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Abstract: Seasonal influenza (also known as flu) is responsible for considerable morbidity and
mortality across the globe. The three recognized pathogens that cause epidemics during the winter
season are influenza A, B and C. The influenza virus is particularly dangerous due to its mutability.
Vaccines are an effective tool in preventing seasonal influenza, and their formulas are updated yearly
according to the WHO recommendations. However, in order to facilitate decision-making in the
planning of the intervention, policymakers need information on the projected costs and quantities
related to introducing the influenza vaccine in order to help governments obtain an optimal allocation
of the vaccine each year. In this paper, an approach based on a Controlled Elitism Non-Dominated
Sorting Genetic Algorithm (CENSGA) model is introduced to optimize the allocation of the influenza
vaccination. A bi-objective model is formulated to control the infection volume, and reduce the unit
cost of the vaccination campaign. An SIR (Susceptible–Infected–Recovered) model is employed for
representing a potential epidemic. The model constraints are based on the epidemiological model,
time management and vaccine quantity. A two-phase optimization process is proposed: guardian
control followed by contingent controls. The proposed approach is an evolutionary metaheuristic
multi-objective optimization algorithm with a local search procedure based on a hash table. Moreover,
in order to optimize the scheduling of a set of policies over a predetermined time to form a complete
campaign, an extended CENSGA is introduced with a variable-length chromosome (VLC) along
with mutation and crossover operations. To validate the applicability of the proposed CENSGA, it
is compared with the classical Non-Dominated Sorting Genetic Algorithm (NSGA-II). The results
indicate that optimal vaccination campaigns with compromise tradeoffs between the two conflicting
objectives can be designed effectively using CENSGA, providing policymakers with a number
of alternatives to accommodate the best strategies. The results are analyzed using graphical and
statistical comparisons in terms of cardinality, convergence, distribution and spread quality metrics,
illustrating that the proposed CENSGA is effective and useful for determining the optimal vaccination
allocation campaigns.

Keywords: Controlled Elitism Non-Dominated Sorting Genetic Algorithm (CENSGA); NSGA-II;
variable-length chromosome (VLC); metaheuristic; multi-objective optimization; Pulse vaccination;
allocation; scheduling; planning

1. Introduction

Influenza, also known as flu, is a seasonal disease that is responsible for diverse
health complications that can lead to hospitalization or even death [1]. The dynamic
nature of the flu virus is reflected in its mutability from season to season, as well as
in the fact that individuals who contract the disease may develop different symptoms.
With the introduction of vaccinations for different diseases starting from the nineteenth
century, this remarkable era of vaccination has had a promising influence on public health
and population growth [2]. Since then, a succession of well-planned campaigns have
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been documented, for instance, to reduce or eradicate hepatitis, yellow fever, polio and
measles [3]. Although vaccinations against contagious diseases are currently considered
as an intuitive strategy to control an outbreak or epidemic, policymakers are still facing a
big challenge in allocating vaccine doses to the public, especially for mutant diseases or
pandemics, when the aim is eradicating the disease or keeping it within a tolerable level
with minimal cost [4].

Vaccination strategy planning and optimization is a multi-disciplinary field in which
mathematical models, epidemiological models, and decision-making are combined to
allocate vaccine doses to the population. Major efforts in tackling vaccination allocation
from multiple perspectives are usually defined using mathematical models, which can be
solved with exact or approximate solution methods. In general, metaheuristic algorithms
provide a useful tool that can help the decision-maker to realize an optimal (or near-optimal)
solution within a reasonable time under multiple parameters, especially when the problem
size is large and/or there exist a substantial number of underlying constraints. Nonetheless,
the use of metaheuristics to develop an optimal vaccination allocation policy still has
potential to be explored.

This work proposes a vaccination allocation policy using Pulse vaccination, based
on an SIR (Susceptible–Infected–Recovered) epidemiological model that simulates the
behavior of an infectious disease. A Pulse vaccination policy requires allocating vaccine
doses in certain time steps, as well as vaccinating a predetermined proportion of the
susceptible individuals, so that they become part of the recovered population, according
to references [5–7]. This approach permits two types of control policies: heterogenous
and homogeneous vaccination. Heterogenous vaccination involves conducting different
sizes of Pulse control policies at arbitrary time periods. On the other hand, homogeneous
vaccination refers to giving the same sizes of Pulse control vaccines at similar time periods.
Both controls have multiple objectives, since the target is to minimize both the infection
volume and the vaccination campaign costs. In this research, both types of Pulse vaccination
are presented, since we formulate our problem as a two-phased Pulse vaccination that aims
to model the flu dose allocation problem mathematically.

In every epidemic cycle, there are two distinct dynamic regimes: a guardian phase
and a contingent phase. The guardian phase aims to keep the infection under control. The
contingent phase requires a set of variant-timing vaccination policies on different quantities
of susceptible individuals in order to form a complete optimal campaign. The idea is to
synthesize optimal policy phases in order to reach a final combined optimal campaign.
This allows for an effective controlling campaign, as shown in Section 5. The common
methodology of vaccination found in the literature is based on a single vaccination policy
used across the epidemic’s time horizon, which is an inapplicable policy in reality, and
tends to be far from optimal [8–10]. Therefore, a more compromised paradigm has been
recognized in some other works, which involves a compromise between the effectiveness of
the campaign to control the epidemic and the cost of its implementation. This methodology
involved multi-objective genetic optimization approaches. The multi-objective paradigm
has been enhanced by features such as local searches for better convergence, a hash table to
avoid the re-evaluating of repeated solutions, and some adaptations in genetic operators.

Genetic algorithms (GAs) are population-based algorithms in which a set of solutions
is considered in each generation. GAs mimic the behavior of natural evolution, which
optimizes biological features using the principles of selection, crossover (recombination)
and mutation. The essential component of GAs is reproduction, wherein a set of candidate
solutions engages in a selection process; solutions with good genes within the population
are selected, making up a set of parents for the next generation. From this set of relatively
good solutions, the next generation is formed by applying the processes of crossover, and
on some occasions, mutation, to produce a set of offspring. Both parent and offspring sets
are then combined to form a new population that engages again in the selection process.
Solutions are ranked by their state of being dominated by, or being dominant over, other
solutions based on their fitness (objective function of the solution). In the final generation,
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the best solutions are those belonging to the first front, which are not dominated by any
other solution (known as the Pareto front) [11]. This paper deals with the question of
finding an estimate of the Pareto-optimal set for the vaccination allocation problem using a
Controlled Elitist NSGA-II (the Non-Dominated Sorting Genetic Algorithm) [12], which
is a fast and elitist multi-objective optimization engine that makes selections considering
both the non-dominance ranking and the crowding distance.

The research’s novelty in this multi-disciplinary field stems from its design of an en-
hanced multi-objective metaheuristic approach, namely, a Controlled Elitist Non-Dominated
Sorting Genetic Algorithm (CENSGA), for optimizing the strategy of planning the flu vac-
cine allocation. For similar optimization problems, CENSGA has yielded promising results
in complex instances with recurrent values of objective coefficients [13]. Thus, the proposed
research’s adoption of CENSGA is inspired by the encouraging outcomes of the approach
as applied to similar optimization domains. CENSGA has been identified as a robust
optimization tool for reaching optimal parameters in diverse allocation problems, including
supplier selection and order allocation [14], job–shop scheduling [15], the geometric config-
uration of parallel manipulators [16], hub location–allocation [17], and economic/emission
load dispatch [18]. To tackle the vaccination allocation problem, the calibration of our
model will be performed based on the related previous works [6], in order to approximate
most of the problem parameters.

The remainder of this paper is organized as follows: In Section 2, related works are
mentioned, followed by the introduction of some preliminaries in Section 3. After that, the
problem description is formulated in Section 4, whereas the optimization model proposed
to solve the vaccination allocation problem is explained in Section 5. In Section 6, parameter
tuning is briefly discussed, while results and efficiency performance measures are given
and discussed in Sections 7 and 8, respectively. Finally, the concluding and perspective
remarks are given in Section 9.

2. Literature Review

A well-known attempt to address the distribution of influenza vaccine shots optimally
using metaheuristic techniques was carried out by Patel et al. [19]. The nature of an
outbreak is generally non-linear, complex, and stochastic, and so the problem is difficult to
solve optimally using mathematical models. Thus, the researchers simulated a stochastic
pandemic, wherein genetic algorithms (GA) and Random Mutation Hill Climbing (RMHC)
were used to minimize morbidity and mortality rates in the population with a given
availability of vaccine doses. The results demonstrated that, under different coverage
settings, the policy of vaccine distribution had a significant impact, compared to random
mass vaccination.

Another related problem associated with infectious diseases is heterogeneity in trans-
mission spread, vulnerability and contact frequencies in different populations [20]. Hu
et al. [21] attempted to maximize the effects of distributing vaccine doses to susceptible
individuals among different age groups. A differential evolution (DE) algorithm was
developed to guide the distribution of the available vaccines optimally. The effects of
vaccination duration and vaccine coverage were considered. The objective was to reduce
the prevalence of infection incidences in the corresponding population. Performance was
examined using a classical epidemiology model (in this case, SEIR (Susceptible–Exposed–
Infected–Recovered)). The results indicate that the DE algorithm was promising in terms
of offering a vaccine distribution solution. However, the researchers emphasized that
the effectiveness of the vaccination depends on choosing the right vaccination time and
duration. To address these issues, the role of planning in vaccination campaigns is a critical
area that must reach a compromise in relation to the intended factors [22].

In the study of da Cruz et al. [6], the researchers considered an evolutionary multi-
objective optimization algorithm and a stochastic simulation of the SIR epidemic dynamics.
A bi-objective genetic algorithm, NSGA-II, was proposed as a way to lower control costs,
as well as the number of infected individuals. The optimization process consisted of
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two stages, in which a complete set of policies is formed by applying different styles of
heterogenous vaccination followed by homogenous policies to reduce the integral infection
at first, and then keep the infection at below harmful levels. The optimization algorithm
was combined with a quadratic approximation as a local search, as well as a hash table for
information storage. The results were proven to be statistically significant compared to the
conical form of NSGA-II. This work is closely related to our work in this paper.

One major contribution of our study is introducing a modified GA with a variable-
length chromosome (VLC) extension to address the problem of the time-varying polices
employed in the contingent phase. The most demanding issues when modeling VLC are
the adaption of the GA processes and evaluating the fitness function. Numerous variations
in VLCs have been introduced in the literature for several problems. In [23], the authors
suggested a VLC to represent QoS-aware multi-path web-service composition plans in
order to find the optimal path using GA. In their work, the customer service requirements
are represented as a directed graph, and the service selection and composition problem is
translated into a pattern-matching problem of service travel flow. The crossover process
is updated and programmed by cut and splice models on the graph paths, while the
mutation process remains as it is, similar to other GA processes. VLC has also been used
on planning problems. For example, the authors in [24] proposed a VLC for a system
that considers planning dilemmas, i.e., finding a good sequence of actions that satisfies
the provided objectives. In addition, in the graph-based paradigm, Cruz-Piris et al. [25]
modeled a VLC to address a road traffic coordination multi-path problem, in which the
genes of the chromosome encode the path branch. VLC was also operated on the complex
chromosome in genetic programming (GP) [26], which is a peer evolutionary technique
used to find an optimal computer program. However, this approach was designed for
problems represented in a tree-based structure only. In [27], the authors proposed a unique
pixel-level Multi-Spectral (MS) very high-resolution (VHR) image segmentation algorithm
based on variable-length NSGA-II clustering. In their approach, they maintained centroids
for segmentation via gene value, which implies a flexible chromosome style used to address
the shrinking or extending of chromosome length, without comprising the quality of the
segmentation results. Adding this property with the necessary updating of crossover
and mutation processes helped to amend the optimization’s main drawbacks; a similar
approach is employed in our work.

3. Preliminaries
3.1. Multi-Objective Evolutionary Optimization

The multi-objective evolutionary algorithm (MOEA) is a stochastic optimization tech-
nique used to solve many NP-hard real-world optimization problems [28,29]. The mathe-
matical definition of a multi-objective problem (MOP) can be formulated as (assuming a
minimization problem):

minimize F(x) = (f 1(x), f 2(x), f 3(x), . . . , fm(x))T subject to x ∈ Φ (1)

The function F: Φ → Rm maps x ∈ Φ decision vector to M real-valued objective
functions. Here, Φ is the decision (variable) space and Rm represents the objective space [30].
The objectives in Equation (1) predominately collide with each other. Finding a single
solution that optimizes all objectives at once is usually not feasible, since the improvement
of one objective may cause the deterioration of another [28]. Therefore, an MOEA aims
to find a solution set by employing the concept of domination to find optimal Pareto
solutions [29]. Pareto-optimal solutions are the best trade-off solutions in the population,
obtained by calculating the objective value for each decision vector, which is used to
determine the rank of dominance in the population; it then selects a potentially better
solution to join the reproduced population [28,29]. The concepts of dominance and Pareto-
optimality are formally defined as follows [28,30]:
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Definition 1. A vector X1 = (x1.1, . . . , x1.n)T is said to dominate another vector X2 = (x2.1, . . . ,
x2.n)T, denoted as X1 ≺ X2 iff ∀ i ∈ {1, . . . , n}, x1.i ≤ x2.i and X1 6= X2.

Definition 2. A feasible solution x1 ∈ Φ of the problem in Equation (1) consisting of all non-
dominated solutions is called a Pareto-optimal solution, iff @ x2 ∈ Φ such that F(x2) ≺ F(x1).

Definition 3. A Pareto set (PS) consists of the collection of all the Pareto-optimal solutions, denoted as

PS = {x1 ∈ Φ| @x2 ∈ Φ, F(x2) ≺ F(x1)}.

The image of the PS in the objective space is called the Pareto front (PF)

PF = {F(x1)|x1 ∈ PS}.

3.2. Epidemiological Models

Epidemiological models examine the spread of infectious diseases in a population
over a time period, by classifying the individuals in a set of disjoint classes. An individual
within a certain time unit is recognized on one class only. Studying individuals’ behavior
and their movements between compartments helps in assessing and forming appropriate
procedures and policies to override or mitigate the effects of diseases as much as possible by
vaccination, for example, or by applying any countermeasure means [7,31]. The following
section describes the compartmental model used in this work, the SIR (Susceptible–Infected–
Recovered) model.

SIR Model

The epidemiological model SIR was first outlined by Kermack and McKendrick in
1927 [32]. Their contribution is still the most widely used to illustrate infectious disease
dynamics. The SIR model depicts the spread behavior of an infectious disease. For a
contiguous virus such as influenza, the transmission dynamic comes in stages. It starts
when individuals susceptible to contamination with the virus particle become infected after
the incubation time passes. Subsequently, when the infectious individual has recovered and
gained immunity, they move into the recovered class. If there is a reliable vaccine for the
virus, the susceptible individual is moved instantly to the recovered class, without passing
through the infected class, after the vaccine immunizes that individual [6,8] (Figure 1
demonstrates the SIR normal dynamics).

Figure 1. General outline of SIR model.

Mathematically, the SIR model uses three differential equations to describe an in-
fectious disease. The initial value problem is presented in Equation (2). Here, S, I and
R represent the numbers of individuals in each compartment, respectively: susceptible,
infected and recovered. N is the total number of individuals in the population (it must be
constant on each time unit t: S(t) + I(t) + R(t) = N, ∀ t ≥ 0). The parameters’ descriptions
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and their values are listed in Table 1. As N is supposed to be fixed across time, the birth
rate and mortality rate are made equal [6].

dS
dt = µN − µS− βIS

N , S(0) = So ≥ 0 ,
dI
dt = βIS

N − γI − µI , I(0) = Io ≥ 0,
dR
dt = γI − µR , R(0) = Ro ≥ 0,

(2)

Table 1. Model parameters.

Parameter Definition Value

β Transmission rate 2.36 (t.u.)−1

γ
Recovery rate of infected

individuals 1/7 (t.u.)−1

µ 1 Birth and mortality rate 1/7 (t.u.)−1

R0 Reproduction number 15
itol Tolerance ratio 0.01

1 All newborns have no birth immunity against flu. Additionally, according to the CDC estimation between
2010 and 2020, flu is annually responsible for 9 million–41 million illnesses, 140,000–710,000 hospitalizations and
12,000–52,000 deaths. https://www.cdc.gov/flu/about/burden/index.html [accessed on 1 November 2022].

A key number integrated with the epidemiological model is the reproduction number
(R0); it represents the number of secondary cases generated from exposure to a primary
individual [33]. The R0 value is determined by the epidemiological model used; for instance,
for SIR, R0 = β/(µ + γ) [34]. The value of R0 is fixed and reflects the necessity of employing
vaccination or any countermeasure strategies. If R0 < 1, then the disease dies out, and
henceforth, tends towards an “infection-free equilibrium” without intervention; here, the
endemic cannot hold the growth since each infected individual on average infects less than
one member of the population. However, if R0 > 1, then the disease invades the population
and stabilizes at an “endemic equilibrium”. In fact, the disease then turns to an endemic
state, where the disease self-sustains in the population at a certain level, having the ability
to propagate continuously [34,35]. The only way to diminish the effect of an infectious
disease with R0 > 1 is by introducing a relevant countermeasure strategy, which in this
study is vaccination. Another number that is key to the vaccination process is known as
the effective reproduction number (REF). This represents the number of secondary cases
generated from exposure to a primary individual during vaccination. The value of REF can
be updated with the progress of vaccination, unlike R0. Therefore, reaching the state of REF
< 1 is desirable in marking the end of the contiguous disease and halting the vaccination
process. The value of REF can be derived from R0, by REF = s(t).R0 [36].

Using a specific time unit (t.u.), the period defined to determine a complete vaccination
campaign is Tcntrl = Ttmp + Tgc = 150 (t.u.). At time unit 50, the system reaches “endemic
equilibrium”, which is marked as Ttmp = 50 (t.u.), and this separates the time periods into
before and after the infection stabilized. From the beginning of endemic equilibrium at
Ttmp to Tcntrl, the optimization system is dedicated to finding a guardian control policy,
while during the time period from τ0 to Ttmp, the optimization system operates under the
contingent control phase to find a set of policies that are able to contain the infection, as
shown in Figure 2. The guardian phase is better applied indefinitely, but since this is an
unrealistic situation, it will be considered over a time period of length Tgc. The initial SIR
condition for the contingent control is supposed to be (s0, i0, r0) = (0.99, 0.01, 0). However,
for the guardian control, the initial system condition will be (se, ie, re) ≈ (0.067, 0.085, 0.848).
Remarkably, the value of ie = 0.085 is greater than the acceptable tolerance ratio itol = 0.01,
so this is a clear justification of the importance of deploying the guardian control policy in
order to minimize the infection volume after completing the contingent control policies.
The setup of SIR parameter values in this context mimics a hypothetical disease that is hard
to control but for which there is an efficacious vaccine (refer to Table 1).

https://www.cdc.gov/flu/about/burden/index.html
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Figure 2. Anatomy of the optimizer’s main components.

4. Problem Description

The role of vaccination allocation is a paramount aspect in controlling the spread
of infectious diseases, especially influenza and other contagious viruses. The effect of
vaccination in reducing the fraction of susceptible individuals in order to control the
outbreak/epidemic at an early point in time is directly related to avoiding or reducing an
increase in the overall infection volume. A two-fold effect of vaccination is well recognized:
a direct advantage for the vaccinated, due to acquiring full or partial immunity, and an
indirect benefit for the unvaccinated by reducing the risk of exposure to the disease [37].

Pulse Vaccine Allocation

This work is based on Pulse vaccination, which means that in a predetermined time
period, there is a vaccination policy that will be applied on a certain percentage of suscep-
tible individuals. This approach allows different/exact sizes of Pulse control actions at
arbitrary/autonomous time points in order to form a complete vaccination campaign [3,6,7].
According to the work of A. C. S. DUSSE et al. [3], applying a deterministic (discrete) or
stochastic (continuous) SIR system in Pulse vaccination yields negligible differences in the
obtained findings. Moreover, the effects of Pulse vaccination on a continuous system can
be observed as a transformation of the continuous system to a non-continuous system. The
Pulse action affects the functions (S), (I), and (R) by turning them into step functions [3].
Thus, the aim of this research is to study Pulse vaccination control from a discrete time
optimization point of view.

Let a vaccination time horizon defined by T ∈ R and Ω = {τ0, . . . ,τN} represent a set of
pivot points in the closed time interval [0,T], such that: τk < τk+1, τ0 = 0 and τN = T. These
timeframes do not have to be equidistant. Consider an epidemiological model compart-
ment x be a state variable belonging to Φ, and the control vaccination rates belonging to
Uk = {v0, . . . ,vk}, for all k = 0, . . . , N − 1. The system state at instance τk is denoted by x(τk)
and the control action is denoted by u[k]. The instant of time that comes immediately after
τk is τk+1, and is defined as a time instant “just after” the Pulse action in τk [5]. In short, the
Pulse control problem is defined formally by T. Yang in [38] as follows:

Definition 4. In a Pulse control problem, the state at each time τk, x(τk) ∈ Φ can be changed by
x(τk

+) = x(τk) + u[k], with u[k] ∈ Uk.
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The dynamic of the system under the effect of Pulse control can be outlined in this form:

x(t + 1) = f (t, x(t)),
x(τk

+) = x(τk) + u[k],
t∈(τk

+,τk+1],
k = 0, . . . , N − 1,

(3)

Activating the control action (vaccination policy) at each timeframe establishes a new
initial condition for the system to be the input of the subsequent timeframe. A complete
vaccination campaign is constituted by linking each timeframe outcome with the next
according to Equation (3); the whole process is in line with “Bellman’s Optimality Principle”:
an optimal solution (set of policies) has the property, no matter of its initial policy, that the
remaining policies must form an optimal solution from that initial policy [39].

5. Optimization Model
5.1. Proposed Model

This paper pursues multi-objective pulsive vaccination control using an open-loop
continuous variable dynamic optimization procedure to solve the epidemiological prob-
lem, using the SIR model as the dynamic system and two multi-objective optimization
techniques, NSGA-II and CENSGA, to be described in Section 5.2. Optimization is one of
the most active and effective techniques used to control vaccination policies. The limited
number of vaccine doses added to time constraints overwhelms the infection volume. A
cost-effective vaccination campaign is crucial to mediate between the reductions in infection
volume and the cost of vaccination administration.

The mathematical formulation of the problem is described as follows. Let x ∈ Φ constitute
the decision variable vector; Φ⊂ Rn is the decision variable space; [f 1 (x), . . . , fm (x)] is the vector
of objective functions to be minimized and X* is the set of optimal solutions, which consist
of all decision vectors for which the corresponding objective vector cannot be ameliorated in
any dimension without a recession in another one (recall the definitions in Section 2). In the
optimization set-up, we must determine the chromosome representation and fitness equation
that helps in examining the objective functions. For the sake of this work, we adopt the general
framework methodology found in [3,6,7] to test the suggested CENSGA technique under the
same conditions and parameter calibrations.

A. Fitness Function

The fitness function contributes to determining the quality of a given chromosome
(solution), and it returns numerical value(s) reflecting the evaluation status of the instance.
In determining the fitness equation, it is necessary to combine the objectives and constraints
to obtain a set of feasible chromosome instances. Essentially, the goal here is minimizing
the volume of an infected population over time and, at the same time, to obtain a campaign
that offers an effective cost within the vaccination policies [3,6].

The optimization process has two phases: the guardian control determines a set
of non-dominated guardian policies, and the contingent control determines a set of
contingent policies. The outcome of the contingent phase is complemented with the
best guardian control policy selected from the guardian phase to form a complete
vaccination campaign. The purpose of two-phased optimization is to maintain an
acceptable level of infected individuals in a finite time near to the disease-eradication
ratio (i.e., compartment (I) ≤ tolerance ratio (itol) > 0), which could be achieved by
incorporating a fixed-guardian control policy following a contingent vaccination phase
in order to avoid an/another outbreak.

The cost function employed as the second objective function follows the exact cost
function defined by Cruz et al. [6]. For the sake of comparison, the same simulation
parameters and calibration values in [6] are used here as well. There are fixed and variable
cost parameters that contribute to the implementation of vaccination policies. Starting with
the fixed-cost part, the constants shown in Equation (4) are assumed to be c1 = 10, c2 = 1
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and c3 = 1. Thereby, c1 · Ngc is the fixed part of the cost function with the implementation
of all policies in the guardian control phase, i.e., Ngc is the number of times the selected
guardian control policy will be applied. The second term c2 · Ngc · (1 + vgc)2 is the essence
of the cost function that articulates the variable monetary cost related to the effort required
to reach the vgc proportion of the susceptible population in all policies. The last term,
c3 · ∑ vgc ·S[k], stands for the cost of all vaccines in all vaccination policies. Without losing
generality, the same definition principle is applicable for the cost function of the contingent
control phase found in Equation (6), where Ncc indicates the number of contingent control
policies that are planned to be administrated.

Mathematically, the time considered to determine the multi-objective control period
is Tcntrl = Ttmp + Tgc, where Tcntrl belongs to the closed interval [0, Tcntrl], and has to
be partitioned into a set of events Ω = {τ0, . . . , τN}, such that: τ0 = 0, τN = Tcntrl, and
τk+1 − τk = ∆T. The time between each τk and τk+1 is considered as a state of the optimiza-
tion problem. The guardian phase of the multi-objective optimization model is depicted
in Equation (4). The role of this phase is to find a set of non-dominated guardian control
policies, X*gc= {(∆τgc, vgc), . . . }; these are the decision variables used to derive a candidate
solution with a constant time interval between campaigns, ∆τgc, and with a constant pro-
portion of susceptible population, which must be vaccinated at each campaign, vgc. The
guardian control policy should begin at time Ttmp and be applied indefinitely, up to disease
eradication or, in our multi-objective period, until Tcntrl.

The multi-objective optimization model of the contingent phase is depicted in
Equation (6). The role of this phase is to determine a non-dominated set of complete
vaccination campaigns. This phase appoints a fixed-guardian control policy after a set of
variable contingent control policies (refer to Figures 2 and 3). The set of non-dominated
complete control policies for vaccination is described by

X* = {(∆τ1, v1, ∆τ2, v2, . . . , ∆τNcc, vNcc, ∆τgc, vgc), . . . }

Figure 3. Chromosome representation.

Each contingent control is described by Ncc value pairs of the time interval between
campaigns, ∆τk, and the fraction of susceptible individuals to be vaccinated,
vk, k∈ {1, 2, . . . , N}. The extra pair (∆τgc, vgc) is derived from phase 1, which repre-
sents a guardian control policy chosen from solutions X*gc. The resulting optimization
problem for the guardian control phase is described by Equation (6).

minXgc


F1 =

Tcntrl∫
Ttmp

I(t) dt

F2 = C1·Ngc + C2·Ngc
(
1 + vgc

)2
+ C3·

Ngc

∑
k=1

vgc· S[k]
(4)
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subject to (5): 

dS
dt = µN − µS− βIS

N , S(0) = S0·N ≥ 0
dI
dt = βIS

N − µI − γI, I(0) = I0·N ≥ 0
tk = Ttmp + k·∆τgc, τ ∈

(
τ+

k , τk+1
]

s
(
τ+

k
)
= s[k+] = s[k]

(
1− vgc

)
i
(
τ+

k
)
= i[k+] = i[k]

i(t) ≤ itol · N, t ∈
(
Ttmp, Ttmp + Tgc

]
Ngc

∑
k=1

∆τk ≤ Tgc; Ngc = b
Tgc

∆τgc c

k = 0, 1, . . . , Ngc − 1
0.40 ≤ vmin ≤ vgc ≤ vmax ≤ 0.95
1 ≤ ∆τmin < ∆τk < ∆τmax ≤ 20

(5)

The guardian control has the following constraints, as described by Equation (5). The
system dynamic is determined by the SIR model (see Equation (2)), starting at the endemic
equilibrium point {s(0), i(0), r(0)} = {0.067, 0.085, 0.848}, which is the infection-free value
of the SIR model under constant Pulse vaccination [6,35]; functions dS/dt and dI/dt be-
have accordingly. From the beginning of guardian control, vaccination moments occur
periodically kth times in a harmonic manner tk = Ttmp + k·∆tgc. At each unit of time (tk),
a constant Pulse vaccination policy vgc (proportion of the susceptible to be vaccinated)
is carried on, propagating the direct positive effect of vaccination on the population, as
described in S(tk

+), and I(tk
+). The notation (+) indicates the moment after the vaccina-

tion carried out via the Pulse vaccination policy. To keep the infected population under
control, during guardian control, the disease should remain below an acceptable value,
by i(t) ≤ itol. N, where i(t) is an instance of dI/dt at time (tk). The number of times the
guardian control policy is going to applied is determined by Ngc, taking into consideration
the total sum of time periods, must not exceed Tgc. The proportion of susceptible population
to be vaccinated in each policy is bounded in the range [vmin, vmax] = [0.40, 0.95], while the
time between two successful vaccination policies must be in the range [tmin, tmax ] = [1,20].
This search range includes values that theoretically prove that the infected population tends
to zero over time [35]. The effects on compartment (R) are omitted for the sake of brevity,
but this will not have any effects on the resulting output, as the system is an open system.

In contrast to the fixed-time policy applied during the guardian phase, time-variant
control policies are considered for the contingent control phase, as described by
Equation (6). The objective functions of the contingent phase are close to the ones an-
ticipated in the guardian phase. In addition, the contingent phase objective functions
consider the entire time horizon, which combines the contingent policies to stabilize disease
fluctuation with the guardian policy to keep the infection volume under control. To sum
up, a selected guardian control policy will be applied repeatedly on the time interval
[Ttmp, Tcntrl], while the contingent control policies are administrated on the time window
[0, Ttmp]. In the contingent control phase, both policies’ parts are connected to form a
complete vaccination campaign that operates on the entire optimization time horizon
[0, Tcntrl].

minXcc


F1 =

Tcntrl∫
0

I(t) dt

F2 = C1·NTotal + C2·
(

Ncc
∑

k=1
(1 + vk)

2 + Ngc
(
1 + vgc

)2
)
+ C3·

NTotal
∑

k=1
vk· S[k]

(6)
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subject to (7): 

dS
dt = µN − µS− βIS

N , S(0) = S0·N ≥ 0
dI
dt = βIS

N − µI − γI, I(0) = I0·N ≥ 0, τ ∈
(
τ+

k , τk+1
]

tk = τk− 1 + ∆τk
s
(
τ+

k
)
= s[k+] = s[k](1− vk)

i
(
τ+

k
)
= i[k+] = i[k]

vk =

{
vk, 1 ≤ k ≤ Ncc

vgc , Ncc + 1 ≤ k ≤ Ngc

∆τk =

{
∆τk, 1 ≤ k ≤ Ncc

∆τgc , Ncc + 1 ≤ k ≤ Ngc
i(t) ≤ itol · N, t ∈

(
Ttmp, Ttmp + Tgc

]
Ngc

∑
k=1

∆τk ≤ Tgc; Ngc = b
Tgc

∆τgc c
Ncc
∑

k=1
∆τk ≤ Ttmp; NTotal = Ngc + Ncc;

Ncc ∈
{⌊

Ttmp
∆τ1

⌋
, . . . ,

⌊
Ttmp
∆τk

⌋}
, ∑ ∆τk ≤ Ttmp

k = 0, 1, . . . , Ngc − 1
0.40 ≤ vmin ≤ vk ≤ vmax ≤ 0.95
1 ≤ ∆τmin < ∆τk < ∆τmax ≤ 20

(7)

The contingent phase combines guardian and contingent policies to form a final
vaccination campaign. This considers the optimization problem in the contingent phase
as an extension of the former optimization problem with their mutual set of constraints,
as described by Equation (7). The system still behaves dynamically using the SIR model
with the same parameters as before. The initial state of susceptible, infected and recovered
populations is assumed to be {s(0), i(0), r(0)} = {0.80, 0.20, 0}. Each k policy is indicated by
the pair (tk,vk), representing the times and fractions of the susceptible population to be
vaccinated. In the contingent control time window, again, the term (tk,vk) has variant values.
In contrast, in the timeframe of guardian control, (tk,vk) has constant value. The sum of
time intervals must not exceed their bounds Ttmp and Tgc. The number of policies, Ncc,
in the contingent control can vary from bTtmp/∆tmaxc to bTtmp/∆tminc, while the number
of guardian control stages, Ngc, is the same as Equation (4). The terms vk and ∆τκ are
vaccination proportion and time periods for the entire system time horizon, where the
contingent control starts first and proceeds until administrating Ncc vaccination policies; this
is followed by the application of Ngc guardian control vaccination policies. For both stages,
there are Ncc different contingent control vaccination policies and Ngc constant guardian
control vaccination polices to be applied in the duration [0, Tcntrl]. Henceforth, dividing the
time limit of each stage Ttmp and Tgc over the possible policies’ durations ∆tgc and {∆t1, . . .
, ∆tcc} produces the number of policies in each stage Ngc and Ncc, respectively. The total
number of policies in the final vaccination campaign is NTotal = Ncc + Ngc. Following the
same condition employed in phase 1, the disease should remain below an acceptable value,
where (I) ≤ itol·N (i.e., itol = 0.01), to be maintained by applying the selected policy from
the guardian control stage repeatedly until Tcntrl. To simplify the system, (R) compartment
again is not mentioned, as declared earlier.

B. Chromosome Representation

The representation of a chromosome is composed of a series of genes. The chromosome
is mainly divided into three sub-lists; genes in the first part symbolize the timeframe period
in each gene to represent τk+1 – τk = ∆tk, while the second part of the chromosome indicates
the set of vaccination polices, as each gene represents a proportion of the vaccination vK.
The last part shows the policy chosen from the guardian phase, where tgc is the time period
between two consecutive vaccination policies and vgc is the proportion to be vaccinated, as
shown in Figure 3.
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The first two parts of the chromosome belong to the contingent phase. The chromo-
some is depicted as a sequence of times followed by a sequence of vaccination proportions
that will be employed at each abovementioned time period. It is worth noting that the
chromosome lengths are of variable size, related to the number of vaccination policies
applied over the indicated time horizon. The use of variable-length chromosomes (VLC)
is motivated by many works found in the literature, such as [24,25,40–43]; for this work,
no mapping from genotype to phenotype is needed, so there is no encoding/decoding
process. To serve the purpose of this paper, VLC is utilized without adding an extra
burden on the CPU time or memory utilization during the evolutionary processes (i.e.,
crossover/mutation). The condition applied to the chromosome length is that the number
of timeframe periods must be the same as the number of vaccination policies. In other
words, for each timeframe, an associate vaccination policy is to be applied.

The lower and upper limits of policies in a chromosome are fixed. We begin by
defining a particular limit to the number of policies in a chromosome, say, 1 ≤ k ≤ 20.
However, we do not know exactly how many policies are required. This should also be
identified by ∆tk on the fitness function, where 0 ≤ ∑∆tk ≤ T. So, the chromosome should
be able to increase or decrease the number of policies from individual to individual, or
from generation to generation.

5.2. Non-Dominated Sorting Genetic Algorithm (NSGA)

A new paradigm of multi-objective algorithms has recently been dominating in the lit-
erature. These algorithms do not switch multi-objective problems into single-objective ones;
instead, they are heuristics oriented towards guiding the multi-objective search. In order to
tackle the complex vaccination problem with its contradictory objectives, a compromise-
based approach must be applied to find the set of near-optimal solutions. In principle,
the evolutionary multi-objective problem produces a set of optimal solutions (known as
non-dominated or Pareto-optimal solutions), rather than a single optimal solution.

The motivation for using the multi-objective approach in solving complex problems
in optimization is that it does not require special equations, which helps to simplify the
problem. The nature of multi-objective optimization allows for a compromise (tradeoff)
between some contradictory issues, and then leaving the final decision to the policymaker.
In other words, there is no single best solution for all dimensions, but rather there are
several candidate solutions [29]. In the current paper, the proposed mathematical model is
solved by applying two Pareto-based metaheuristic algorithms: NSGA-II and CENSGA.

A. NSGA-II

A non-elitist multi-objective genetic algorithm NSGA (or NSGA-I), proposed by Deb,
Agarwal and Meyarivan [44], was one of the first EAs that was able find multiple Pareto-
optimal solutions in one single simulation run. Several drawbacks were noted, such as
the high computational complexity O(MN3), lack of elitism and the necessity of a sharing
parameter. NSGA serves as a basis of two other metaheuristic algorithms, NSGA-II and
CENSGA, whose implementations differ in several aspects. The powerful NSGA-II is one
of the most widely implemented algorithms within this category; it is well known for its
outstanding enhanced features, such as its fast non-dominating sorting-procured O(MN2),
elitist-preserving mechanism and no-niching parameter. The main idea of NSGA-II is to
reproduce a new population from an initial population without losing good solutions, and
assure better convergence to the optimal Pareto-optimal front with a good spread of the
solutions [44].

The best solutions and Pareto fronts are obtained by prioritizing solutions using
non-dominated sorting. Non-dominated sorting considers two parameters: Np, which
represents the number of solutions dominating a certain solution, and Sp, which represents
the set of solutions derived by a certain solution. The sorting process is a labelling procedure
carried out repeatedly, wherein each solution must be ranked with a number, potentially
non-unique, that indicates the front it belongs to. For minimization problems, the best
solution is assigned to the first front, the second solution is assigned to the second front, and



Electronics 2022, 11, 3711 13 of 29

so on. The ranking of the solutions works as a measure of fitness. The fast non-dominated
sorting operator is used to associate a rank to each solution relative to its dominance level.
However, within the same rank, a set of solutions is assigned. Thereby, a measure of
the density of solutions belonging to the same rank (front) is applied, which is denoted
as the crowding distance (CD) [14]. Algorithm 1 outlines a summary of the NSGA-II
algorithm [12].

Algorithm 1. Template for NSGA-II algorithm [12]

Rt = Pt ∪ Qt //combine parent Pt and children population Qt
F = fast-non-dominated-sort (Rt) //rank all non-dominated fronts of Rt
Pt+1 = ∅ and i = 1
until |Pt+1| + |Fi| ≤ N //until the new population is filled

Pt+1 = Pt+1 ∪ Fi //include i-th non-dominated front in Pt+1
//calculate crowding distance for each solution in Fi for partial inclusion
crowding-distance-assignment (Fi)
i = i + 1
Sort (Fi, ≺n) //sort in ascending order using ≺n

Pt+1 = Pt+1 ∪ Fi [1:(N − |Pt+1|)] //choose the first N elements inFi
Qt+1 = make-new-pop (Pt+1) //using selection, crossover, and mutation

t = t + 1

The new population pool Pt+1 is created by adding solutions from fronts in a consecu-
tive manner, starting from the first front F1, until the size of the parenting pool reaches N.
Individuals on all fronts are ordered using a crowding distance that calculates the distance
between neighboring solutions. Thereafter, the best fronts are included entirely in NSGA-II,
while solutions of the last-accepted front are sorted and selected according to a crowded
comparison criterion. The crowded comparison criterion uses a special relation ≺n to
promote diversity in the solutions within this front, where ≺n is defined as follows:

if (irank < jrank) or ((irank = jrank) and (idistance > jdistance)), then, SELECT i

In other words, the solutions with lower ranks are preferred when there are differences
in the non-dominated ranks. Apart from that, if both solutions are on the same front, then
the larger crowding distance (i.e., solutions from less dense regions) is preferred. This
forms the population Pt+1 of size N. At this point, the parent population Pt+1 proceeds for
selection, crossover, and mutation to construct a new population Qt+1 of size N [12]. In
our work, the bounded Simulated Binary Crossover (SBX) [45] and bounded Polynomial
Mutation [46] are used as recombination operators, where these are the same GA operators
used in [6].

B. CENSGA

In this paper, we present an extended version of NSGA-II that is denoted by Controlled
NSGA-II or CENSGA. CENSGA was first proposed by Deb and Goel [12], with the main
differences related to the selection strategy. In particular, CENSGA gives all fronts the
ability to participate in the selection process through a geometric distribution with various
priorities that reflect the front level. Figure 4 shows that the reproduction of the new
population under CENSGA is more varied than under NSGA-II.

The two-fold affirmation of elitist solutions in NSGA-II will cause a rapid exclusion of
solutions belonging to non-elitist fronts. Although the CD operator will preserve diversity
along the current non-dominated front, lateral diversity will be absent. Basically, under
such conditions, the search may wane due to the lack of diversity in certain decision
variables. Thus, the ability to direct the search towards better regions of optimality may be
paralyzed. Therefore, in order to prevent premature convergence, a search algorithm more
effectively adopts diversity in both directions—along the Pareto-optimal front and lateral
to the Pareto-optimal front [12], as presented in Figure 5.
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Figure 4. Selection strategy of CENSGA.

Figure 5. Controlled elitism procedure is illustrated.

In CENSGA, the selection operator is modified to encourage more diversity by allow-
ing all fronts to participate in the selection strategy. The participation of fronts is controlled
by a geometric distribution that prioritizes them, ensuring that better fronts have a greater
influence in shaping the next generation. This process is calculated by Equation (8):

ni = r·ni−1 (8)

where ni represents the number of individuals in the ith front and r (<1) identifies the
reduction rate. In a population of size N, let k be the number of non-dominated fronts; then,
the maximum number of individuals allowed in each front fi ∈ (1, 2, . . . , k) is computed
as follows:

ni = N·ri−1 1− r
1− rk (9)

At front fi, the selection of ni individuals is performed by the CD operator. The
geometric distribution ensures an exponential reduction in the number of solutions over
the fronts [14,47]. Algorithm 2 shows the pseudo-code for the controlled selection, while
Figure A1 presents a flowchart of the CENSGA algorithm.
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Algorithm 2. Pseudo-code for CENSGA Controlled geometric selection

Rt = Pt ∪ Qt //combine parent Pt and children population Qt
F = fast-non-dominated-sort (Rt) //rank all non-dominated fronts of Rt
Pt+1 = ∅ and i = 1
repeat

ni = N·ri−1(1− r)/
(

1− rk
)

//Geometric distribution to decide

number of individuals at front i
crowding-distance-assignment (Fi)//calculate crowding distance for each solution

in
Fi for partial inclusion

Sort(Fi, ≺n) //sort in ascending order using ≺n
Pt+1 = Pt+1 ∪ Fi [1:ni] //include ni non-dominated front in

Pt+1 according to Geometric distribution
i = i + 1

until |Pt+1| + | Fi [1:ni]| ≤ N //until the new population is filled
Qt+1 = make-new-pop (Pt+1) //using selection, crossover, and mutation
t = t + 1

C. Local search via Gaussian approximation.

Deterministic search methods were proven to find the local optimal solution with fast
and precise convergence properties. A promising means to enhance the local search beyond
local optimality is by combining evolutionary algorithms and classical deterministic search
methods. Our work is inspired by a local search scheme proposed in [6] that boosts the
convergence and improves the quality of solutions. This hybrid method selects solutions
from the non-dominated front (recombined population) to feed the local search’s initial
population. The Gaussian approximation with scalarized weighted sums [29] is used as a
function to generate newly approximated Pareto-optimal solutions, which may yield new
opportunities to search areas closer to the true optimal front.

The hybrid scheme embeds the local search in the canonical NSGA-II and CENSGA
algorithms, such that the process of the local search is triggered every 20 generations. The
local search has the following fundamental actions: (1) A set of (r) solutions is chosen at
random from the existing non-dominated front. (2) Around each solution (r) chosen in the
former step, a set of (m) new points is created autonomously, by Gaussian distribution,
with standard deviations equal to 0.01 times the size of the search space for each decision
dimension. (3) The fitness value is evaluated on the new points to associate their objective
values. (4) The new r × m solutions are introduced into the current population.

The setup of the experiments conducted here is as follows: (r) is set to hold four
randomly chosen solutions selected from the existing non-dominated front, with m = 2s,
and s = 2·n + 1, where (n) is the search space dimension of the problem. The number of
newly produced solutions for each set of approximated functions has been set as p = N/2,
where N is the population size of the evolutionary algorithm. In other words, in each
iteration, when the local search is triggered, 2N new solutions are produced; then, the
selection operator is performed over 4N solutions, with 2N solutions coming from the
current iteration of the optimization process and 2N coming from the local search.

D. Evolutionary algorithm using a hash table

In order to maintain a unique set of solutions and most effectively utilize the processor
time, a hash table was incorporated into the evolutionary algorithm, as proposed in [6]. A
good data structure and a good hashing function has a mean search time computationally
equivalent to O(1) for an element in the array [48].

The current research benefits from a hash table in storing the non-repetitive generated
solutions during the evolutionary iterations in the optimization process. When a new
offspring is obtained by a genetic operator, it passes through a verification process to
acknowledge that there is no comparable member on the hash relation. This step assures
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there is no repetition among the hash relation members. When an offspring matches a
member stored in the hash table, a random vector with Gaussian distribution (zero-mean
and standard deviation equal to 1.0 percent of the search space dimension) is added to the
offspring coordinates, generating a new offspring around the original member. In this way,
the hash table encourages diversity, and only new solutions are evaluated.

During the optimization run, the algorithm is executed for several generations, and on
each iteration, the hash table is updated accordingly. Hence, the relation of solutions is set with
the initial population and expands in each iteration of the optimization process. In the final
iteration, non-dominated sorting is applied over all stored solutions during the optimization
process. The return result is a set with all non-dominated solutions that were involved in all
executions. An outline of the CENSGA algorithm is presented in Algorithm 3.

Algorithm 3. CENSGA Outline Algorithm

P1 ← InitialPopulation() //P1 is the initial population generations
[H, P1 ]← AnalyzeInsertHashTable(H, P1) //H is the hash table
[H, P1 ]← EvaluatePopulation(H, P1)
NDS1 ← NonDominatedSorting(P1) //NDS contains First Pareto front of P1
NDS1 ← CrowdingDistance(NDS1)
for t from 1 to t step 1 do //t is the number of generations

Qt ←GeometricSelectionAndRecombination(Pt)
Qt ←Crossover&Mutation(Qt)
[H, Qt ]← AnalyzeInsertHashTable(H, Qt)
if it is desired to execute local search then

L← LocalSearch(NDSt, H)
Qt←Qt ∪ L

end if
[H, Qt ]← EvaluatePopulation(H, Qt)
Rt ←Pt ∪ Qt
NDSt← NonDominatedSorting(Rt)
NDSt ← CrowdingDistance(NDSt)
Pt+1 ← FillNondominated(GeometricSelection(NDSt))

end for
PF← NonDominatedSorting(H) //Final pareto front PF

6. Parameter Tuning

Different approaches can be utilized to tune the parameters of an algorithm [49–51]. In
this work, the Taguchi method is applied to calibrate the parameters of the two metaheuris-
tic algorithms tested. The Taguchi method is a robust and powerful tool for optimizing the
performance settings of algorithms [52]. The design of the Taguchi test involves the concept
of orthogonal arrays (OA) used to study the effects of different permutations of decision
variables or factors on many levels with less trials, contrary to performing all analyses,
as in the full factorial design [51]. In Taguchi designs, the signal-to-noise (SNR) ratio is
used to find the optimal level of control factors and to reduce the effect of noise factors.
Control factors, in our case, are the algorithm’s parameters that can be controlled. Noise
factors cannot be controlled while the algorithm is executed, but can be controlled during
experimentation. Therefore, in a Taguchi-designed experiment, the noise factors can be
manipulated to encourage underling variability to occur to identify optimal parameters
settings that make the algorithm robust, or at least resistant to variation from these noise
factors. Thus, the signal-to-noise (SNR) ratio is employed. Furthermore, the expected
outcome (response) is minimization, so a smaller-the-better type of response is applied.
Equation (10) represents the SNR ratio as follows [53]:

SNR = −10 × log(S(G2)/n) (10)
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where G is the responses used for the respective parameter levels and n is the number of
responses in the parameter levels.

The parameter calibration test is executed by the Orthogonal Arrays (OA) (i.e., Taguchi
representation) L9 (3ˆ4) and L27 (3ˆ5); that is, 9 and 27 test runs are designed from four
and five parameters, with three levels of potential parameter values. Table 2 shows the
parameters of NSGA-II and CENSGA, and the levels defined for them. Using Minitab
software, for NSGA-II and CENSGA, the effect plots for the SNR ratio are computed.

Table 2. The levels defined for the parameters of NSGA-II and CENSGA.

Algorithm Parameters
Parameters Levels

Level 1 Level 2 Level 3

NSGA-II

Population size (A) 25 50 70
Maximum generation (B) 30 50 100
Crossover percentage (C) 0.6 0.75 1
Mutation percentage (D) 0.1 0.2 0.4

CENSGA

Population size (A) 25 50 70
Maximum generation (B) 30 50 100

Geometric distribution (C) 0.1 0.5 0.9
Crossover percentage (D) 0.6 0.75 1
Mutation percentage (E) 0.1 0.2 0.4

The objective function values are computed by implementing the algorithms for the
two-staged Pulse vaccination problem. For each combination of parameters, the bi-objective
functions of the model, z1 and z2, are considered jointly, and two objective values are
obtained. Hence, for each objective function, the mean of the population’s values obtained
for the problem can be calculated. This produces two mean values that are converted to a
single objective function value using the weighted-sum approach [29].

Z = w1 × Z1 + w2 × Z2 (11)

where the weight parameters w1 and w2 indicate the contribution of the objectives to
the combined objective value; in this work, the values are set to 0.5, indicating equally
significant objectives. Figures 6 and 7 depict the SNR ratio of the Taguchi test runs for
NSGA-II and CENSGA, respectively. In NSGA-II, the SNR ratio is applied twice, since the
first round indicates a significant value for the population size among the other parameters
only. Therefore, a second SNR round is applied by stabilizing the first parameter with the
best value obtained from the first round, using the same levels for the other parameters
employed when using representation L9 (3ˆ3). The best calibrations of the parameters
determined by the Taguchi method are tabulated in Table 3.

Table 3. Optimal values for the parameters of NSGA-II and CENSGA.

Algorithm Parameters Optimal Value

NSGA-II

Population size (A) 70
Maximum generation (B) 50
Crossover percentage (C) 1
Mutation percentage (D) 0.2

CENSGA

Population size (A) 70
Maximum generation (B) 100

Geometric distribution (C) 0.9
Crossover percentage (D) 1
Mutation percentage (E) 0.1
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Figure 6. Main effects plot for the SN ratio of NSGA-II in (A) round 1 and (B) round 2.

Figure 7. Main effects plot for SN ratio of CENSGA.

7. Results

After the execution of the multi-objective optimization algorithms for the guardian
phase of the problem formulated in Equation (4), a set of non-dominated guardian con-
trol solutions were determined, with 597 and 1132 solutions for NSGA-II and CENSGA,
respectively. All these solutions verify the constraints and belong to the non-dominated
Pareto front. In this phase, the evolutionary algorithms evaluated 6000 and 25,248 different
solutions for NSGA-II and CENSGA, respectively. Figure 8 shows the non-dominated
Pareto front of the guardian phase of the problem.
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Figure 8. Non-dominated pareto front of the guardian phase of the problem. Where, Black circles are
solutions belong to PF, while red star indicates the selected solution ∆tgc = 8.3335 and vgc = 0.8752.
(A) NSGA-II, (B) CENSGA.

The outcome of the guardian phase is passed to the contingent phase as a fixed
policy, since there is a recurrent Pulse guardian policy that will be applied to control the
infection rate. Consequently, the guardian control policy was selected from the optimal
non-dominated solution of the guardian phase, which is marked with a red symbol in
Figure 8. This corresponds to the guardian control policy ∆tgc = 8.3335 and vgc = 0.8752,
which were included in Equation (6).

All solutions generated by the evolutionary algorithms with the local search operator
based on a hash table are visualized in Figure 9, where 77,000 solutions for NSGA-II and
637,560 for CENSGA are evaluated in all executions of the contingent phase. In general, the
solutions obtained by the two algorithms belong to the same exploration area. Conversely,
CENSGA can exploit more due to the introduction of Controlled elitism procedure; the
search algorithm effectively obtains diversity in both directions, i.e., the Pareto-optimal
front and lateral to the Pareto-optimal front. The Pareto front of the contingent phase of the
optimization process is represented in Figure 10. All those solutions verify all constrains.
The red star marks the selected Pareto-optimal solution for both fronts from the optimal
non-dominated solution set. The final non-dominated set of complete controls shows a
higher number of smooth, better spaced and more variable solutions on CENSGA’s Pareto
front compared to NSGA-II’s Pareto front.

Figure 9. Image set of all obtained solutions considering all executions of the evolutionary algorithms
for the contingent phase presented in Equation (6). (A) NSGA-II, (B) CENSGA.
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Figure 10. Non-dominated Pareto front of the contingent phase problem. (A) NSGA-II, (B) CENSGA.

A fast non-dominated sorting procedure was executed using the objective functions
of the final hash table. A partial set of the sorted non-dominated set of robust complete
control policies is presented in Table 4. This table shows the top 30 solutions’ objective
function values. Two probabilities are defined: Pc indicates the disease is “under control”
after the end of the contingent phase, calculated as the ratio of realizations in which the
number of infected individuals approaches 0.01N or below; and the probability of disease
eradication, PRE, is defined as the ratio of realizations in which REF is under one within the
simulation time horizon.

Table 4. Top 30 non-dominated solutions.

Solution #
NSGA-II CENSGA

F1 F2 PC PRE F1 F2 PC PRE

1 57.27546 1481.784 0.03 0.58 40.17971 2155.631 0.93 0.56
2 42.26528 2162.272 0.91 0.56 39.22617 2246.802 0.96 0.57
3 42.48387 1972.431 0.91 0.56 42.48387 1972.431 0.51 0.59
4 43.32805 2097.467 0.90 0.61 49.02240 1709.273 0.91 0.61
5 43.53146 1965.415 0.50 0.58 42.34167 2031.065 0.72 0.58
6 49.04402 1851.618 0.17 0.57 50.17826 1632.085 0.60 0.60
7 49.62623 1772.659 0.08 0.58 48.95636 1757.900 0.92 0.61
8 50.12384 1676.411 0.58 0.60 57.33833 1423.545 0.02 0.54
9 49.86542 1746.725 0.88 0.61 55.67879 1474.348 0.05 0.59

10 55.46100 1490.285 0.07 0.58 50.09297 1663.320 0.74 0.61
11 46.89765 1929.952 0.62 0.59 40.51751 2118.797 0.91 0.51
12 49.62623 1772.659 0.08 0.58 42.56096 1970.538 0.62 0.60
13 48.08837 1867.685 0.45 0.58 39.26545 2214.084 0.95 0.57
14 44.33212 1957.920 0.58 0.58 39.24922 2246.283 0.96 0.57
15 55.15776 1509.711 0.09 0.58 54.85511 1483.855 0.09 0.58
16 50.78942 1626.521 0.44 0.60 41.07164 2095.011 0.91 0.55
17 45.85773 1938.358 0.72 0.59 50.78363 1624.502 0.46 0.60
18 42.63134 2139.678 0.92 0.56 44.59067 1887.626 0.40 0.61
19 47.00748 1909.577 0.55 0.59 40.33498 2136.160 0.92 0.52
20 50.67661 1660.034 0.49 0.60 54.61229 1511.137 0.12 0.57
21 45.85773 1938.358 0.72 0.59 45.18799 1874.321 0.33 0.59
22 44.64455 1941.996 0.45 0.58 42.96260 1953.169 0.57 0.61
23 54.56721 1527.107 0.12 0.58 54.17620 1513.515 0.13 0.58
24 43.01730 2124.942 0.90 0.57 40.33498 2136.160 0.92 0.52
25 51.05753 1606.500 0.30 0.59 43.29324 1930.275 0.54 0.59
26 54.16909 1527.488 0.14 0.59 49.90359 1679.994 0.64 0.59
27 43.66610 1959.621 0.46 0.58 54.73271 1501.457 0.07 0.58
28 45.13841 1939.580 0.27 0.56 48.38427 1783.314 0.15 0.61
29 53.58785 1543.445 0.18 0.60 41.45457 2076.025 0.85 0.60
30 52.04441 1587.148 0.30 0.60 51.00140 1618.919 0.40 0.59

Average 48.393984 1807.51157 0.46 0.58 46.4923847 1847.38473 0.58 0.58
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The performance indices of the top 30 solutions of NSGA-II and CENSGA are indicated
in Table 4. The mean values of PC and PRE presented in Table 4 and Figures 11–13 are
now analyzed for the sake of comparison. The data are analyzed using the indicated two
probabilities PC and PRE. By definition, multi-objective problems are characterized by
the fact that an improvement in one objective usually causes a deterioration in the other
objective, which may lead to a biased judgment if we build our comparison based only
on objective values. Thus, we selected two candidate solutions from both Pareto fronts
by marking the midpoints in Figure 10 with a red star (i.e., solution 8 for NSGA-II and
solution 10 for CENSGA). The candidate solutions represent average and non-extreme
points among their relative fronts. It is noticeable that, on average, CENSGA outperforms
NSGA-II with respect to objective one value, and in the performance probability PC, while
in the probability PRE, both algorithms perform equally. Furthermore, the mean probability
of disease eradication is increased from 46% to 58% (an increase of almost 12%), while
the probability PRE holds its position. Besides this, we can observe a slight geometric
closeness among the candidate solutions, with an increase in the probability of disease
eradication from 58% to 74% (an increase of 16%); however, the probability of PRE records a
limited improvement, by 1%, in favor of the CENSGA policy. This means that the candidate
CENSGA solution tends to be both financially cheaper and more effective in disease
control. This can be explained by the “time is money policy”, which reflects that the correct
determination of campaign timing is a key aspect of vaccination, which is reflected in cost
saving. It is worth mentioning that both algorithms perform well in the selected solutions.
A quick glance at Figure 12 indicates that the CENSGA solution suggests almost the same
number of vaccination campaigns (minus one) as the NSGA-II control, while decreasing the
proportion of the vaccination ratio (refer to Figure 12). This enhances the considered time
window in which the number of those susceptible becomes lower and the number of those
recovered becomes higher—due to the combined effect of the vaccination and the correct
initiation of the campaigns. This is reflected more obviously in the number of realizations
in which the disease is under control and progressing to eradication. The SIR behavior of
these solutions is visualized in Figure 11. The mean number of vaccinated individuals in
each campaign is presented in Figure 12, while Figure 13 outlines the difference in mean
performance of PC and PRE.

Figure 11. Cont.
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Figure 11. SIR behavior under different situation. (A) SIR general behavior. (B) Behavior of the
selected solution from NSGA-II. (C) Behavior of the selected solution from CENSGA.

Figure 12. Mean number of vaccinations for (A) solution 8 from the NSGA-II non-dominated set and
(B) solution 10 from the CENSGA non-dominated set.

Figure 13. Mean values of PC and PRE.

It is worth mentioning that the candidate solutions may have better options, such
as solutions 4 and 9 for NSGA-II and solutions 4 and 7 for CENSGA. However, all these
solutions are rejected, even though they show better PC and PRE values, as they all involve
costly vaccination campaigns. The same narrative is applied to other similar solutions
as well.

8. Efficiency Performance Measures

The quality indicators (QI) for multi-objective optimization involve considerably
large numbers of performance measures. These measurements have been proposed to
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approximate the quality of the produced Pareto front. In this work, the algorithms are
coded using R Studio 2022.02.2 (Build 485) and implemented on a PC using MacOS Big
Sur, 2.40 GHz Quad-Core Intel Core i5, RAM 16 GB 2133 MHz LPDDR3. To evaluate the
algorithms, we applied a set of performance indicators that fall under four principal classes:
cardinality, convergence, distribution and spread. In practice, when the real Pareto front is
unknown, the reference set often consists of the non-dominated solutions of the collections
of all solutions produced during the search [54]. For instance, we combined the Pareto
fronts of NSGA-II and CENSGA, and then applied fast non-dominated sorting, ranking
and crowd distance functions in the collection to produce the reference set.

1. Error ratio (ER)

This measure of cardinality is given by the following formula:

ER(P) =
1
|P|∑a∈P ea (12)

where

ea

{
0 i f point a belongs to to PF
1 otherwise

A set of non-dominated points ∈ (P) within the reference set (PF) will have an error
ratio of 0; otherwise, the error ratio will be assigned as 1 [54].

2. Generational distance (GD)

This indicator of convergence is given by the following formula:

GD(P, PF) =
1
|P|

(
∑a∈P min

r∈PF

∣∣∣∣∣∣∣∣F(a)− F(r)||2
) 1

2
(13)

GD measures the distance between a given Pareto front (P) with the reference set (PF),

where min
r∈PF

∣∣∣∣∣∣∣∣F(a)− F(r)
∣∣∣∣∣∣∣∣ denotes the minimum Euclidean distance between point (a) and

the points ®in (PF). This indicator measures the distance between the Pareto front of a
particular algorithm and the reference set. The lower the outcome of GD, the better the
performance is [55].

3. ε-indicator (ε-IQ)

This indicator of convergence and spread is given by the following formula:

εX(P, PF) = max
p f∈PF

min
p∈P

max
j∈{1...m}

p f j

pj
(14)

The ε-indicator is to be minimized, where εX(P1, PF) < εX(P2, PF) indicates that the
set P1 dominates P2. It scales the gap of a particular set to the true Pareto front, represented
here by the reference set [54].

4. Hypervolume metric (HV)

This indicator of convergence and distribution is given by the following formula:

HV(P, PF) = λ ∪a∈P, a ≤ r [a; r] (15)

where λ denotes the Lebesgue measure [56]. In other words, a measure of the union of boxes.
Given Pareto front P⊂ Rm with a reference point r ∈ PF, where [a;r] = {s∈ Rm | a ≤ s and s ≤ r}
denotes the box bounded below by a ∈P and above by r ∈ PF. HV favors a higher quality value
for a set of given solutions. This can be interpreted as implying that the bigger the volume of
the union of the hypercubes determined by each of the Pareto front solutions and the reference
set points, the better it is [54].
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8.1. Analysis and Comparison of Results

Besides the previous case study, a quality performance measurement was performed
to evaluate the effectiveness of the proposed optimization algorithm. Model parameters
were taken from the literature and are representative of various real estimated influenza
scenarios. For testing, a set of different scenarios are suggested based on real epidemic
situations. Table A1 characterizes the suggested epidemics with their origin sources. A total
of nine computational experiments were planned and executed, considering different SIR
parameters settings. For each pair of γ ∈ {1/5, 1/7, 1/9} and β ∈ {1.18, 2.36, 4.72}, NSGA-II
and CENSGA were run independently on the last phase of the optimization problem.
The parameters used for the optimization algorithms are set similarly. The number of
generations was set to 50, the population size to 40, the probability of crossover to 1, the
probability of mutation to 0.2 and the distribution index for crossover and mutation to 10.
The final quality performance measures are presented in Table 5.

Table 5. Nine computational experiments and their associated QI values.

# Experiments
NSGA-II CENSGA

ER GD ε-IQ HV ER GD ε-IQ HV

1 γ = 1/5, β = 1.18 0.706 2.368 55.120 0.714 0.326 0 0.018 0.999
2 γ = 1/5, β = 2.36 0.679 1.576 79.512 0.307 0.344 0.453 0.362 0.995
3 γ = 1/5, β = 4.72 0.676 1.0344 80.419 0.31098 0.399 0.239 0.318 0.998
4 γ = 1/7, β = 1.18 0.711 2.633 125.554 0.632 0.353 0.003 0.1195 0.99985
5 γ = 1/7, β = 2.36 0.727 2.581 67.080 0.926 0.305 0.929 1.094 0.992
6 γ = 1/7, β = 4.72 0.742 1.064 41.447 0.271 0.279 0 0 1
7 γ = 1/9, β = 1.18 0.688 1.946 49.832 0.762 0.365 0.845 1.384 0.995
8 γ = 1/9, β = 2.36 0.656 2.108 55.425 0.587 0.4095 0.099 0 0.9992
9 γ = 1/9, β = 4.72 0.813 0.444 25.257 0.474 0.187 0 0 1

The collection of values tabulated in Table 5 indicate the performances of both algo-
rithms in all experiments. In general, CENSGA performed better than NSGA-II in all IQs
under different scenarios. For instance, a higher error ratio means the less representative an
algorithm is of the reference set. In all experiments, CENSGA has a better representation on
the reference set than NSGA-II. The same performance is shown by generational distance,
where, in this IQ, it is shown that CENSGA tends to be more convergent to the reference
set than NSGA-II, particularly in scenarios 1, 6 and 9, in which all CENSGA points are
included in the reference set. The convergence and space IQ (i.e., ε-indicator) affirm the
findings of the previous two IQs, especially in scenarios 6, 8 and 9, where all CENSGA
points are well-spaced over the front. Finally, the distribution of the points on the front
was greater in CENSGA in comparison to NSGA-II, which means that CENSGA performs
well in terms of the hypervolume indicator in all experiments; in scenarios 2, 3, 6 and 9, the
differences are remarkable.

8.2. Statistical Analysis

A non-parametric test called the Wilcoxon Rank Sum test was applied to analyze the
results statistically [57]. The results for the non-parametric Wilcoxon Rank Sum test for the
four metrics are given in Table 6. In this statistical test, the null hypothesis (H0) is defined
as “The difference between the two metrics medians are equal”, while the alternative
hypothesis is given by “At least one median is different”. The hypothesis is analyzed with
confidence 0.95. This means that, if the statistical test returns a p-value less than 0.05, then
the metrics may be considered significantly different.
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Table 6. p-values returned by the Wilcoxon Rank Sum test.

p-Value
ER GD ε-IQ HV

0.0004122948 0.001060576 0.000401039 0.0004094601

Statistical Test

According to the statistical test results reported in Table 6, the p-value of the Wilcoxon
Rank Sum non-parametric test for all performance metrics is less than 0.05; thus, H0 is
rejected for all performance measures. In this way, for each IQ measure, the nine experiment
cases were compared using the non-parametric Wilcoxon Rank Sum test. For each metric,
the indicator values are presented in Figure A2. Statistical differences were detected in all
mean experiments according to the p-values presented in Table 6. Therefore, it can be con-
cluded that the proposed optimization engine CENSGA with the local search and hash table
was outstanding in all mean experiments for diseases with diverse dynamical parameters.

9. Conclusions

This paper has presented a multi-objective optimization methodology for allocating a
set of vaccination control policies over a specified time horizon. The goal is to minimize
the volume of the infected population and the cost of vaccination campaigns. We used an
SIR model to simulate an epidemic in order to synthesize a two-phased control system:
the guardian control and the contingent control. For each control policy, the time interval
between vaccination policies and the proportion to be vaccinated are considered as decision
variables. In this way, a high infection curve is mitigated within a cost-wise budget.
To solve the synthesis problem, a non-dominated metaheuristic algorithm CENSGA is
designed, which provides fast, elitist and efficient solutions. For better convergence,
the CENSGA was incorporated with local searches, and a hash table was embedded to
hold non-dominated solutions from every generation in order to avoid the repetition or
unnecessary revaluation of old solutions. A final set of Pareto-optimal solutions of the
complete vaccination campaign was determined via a multi-objective algorithm, indicating
multiple trade-offs between public health and cost units. Thus, the proposed approach
delivers alternative robust solutions for vaccination campaigns to the policymaker. The
statistical analysis of the proposed approach indicates the significant applicability of the
proposed CENSGA compared to the well-known NSGA-II.

The proposed approach of synthesizing a set of optimal vaccination policies via two
phases—the guardian and the contingent controls—and the robust dominance approach
can be applied in other situations, using models that are more detailed and realistic. In
the future, a range of potential extensions can be added, such as an age structure, a spatial
structure, seasonality, modeling the epidemic with SEIR and performing a population-based
local search, in addition to considering real-life applications.
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Appendix A

Table A1. Suggested epidemic experiments with their origin sources.

# Type of Influenza Location R0 value Estimated R0
Estimated

Experiments

1 2009 influenza
A/H1N1 pandemic Denmark [58] 2.8–4.0 3.5 γ = 1/5, β = 1.18

2 SARS-CoV Hong Kong, Vietnam, Singapore,
and Canada [59] 3.1–4.5 4.2 γ = 1/5, β = 2.36

3 1918 Influenza
A/H1N1 Pandemic Denmark [58] 3.6–5.4 4.73 γ = 1/5, β = 4.72

4 MERS-COV Saudi Arabia, South Korea [59] 2.0–7.0 6.88 γ = 1/7, β = 1.18
5 COVID-19 Alpha Iran [60] 2.26–12.13 8.26 γ = 1/7, β = 2.36
6 COVID-19 Delta Iran [60] 3.0–23.3 9.29 γ = 1/7, β = 4.72
7 COVID-19 Omicron South Africa [61] 1.5–24.0 13.77 γ = 1/9, β = 1.18

8 Seasonal influenza
epidemics (H1N1) United Kingdom [58] 16.0-21.0 16.52 γ = 1/9, β = 2.36

9 Seasonal influenza
epidemics (H1N1) United Kingdom [58] 16.0-21.0 18.59 γ = 1/9, β = 4.72

Figure A1. Flowchart of the CENSGA algorithm.
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Figure A2. Performance measures of all mean experiment cases. (A) Error ratio. (B) Generational
distance. (C) ε-indicator. (D) Hypervolume.
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