the main part of the algorithm, the total area loss increases almost linearly.
At the same time, because the critical path caused by high fan-out becomes longer, the
frequency of the algorithm will decrease significantly when the number of PEs is large, so

Electronics 2022, 11, 3712 11 of 14

the delay cannot be reduced linearly. The final ATP results are shown in Figure 6b. When
the PE number is increased to 48, the ATP improvement of the algorithm reaches the best.

Similarly, to further reflect the advantages of our algorithm on ATP, we compared
the design under different parameters with some modules. The results are delivered
in Table 2. Ref. [22] introduces the half-carry-save form to reduce the bit width of the
operand in the CPA, thereby reducing the delay of the critical path. However, it still has the
problem of a long carry chain compared with the redundant number system, so it cannot
achieve a good performance in a lower area. Ref. [23] uses the full-carry-save method to
parallelize the results of modular multiplication, but there are many splitting processes
for the intermediate results, resulting in a less outstanding performance in multiple loops.
Refs. [10,24] achieve a higher frequency by applying a customized CSA design, but their
design require more cycles to complete more iterations, and finally cannot achieve higher
performance and ATP value. Ref. [25] reorganizes the operands on the basis of [19] to
achieve low memory bandwidth and high frequency while keeping the number of iterations
unchanged, but its delay chain under high input bit width contains two-stage multiplication
and addition modules, so the balance between frequency and total number of cycles cannot
be achieved. Although [11] also uses the full-carry-save method, it uses CPA to complete
the data conversion in the iterative process, thus reducing the overall running frequency.
Ref. [5] uses the RNS-based modular multiplication system to achieve better frequency and
ATP, but it avoids the pipeline design like [21]. In this paper, RBR is introduced to lessen
the critical path in calculating units. While by modifying the algorithm, a full pipeline is
achieved during iteration. Then we decompose the critical path of calculating q logic using
the convenience of the pipeline, thus increasing the overall frequency. Finally, lower latency
and better ATP results were achieved.

(a) (b)

Figure 6. ATP result of PPCRBR-MMM for 8192 bits design. (a) Area and time cost for two algorithms.
(b) ATP comparison of two algorithms with different PE num.

Table 1. Comparison of RBR-MMM and PPCRBR-MMM.

Alg Param Tech Freq
(MHz)

Area
(KGates) Cycles Time

(ns) ATP

1024-bit MMM

RBR-MMM
k = 4

65 nm 685 121.8 258 377 45.92

90 nm 435 108.7 258 593 64.47

k = 16 65 nm 385 304.4 66 166 50.53

Electronics 2022, 11, 3712 12 of 14

Table 1. Cont.

Alg Param Tech Freq
(MHz)

Area
(KGates) Cycles Time

(ns) ATP

PPCRBR-MMM

p = 16
k = 16 65 nm 617 185.4 164 266 49.28

p = 24
k = 16

65 nm 617 222.4 114 185 41.09

90 nm 392 198.5 114 291 57.69

2048-bit MMM

RBR-MMM
k = 4 65 nm 654 224.8 514 786 176.69

k = 32 65 nm 302 900.0 66 218 196.63

PPCRBR-MMM

p = 16
k = 32 65 nm 485 506.3 164 338 171.19

p = 24
k = 32

65 nm 485 707.1 114 235 166.22

90 nm 308 631.1 114 370 233.37

8192-bit MMM

RBR-MMM
k = 4

65 nm 603 878.1 2050 3400 2985.25

130 nm 200 945.5 2050 10250 9691.38

k = 32 65 nm 288 3353.9 258 896 3006.70

PPCRBR-MMM

p = 16
k = 32 65 nm 452 699.2 2178 4816 3367.41

p = 24
k = 32 65 nm 446 889.9 1428 3203 2850.12

p = 32
k = 32 65 nm 446 1087.0 1156 2593 2818.12

p = 48
k = 32

65 nm 428 1493.8 788 1842 2751.53

130 nm 142 1608 788 5554 8932.61

p = 64
k = 32 65 nm 425 1875.2 644 1516 2841.92

Table 2. Comparison of different MMM implementation.

Ref Tech Freq (MHz) Area (KGates) Cycles Time (ns) ATP

1024-bit MMM

[22] 90 nm 369 47.2 1153 3124 147.45

[23] 90 nm 472 11.4 2207 4680 53.35

[10] 90 nm 885 84.0 1026 1159 97.36

[24] 90 nm 909 97.0 595 655 63.54

[25] 90 nm 595 103.0 1485 2496 257.07

Ours 90 nm 392 198.5 114 291 57.69

2048-bit MMM

[11] 90 nm 227 336.0 1724 7646 2569.06

Ours 90 nm 308 631.1 114 370 233.37

8192-bit MMM

[5] 130 nm 263 1240.0 2118 8056 9989.44

Ours 130 nm 142 1608 788 5554 8932.61

Electronics 2022, 11, 3712 13 of 14

6. Conclusions

This paper presents a pipeline pre-calculated redundant binary representation Mont-
gomery Modular Multiplication for a low ATP and customizable solution in big integer
modular multiplication. The main purpose is to perform pipeline processing for the RBR-
MMM algorithm and reduce the delay between different stages to 1 cycle by reconstructing
the algorithm process. And with the advantage of streamlining, the critical path is de-
composed, so as to effectively increase the operating frequency of the system. Both this
algorithm’s correctness and advantage in ATP were provided by analysis between PPCRBR-
MMM and RBR-MMM. Based on those algorithms, various hardware designs of different
parameters, including input bit width, radix, and PE num, have been implemented to
clarify our algorithm’s flexibility and superiority. The experimental data show that our
PPCRBR-MMM algorithm has 10% to 20% improvement in ATP compared to RBR-MMM
depending on the input bit width.

Author Contributions: Conceptualization, Z.Z. and P.Z.; methodology, Z.Z.; software, Z.Z.; valida-
tion, Z.Z.; formal analysis, Z.Z.; investigation, Z.Z.; resources, Z.Z.; data curation, Z.Z.; writing—
original draft preparation, Z.Z.; writing—review and editing, Z.Z. and P.Z.; visualization, Z.Z.;
supervision, Z.Z.; project administration, Z.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is supported by the National Key R&D Program of China (2021YFB2206200).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corre-
sponding author after publication. The data are not publicly available due to privacy or ethical restrictions.

Acknowledgments: Thanks to HJ-micro for providing high-performance server to support our research.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MMM Montgomery Modular Multiplication
RBR Redundant Binary Representation

References
1. Montgomery, P.L. Modular multiplication without trial division. Math. Comput. 1985, 44, 519–521. [CrossRef]
2. Ding, J.; Li, S. A low-latency and low-cost Montgomery modular multiplier based on NLP multiplication. IEEE Trans. Circuits

Syst. II Express Briefs 2019, 67, 1319–1323. [CrossRef]
3. Gu, Z.; Li, S. A division-free Toom–Cook multiplication-based Montgomery modular multiplication. IEEE Trans. Circuits Syst. II

Express Briefs 2018, 66, 1401–1405. [CrossRef]
4. Dai, W.; Chen, D.D.; Cheung, R.C.; Koc, C.K. Area-time efficient architecture of FFT-based montgomery multiplication. IEEE

Trans. Comput. 2016, 66, 375–388. [CrossRef]
5. Mo, Y.; Li, S. Design of an 8192-bit RNS montgomery multiplier. In Proceedings of the 2017 International Conference on Electron

Devices and Solid-State Circuits (EDSSC), Hsinchu, Taiwan, 18–20 October 2017; pp. 1–2.
6. Kolagatla, V.R.; Desalphine, V.; Selvakumar, D. Area-Time Scalable High Radix Montgomery Modular Multiplier for

Large Modulus. In Proceedings of the 2021 25th International Symposium on VLSI Design and Test (VDAT), Surat, India,
16–18 September 2021; pp. 1–4. [CrossRef]

7. Wang, S.H.; Lin, W.C.; Ye, J.H.; Shieh, M.D. Fast scalable radix-4 Montgomery modular multiplier. In Proceedings of the 2012
IEEE International Symposium on Circuits and Systems (ISCAS), Seoul, Korea, 20–23 May 2012; pp. 3049–3052. [CrossRef]

8. Rentería-Mejía, C.P.; Trujillo-Olaya, V.; Velasco-Medina, J. 8912-bit Montgomery multipliers using radix-8 booth encoding and
coded-digit. In Proceedings of the 2013 IEEE 4th Latin American Symposium on Circuits and Systems (LASCAS), Cusco, Peru,
27 February–1 March 2013; pp. 1–4. [CrossRef]

9. Erdem, S.S.; Yanık, T.; Çelebi, A. A General Digit-Serial Architecture for Montgomery Modular Multiplication. IEEE Trans. Very
Large Scale Integr. VLSI Syst. 2017, 25, 1658–1668. [CrossRef]

http://doi.org/10.1090/S0025-5718-1985-0777282-X
http://dx.doi.org/10.1109/TCSII.2019.2932328
http://dx.doi.org/10.1109/TCSII.2018.2886962
http://dx.doi.org/10.1109/TC.2016.2601334
http://dx.doi.org/10.1109/VDAT53777.2021.9601001
http://dx.doi.org/10.1109/ISCAS.2012.6271962
http://dx.doi.org/10.1109/LASCAS.2013.6519072
http://dx.doi.org/10.1109/TVLSI.2017.2652979

Electronics 2022, 11, 3712 14 of 14

10. Nti, R.B.; Ryoo, K. Area-efficient design of modular exponentiation using montgomery multiplier for RSA cryptosystem. In
Advanced Multimedia and Ubiquitous Engineering; Springer: Berlin/Heidelberg, Germany, 2018; pp. 431–437.

11. Kuang, S.R.; Wu, K.Y.; Lu, R.Y. Low-cost high-performance VLSI architecture for Montgomery modular multiplication. IEEE
Trans. Very Large Scale Integr. VLSI Syst. 2015, 24, 434–443. [CrossRef]

12. Sassaw, G.; Jiménez, C.J.; Valencia, M. High radix implementation of Montgomery multipliers with CSA. In Proceedings of the
2010 International Conference on Microelectronics, Cairo, Egypt, 19–22 December 2010; pp. 315–318. [CrossRef]

13. Mahapatra, P.P.; Agrawal, S. RSA Cryptosystem with Modified Montgomery Modular Multiplier. In Proceedings of the
2017 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Coimbatore, India,
14–16 December 2017; pp. 1–6. [CrossRef]

14. Zode, P.P.; Deshmukh, R.B. Fast modular multiplication using parallel prefix adder. In Proceedings of the 2014 2nd International
Conference on Emerging Technology Trends in Electronics, Communication and Networking, Surat, India, 26–27 December 2014;
pp. 1–4.

15. Sutter, G.D.; Deschamps, J.P.; Imaña, J.L. Modular multiplication and exponentiation architectures for fast RSA cryptosystem
based on digit serial computation. IEEE Trans. Ind. Electron. 2010, 58, 3101–3109. [CrossRef]

16. Fatemi, S.; Zare, M.; Khavari, A.F.; Maymandi-Nejad, M. Efficient implementation of digit-serial Montgomery modular multiplier
architecture. IET Circuits Devices Syst. 2019, 13, 942–949. [CrossRef]

17. Srinitha, S.; Niveda, S.; Rangeetha, S.; Kiruthika, V. A High Speed Montgomery Multiplier used in Security Applications. In
Proceedings of the 2021 3rd International Conference on Signal Processing and Communication (ICPSC), Coimbatore, India,
13–14 May 2021; pp. 299–303. [CrossRef]

18. Ibrahim, A.; Gebali, F.; Elsimary, H. New and improved word-based unified and scalable architecture for radix 2 Montgomery
modular multiplication algorithm. In Proceedings of the 2013 IEEE Pacific Rim Conference on Communications, Computers and
Signal Processing (PACRIM), Victoria, BC, Canada, 27–29 August 2013; pp. 153–158. [CrossRef]

19. Shieh, M.D.; Lin, W.C. Word-Based Montgomery Modular Multiplication Algorithm for Low-Latency Scalable Architectures.
IEEE Trans. Comput. 2010, 59, 1145–1151. [CrossRef]

20. Tenca, A.; Koc, C. A scalable architecture for modular multiplication based on Montgomery’s algorithm. IEEE Trans. Comput.
2003, 52, 1215–1221. [CrossRef]

21. Li, B.; Wang, J.; Ding, G.; Fu, H.; Lei, B.; Yang, H.; Bi, J.; Lei, S. A high-performance and low-cost montgomery modular
multiplication based on redundant binary representation. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 2660–2664.
[CrossRef]

22. Ding, Y.; Hu, J.; Wang, D.; Tan, H. A High-Performance RSA Coprocessor Based on Half-Carry-Save and Dual-Core MAC
Architecture. Chin. J. Electron. 2018, 27, 70–75. [CrossRef]

23. Miyamoto, A.; Homma, N.; Aoki, T.; Satoh, A. Systematic design of RSA processors based on high-radix Montgomery multipliers.
IEEE Trans. Very Large Scale Integr. VLSI Syst. 2010, 19, 1136–1146. [CrossRef]

24. Wu, T. Reducing memory requirements in CSA-based scalable Montgomery modular multipliers. In Proceedings of the 2014 12th
IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Guilin, China, 28–31 October 2014;
pp. 1–3.

25. Lin, W.C.; Ye, J.H.; Shieh, M.D. Scalable Montgomery Modular Multiplication Architecture with Low-Latency and Low-Memory
Bandwidth Requirement. IEEE Trans. Comput. 2014, 63, 475–483. [CrossRef]

http://dx.doi.org/10.1109/TVLSI.2015.2409113
http://dx.doi.org/10.1109/ICM.2010.5696148
http://dx.doi.org/10.1109/ICCIC.2017.8524218
http://dx.doi.org/10.1109/TIE.2010.2080653
http://dx.doi.org/10.1049/iet-cds.2018.5182
http://dx.doi.org/10.1109/ICSPC51351.2021.9451717
http://dx.doi.org/10.1109/PACRIM.2013.6625466
http://dx.doi.org/10.1109/TC.2010.72
http://dx.doi.org/10.1109/TC.2003.1228516
http://dx.doi.org/10.1109/TCSII.2021.3053630
http://dx.doi.org/10.1049/cje.2017.11.013
http://dx.doi.org/10.1109/TVLSI.2010.2049037
http://dx.doi.org/10.1109/TC.2012.218

	Introduction
	Algorithm Fundamentals
	Pipeline Precalculate Redundant Binary Representation Montgomery Modular Multiplication
	Analysis of PPCRBR-MMM
	Timing Analysis
	Critical Path Analysis
	Area Analysis

	Experimental Results and Comparisons
	Experiments of PPCRBR-MMM and RBR-MMM Algorithms
	Results and Comparisons

	Conclusions
	References

